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Two-time correlation function of an open quantum system in contact with a Gaussian reservoir
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An exact formula of a two-time correlation function is derived for an open quantum system which interacts
with a Gaussian thermal reservoir. It is provided in terms of functional derivative with respect to fictitious fields. A
perturbative expansion and its diagrammatic representation are developed, where the small expansion parameter
is related to a correlation time of the Gaussian thermal reservoir. The two-time correlation function of the lowest
order is equivalent to that calculated by means of the quantum regression theorem. The result clearly shows that
the violation of the quantum regression theorem is caused by a finiteness of the reservoir correlation time. By
making use of an exactly solvable model consisting of a two-level system and a set of harmonic oscillators, it is
shown that the two-time correlation function up to the first order is a good approximation to the exact one.
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I. INTRODUCTION

A quantum system in the real world is not isolated from its
surrounding environment [1–6] which may be a quantum or
classical system with a large number of degrees of freedom.
It is referred to as a thermal reservoir. In this paper, we treat
it as a quantum system. When we investigate properties of a
relevant quantum system, we have to treat it as an open quantum
system. A description of an open quantum system only in terms
of system variables is called a reduced description which is
derived by eliminating reservoir variables from a description
of the whole system. A quantum state of the relevant system
is given by a reduced density operator which is obtained by
performing partial trace over the thermal reservoir for a total
density operator. The time evolution of a reduced density oper-
ator is determined by the time-local or time-nonlocal quantum
master equation which is derived by means of the projection
operator method [6–13]. Solving the quantum master equation,
we can obtain statistical properties of the relevant quantum
system. Hence various methods for solving the quantum master
equations have been developed. For instance, the phase-space
method [14–18] and the algebraic method [19–22] are very
useful and have been applied to many problems. Since it is very
difficult to derive and solve the quantum master equations, the
second-order approximation (the Born approximation) with
respect to a coupling strength between the relevant quantum
system and the thermal reservoir has usually been applied
[6]. However, when a thermal reservoir is Gaussian, an exact
reduced time evolution of an open quantum system has been
found in the path-integral form [23] and in the canonical form
[24,25]. The properties of the reduced dynamics have been
investigated in detail for a Gaussian thermal reservoir [26–29].

A reduced density operator can explain all statistical prop-
erties associated with single time events of an open quantum
system [30,31]. However, there are important phenomena that
cannot be described as a single time event. For instance, the
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second-order optical coherence and the fluorescence spectrum
are described by a correlation function which depends on
two different times [18,32]. The photon counting process is
characterized by multitime joint probability [33]. Furthermore
a linear response function that describes a response of a
quantum system to a weak external field depends on two
different times [34–39]. When dynamics of a quantum system
is taken into account, a weak value of an observable [40–42]
depends on two times at which an observable is weakly
measured and the quantum system is postselected after the
weak measurement [43–45]. Usually one calculates a two-time
correlation function of an open quantum system by making use
of the quantum regression theorem [6,17,18,32]. However, the
theorem is no longer valid when reduced time evolution of a
relevant quantum system is not Markovian [46–51]. Recently
it has been shown that the projection operator technique
can be applied for calculating correlation functions of open
quantum systems [52–54]. These methods make it possible to
calculate correlation functions in a perturbative way, where
the expansion is carried out with respect to a coupling strength
between the relevant quantum system and the thermal reservoir.

In this paper, we derive an exact expression of a two-time
correlation function for an open quantum system interacting
with a Gaussian thermal reservoir [24,25]. We also present
an expansion formula for the correlation function and its
diagrammatic representation, where the small expansion pa-
rameter is related to a correlation time of the Gaussian thermal
reservoir. The correlation function of the lowest order is equal
to that derived by means of the quantum regression theorem.
Using an exactly solvable model [6,55], we examine whether
the expansion formula becomes a good approximation to the
exact one. The paper is organized as follows. In Sec. II, we
briefly review the reduced time evolution of an open quantum
system which is influenced by a Gaussian thermal reservoir. We
introduce some notations used throughout this paper. In Sec.
III, we derive an exact expression of a two-time correlation
function for a relevant quantum system with the assistance
of functional derivative with respect to fictitious fields. In
Sec. IV, we provide an expansion formula for a two-time
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correlation function and its diagrammatic representation. We
also obtain a two-time correlation function in the rotating wave
approximation. In Sec. V, using an exactly solvable model
which consists of a two-level system and harmonic oscillators,
we examine whether the approximated correlation function up
to the first order becomes a good approximation. In Sec. VI,
we summarize the result obtained in this paper.

II. REDUCED TIME EVOLUTION OF AN OPEN
QUANTUM SYSTEM

In this section, we briefly review the reduced time evolution
of an open quantum system interacting with a Gaussian
thermal reservoir [24]. Generalizing the result, we can de-
rive an exact formula for a two-time correlation function
of a relevant quantum system. To explain the reduced time
evolution, we suppose that an interaction Hamiltonian be-
tween a relevant quantum system and a thermal reservoir is
given by Hint(t,t0) = S(t,t0) ⊗ R(t,t0) in the interaction pic-
ture with S(t,t0) = e(i/h̄)HS (t−t0)S e−(i/h̄)HS (t−t0) and R(t,t0) =
e(i/h̄)HR (t−t0)R e−(i/h̄)HR(t−t0), where HS (HR) is a Hamiltonian
of the relevant system (the thermal reservoir) and S (R) is an
appropriate system (reservoir) operator. It is straightforward to
extend the result to the case that the interaction Hamiltonian
is given by HSR(t,t0) =∑j Sj (t,t0) ⊗ Rj (t,t0). In this paper,
we explicitly denote the time at which the interaction picture
coincides with the Schrödinger one. If there is no initial corre-
lation between the relevant system and the thermal reservoir,
an initial density operator of the whole system is given by
W = WS ⊗ WR . In this case, a thermal reservoir is Gaussian
if the characteristic function is Gaussian [24,25], namely,

TrR

{
TR exp

[
−i

∫ t

t0

dτ f (τ )R(τ,t0)

]
WR

}

= exp

[
−i

∫ t

t0

dτ f (τ )〈R(τ,t0)〉R

−
∫ t

t0

dτ2

∫ τ2

t0

dτ1 f (τ2)f (τ1)〈R(τ2,t0)R(τ1,t0)〉cR
]
, (1)

with f (t) being an analytic function, 〈•〉R = TrR(•WR), and

〈R(τ2,t0)R(τ1,t0)〉cR
= 〈R(τ2,t0)R(τ1,t0)〉R − 〈R(τ2,t0)〉R〈R(τ1,t0)〉R. (2)

In Eq. (1), TrR stands for the trace operation over a Hilbert
space of the thermal reservoir and TR represents the time
ordering in which the reservoir operators R(t,t0)’s are placed
from the right to the left in the chronological order.

To derive the reduced time evolution of the relevant
quantum system, it is convenient to introduce Liouvillian
superoperators [6]. We denote the total Hamiltonian as
H = H0 + H1 with H0 = HS + HR and H1 = HSR = S ⊗
R. The corresponding Liouvillian superoperators are Lx• =
−(i/h̄)H×

x • = −(i/h̄)[Hx,•]. Furthermore, we define a su-
peroperator X̃ by X̃• = •X. Then we have a commutator
X× = X − X̃ and an anticommutator X◦ = X + X̃. These
superoperators make it possible to calculate the reduced time
evolution of the relevant quantum system in a systematic way.
In fact, we can obtain the time evolution of the reduced density

operator of the relevant quantum system [24],

WS(t) = VS(t,t0)WS, (3)

where the time-evolution operator VS(t,t0) of the relevant
quantum system is given by

VS(t,t0) = TrR[eL(t−t0)WR] = eLS (t−t0)TrR[V (t,t0|t0)WR],

(4)

with

V (t,t1|t0) = T exp

[∫ t

t1

dτ L1(τ,t0)

]
(5)

and

L1(t,t0) = e−L0(t−t0)L1e
L0(t−t0). (6)

In Eq. (5), T represents the time ordering for the Liouvillian
superoperators L1(t,t0)’s. If the thermal reservoir is Gaussian,
TrR[V (t,t0|t0)WR] is calculated to be

TrR[V (t2,t1|t0)WR]

= T S
(t2,t0) exp

[
−
∫ t2

t1

dτ2

∫ τ2

t1

dτ1 G(τ2,τ1|t0)

]
, (7)

with

G(τ2,τ1|t0) = S×(τ2,t0)[CR(τ2 − τ1)S×(τ1,t0)

+iCI (τ2 − τ1)S◦(τ1,t0)], (8)

where CR(τ2 − τ1) and CI (τ2 − τ1) are real and imaginary
parts of the reservoir correlation function 〈R(τ2,t0)R(τ1,t0)〉R .
In deriving the result, we have assumed 〈R(t,t0)〉R = 0 without
a loss of generality. In Eq. (7), the symbol T S

(t2,t0) means the
time ordering that the system operators S(t,t0)’s in the time
region t2 > t > t0 are placed in the chronological order. A
generalization of this result to the case that there is initial
correlation between the relevant quantum system and the
Gaussian thermal reservoir is briefly discussed in Appendix A.

FIG. 1. Representation of the integral region Tt2←t0 = Tt2←t1 +
Tt2←t1

t1←t0 + Tt1←t0 , where there is no overlap of τ2 integral and τ1 integral
in the gray-colored region Tt2←t1

t1←t0 .
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Introducing vector S(t,t0) of superoperators and 2 × 2 matrix
C(t) by

S(t,t0) =
(

S×(t,t0)
S◦(t,t0)

)
,

C(τ2 − τ1) =
(

CR(τ2 − τ1) iCI (τ2 − τ1)
0 0

)
, (9)

we can express the superoperator G(τ2,τ1|t0) as

G(τ2,τ1|t0) =
∑
μ,ν

Cμ,ν(τ2 − τ1)Sμ(τ2,t0)Sν(τ1,t0). (10)

Before closing this section, we consider the integral with
respect to τ2 and τ1 in Eq. (7). For any time t1 with t2 > t1 > t0,
the integral decomposed into three parts as follows:∫ t2

t0

dτ2

∫ τ2

t0

dτ1 G(τ2,τ1|t0)

=
(∫ t2

t1

dτ2

∫ τ2

t1

dτ1 +
∫ t2

t1

dτ2

∫ t1

t0

dτ1

+
∫ t1

t0

dτ2

∫ τ2

t0

dτ1

)
G(τ2,τ1|t0)

≡
(∫∫

Tt2←t1

d2τ21 +
∫∫

T
t2←t1
t1←t0

d2τ21 +
∫∫

Tt1←t0

d2τ21

)

× G(τ2,τ1|t0), (11)

where we set d2τ21 = dτ2dτ1 and the three time regionsTt2←t1 ,
Tt2←t1

t1←t0 , and Tt1←t0 are depicted in Fig. 1. It is important to note
that there is no overlap of the two integrals in the regionTt2←t1

t1←t0 .
Hence this integral becomes negligible if the correlation time
of the thermal reservoir is sufficiently small. In this case, we
may approximate as∫ t2

t0

dτ2

∫ τ2

t0

dτ1 G(τ2,τ1|t0)

≈
(∫∫

Tt2←t1

d2τ21 +
∫∫

Tt1←t0

d2τ21

)
G(τ2,τ1|t0). (12)

This result is essential for deriving an expansion formula for
a two-time correlation function. In fact, the integral in the
region Tt2←t1

t1←t0 plays a role of a small parameter of perturbative
expansion. In the rest of this paper, we refer to

∫∫
T

t2←t1
t1←t0

d2τ21 •
as t1-disconnected integral since the two integrals are separated
at time t1. Here it should be noted that the intermediate time t1
will be chosen so that a systematic perturbative expansion is
possible.

III. TWO-TIME CORRELATION FUNCTION OF
AN OPEN QUANTUM SYSTEM

A two-time correlation function of the relevant quantum
system that we consider in this paper is expressed in the
following form [54]:

CX2,X1 (t2,t1) = Tr[X2e
L(t2−t1)X1e

L(t1−t0)W ], (13)

where Xj (j = 1,2) is any system operator including
a superoperator and quantum operation. Rewriting the
Liouvillian superoperator L in terms of the Hamilto-
nian H and assuming observables X2 and X1, we ob-
tain the usual two-time correlation function CX2,X1 (t2,t1) =
Tr[X(H)

2 (t2,t0)X(H)
1 (t1,t0)W ] [56] with the Heisenberg operator

X
(H)
j (tj ,t0) = e(i/h̄)H (tj −t0)Xje

−(i/h̄)H (tj −t0). Our purpose is to
derive the reduced description of the correlation function
CX2,X1 (t2,t1). Using the operators in the interaction picture,
we can rewrite the correlation function into

CX2,X1 (t2,t1) = Tr[X2(t2,t0)V (t2,t1|t0)X1(t1,t0)V (t1,t0|t0)W ],

(14)

where Xj (t,t0) = e−L0(t−t0)Xje
L0(t−t0) = e−LS (t−t0)Xje

LS (t−t0)

and V (t2,t1|t0) is given by Eq. (5). In deriving this equation,
we have used the relation eL(t−t1)eL0(t1−t0) = eL0(t−t0)V (t,t1|t0).

To calculate the trace over the Hilbert space of the Gaussian
thermal reservoir on the right-hand side of Eq. (14), we
introduce a conditional time ordering T

S|X1(t1,t0)
(t2,t0) . For any times

τni
(i = 1,2, . . . ,N) and τmj

(j = 1,2, . . . ,M) with t2 > τni
>

t0 and t2 > τmj
> t0, it is defined by

T
S|X1(t1,t0)

(t2,t0)

[
S×(τn1 ,t0

) · · · S×(τnN
,t0
)
X1(t1,t0)S×(τm1 ,t0

) · · · S×(τmM
,t0
)]

= T S
(t2,t0)

[
S×(τk1 ,t0

) · · · S×(τkK
,t0
)]

X1(t1,t0)T S
(t1,t0)

[
S×(τ�1 ,t0

) · · · S×(τ�L
,t0
)]

, (15)

where τki
(i = 1,2, . . . ,K) and τ�j

(j = 1,2, . . . ,L) satisfy t2 > τki
> t1 and t1 > τ�j

> t0 and the equality M + N = K + L

holds. It is obvious that if X1(t1,t0) = 1, the conditional time ordering T
S|X1(t1,t0)

(t2,t0) reduces to the usual time ordering T S
(t2,t0). Thanks

to the conditional time ordering, when we calculate the trace over the reservoir Hilbert space in Eq. (14), we can treat X1(t1,t0) and
S×(t,t0)’s as commutable variables under the ordering T

S|X1(t1,t0)
(t2,t0) and thus we can apply the method developed in Refs. [24,25].

Hence, using the conditional time-ordering operation and Eq. (7), we can express the correlation function as

CX2,X1 (t2,t1) = TrS
[
T

S|X1(t1,t0)
(t2,t0) X2(t2,t0)X1(t1,t0)TrR(V (t2,t0|t0)W )

]
= TrS

{
X2(t2,t0)T S|X1(t1,t0)

(t2,t0) X1(t1,t0) exp

[
−
∫∫

Tt2←t0

d2τ21 G(τ2,τ1|t0)

]
WS

}
. (16)

052101-3



MASASHI BAN, SACHIKO KITAJIMA, AND FUMIAKI SHIBATA PHYSICAL REVIEW A 97, 052101 (2018)

Furthermore, substituting Eqs. (11) and (15) into this equation, we obtain the correlation function,

CX2,X1 (t2,t1) = TrS

{
X2(t2,t0)T S

(t2,t0)

[
exp

(
−
∫∫

Tt2←t1

d2τ21 G(τ2,τ1|t0)

)

× T
S|X1(t1,t0)

(t2,t0)

[
X1(t1,t0) exp

(
−
∫∫

T
t2←t1
t1←t0

d2τ21 G(τ2,τ1|t0)

)]
exp

(
−
∫∫

Tt1←t0

d2τ21 G(τ2,τ1|t0)

)]
WS

}
. (17)

Our next task is to rewrite the second term with the conditional time ordering in Eq. (17) into terms with the usual time
ordering. First expanding the exponential and using Eqs. (10) and (15), we obtain

T
S|X1(t1,t0)

(t2,t0)

[
X1(t1,t0) exp

(
−
∫∫

T
t2←t1
t1←t0

d2τ21 G(τ2,τ1|t0)

)]
= T

S|X1(t1,t0)
(t2,t0)

[
X1(t1,t0)

∞∑
n=0

(−1)n

n!

(∫∫
T

t2←t1
t1←t0

d2τ21 G(τ2,τ1|t0)

)n]

= X1(t1,t0) + T S
(t2,t0)

∞∑
n=1

(−1)n

n!

∫∫
T

t2←t1
t1←t0

d2τ
(n)
21 · · ·

∫∫
T

t2←t1
t1←t0

d2τ
(1)
21

×
∑
μn,νn

· · ·
∑
μ1,ν1

Cμn,νn

(
τ

(n)
2 − τ

(n)
1

) · · · Cμ1,ν1

(
τ

(1)
2 − τ

(1)
1

)

× Sμn

(
τ

(n)
2 ,t0

) · · · Sμ1

(
τ

(1)
2 ,t0

)
X1(t1,t0)Sνn

(
τ

(n)
1 ,t0

) · · · Sν1

(
τ

(1)
1 ,t0

)
.

(18)

Here it is convenient to introduce two superoperators,

Kμn...μ1

(
t2,t1; τ (n)

2 , . . . ,τ
(1)
2

∣∣t0) = T S
(t2,t0)

[
Sμn

(
τ

(n)
2 ,t0

) · · · Sμ1

(
τ

(1)
2 ,t0

)
exp

(
−
∫∫

Tt2←t1

d2τ21G(τ2,τ1|t0)

)]
, (19)

Lνn...ν1

(
t1,t0; τ (n)

1 , . . . ,τ
(1)
1

∣∣t0) = T S
(t1,t0)

[
Sνn

(
τ

(n)
1 ,t0

) · · · Sν1

(
τ

(1)
1 ,t0

)
exp

(
−
∫∫

Tt1←t0

d2τ21 G(τ2,τ1|t0)

)]
(20)

for n > 0 and

K(t2,t1|t0) = TrR[V (t2,t1|t0)WR], L(t1,t0|t0) = TrR[V (t1,t0|t0)WR], (21)

for n = 0. Then the two-time correlation function CX2,X1 (t2,t1) is given by

CX2,X1 (t2,t1) = C
(0)
X2,X1

(t2,t1) +
∞∑

n=1

(−1)n

n!

∫∫
T

t2←t1
t1←t0

d2τ
(n)
21 · · ·

∫∫
T

t2←t1
t1←t0

d2τ
(1)
21

×
∑
μn,νn

· · ·
∑
μ1,ν1

Cμn,νn

(
τ

(n)
2 − τ

(n)
1

) · · · Cμ1,ν1

(
τ

(1)
2 − τ

(1)
1

)

× TrS
[
X2(t2,t0)Kμn...μ1

(
t2,t1; τ (n)

2 , . . . ,τ
(1)
2

∣∣t0)X1(t1,t0)Lνn...ν1

(
t1,t0; τ (n)

1 , . . . ,τ
(1)
1

∣∣t0)WS

]
, (22)

with

C
(0)
X2,X1

(t2,t1) = TrS[X2(t2,t0)K(t2,t1|t0)X1(t1,t0)L(t1,t0|t0)WS]. (23)

To proceed further, we note that the following equality is established:

Sμj

(
τ

(j )
2 ,t0

)
Sμk

(
τ

(k)
2 ,t0

) = e−LS (t1−t0)Sμj

(
τ

(j )
2 ,t1

)
Sμk

(
τ

(k)
2 ,t1

)
eLS (t1−t0). (24)

This equation relates Kμn...μ1 (t2,t1; τ (n)
2 , . . . ,τ

(1)
2 |t0) to Lνn...ν1 (t1,t0; τ (n)

1 , . . . ,τ
(1)
1 |t0) by the relation

Kμn...μ1

(
t2,t1; τ (n)

2 , . . . ,τ
(1)
2

∣∣t0) = e−LS (t1−t0)Kμn...μ1

(
t2,t1; τ (n)

2 , . . . ,τ
(1)
2

∣∣t1)eLS (t1−t0)

= e−LS (t1−t0)Lμn...μ1

(
t2,t1; τ (n)

2 , . . . ,τ
(1)
2

∣∣t1)eLS (t1−t0). (25)

Then we obtain the correlation function from Eq. (22),

CX2,X1 (t2,t1) = C
(0)
X2,X1

(t2,t1) +
∞∑

n=1

(−1)n

n!

(
n∏

k=1

∫∫
T

t2←t1
t1←t0

d2τ
(k)
21 Cμk,νk

(
τ

(k)
2 − τ

(k)
1

))

× TrS
[
X2e

LS (t2−t1)Lμn...μ1

(
t2,t1; τ (n)

2 , . . . ,τ
(1)
2

∣∣t1)X1e
LS (t1−t0)Lνn...ν1

(
t1,t0; τ (n)

1 , . . . ,τ
(1)
1

∣∣t0)WS

]
, (26)
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with

C
(0)
X2,X1

(t2,t1) = TrS[X2e
LS (t2−t0)K(t2,t1|t0)X1e

LS (t1−t0)L(t1,t0|t0)WS]. (27)

In deriving Eq. (26), we have used X2(t2,t0) = e−LS (t2−t0)X2e
LS (t2−t0) and X1(t1,t0) = e−LS (t1−t0)X1e

LS (t1−t0). When we introduce
fictitious fields J±

μ (t)’s and define superoperators L(t2,t1|J±(t)) by

L(t2,t1|J±(t)) = T S
(t2,t1) exp

(
−
∫∫

Tt2←t1

d2τ21 G(τ2,τ1|t1) +
∑

μ

∫ t2

t1

dτ J±
μ (τ )Sμ(τ,t1)

)
, (28)

we can express the two-time correlation function CX2,X1 (t2,t1) by means of functional derivative,

CX2,X1 (t2,t1) = exp

(
−
∑
μ,ν

∫∫
T

t2←t1
t1←t0

d2τ21 Cμ,ν(τ2 − τ1)
δ2

δJ+
μ (τ2)δJ−

ν (τ1)

)

× TrS[X2e
LS (t2−t1)L(t2,t1|J+(t))X1e

LS (t1−t0)L(t1,t0|J−(t))WS]|J±(t)→0. (29)

This is a main result of this paper. When we substitute
X2 = 1 or X1 = 1 into this equation, we find that the average
values,

C1,X1 (t2,t1) = TrS[X1WS(t1)],

CX2,1(t2,t1) = TrS[X2WS(t2)], (30)

are obtained (see Appendix B), where the reduced density
operator WS(t) of the relevant quantum system is given by
Eq. (3).

In deriving the result (29), we have assumed that the thermal
reservoir is Gaussian, but we have not applied any approxi-
mation. Thus the two-time correlation function CX2,X1 (t2,t1)
that we have derived for the open quantum system is an exact
and formal expression. Although the two-time correlation
functions have been calculated perturbatively by means of
the quantum master equation based on the projection operator
technique [52–54], its exact expression has not been found. Of
course, we may have to use some approximation to explicitly
calculate the two-time correlation function (29). However,
deriving an exact expression of a two-time correlation function
means a lot to the theory of open quantum systems since it
may be useful for investigating physical and mathematical
properties of open quantum systems.

IV. EXPANSION OF THE TWO-TIME
CORRELATION FUNCTION

In this section, we derive an expansion formula which pro-
vides the two-time correlation function up to the second order
with respect to the disconnected integral. If the correlation
time of the Gaussian thermal reservoir is sufficiently small,
the disconnected integral becomes negligible (see Sec. II).
The lowest-order correlation function C

(0)
X2,X1

(t2,t1) is obtained

by discarding all the contributions from the t1- and τ
(k)
1,2-

disconnected integrals in Eq. (26) or from the functional
derivatives in Eq. (29). The nth-order correction �C

(n)
X2,X1

(t2,t1)
to the correlation function is obtained by taking into account the
nth order of the t1- and τ

(k)
1,2-disconnected integral in Eq. (26).

In the rest of this section, we assume that the system operator
X1 at the time t1 in the correlation function is not an identity.

A. Lowest-order term and the quantum regression theorem

We derive the lowest-order correlation function
C

(0)
X2,X1

(t2,t1) and discuss the quantum regression theorem
[6,17,18,32]. Since the disconnected integral comes out when
the functional derivatives with respect to J±

μ (t) are performed,
we neglect the exponential in Eq. (29) when deriving the
lowest-order correlation function. Then we obtain from
Eq. (29)

C
(0)
X2,X1

(t2,t1) = TrS[X2e
LS (t2−t1)L(t2,t1|J+(t))X1e

LS (t1−t0)

× L(t1,t0|J−(t))WS]|J±(t)→0. (31)

Here L(t1,t0|J−(t))|J−(t)→0 is obtained from Eq. (28),

eLS (t1−t0)L(t1,t0|J−(t))|J−(t)→0

= eLS (t1−t0)T S
(t1,t0) exp

(
−
∫∫

Tt1←t0

d2τ21 G(τ2,τ1|t0)

)

= eLS (t1−t0)TrR[V (t1,t0|t0)WR]

= 〈eL(t1−t0)〉R = VS(t1,t0), (32)

where we set 〈•〉R = Tr[•WR]. In the same way, we obtain

eLS (t2−t1)L(t2,t1|J+(t))|J+(t)→0 = VS(t2,t1). (33)

Then the two-time correlation function of the lowest order is
given by

C
(0)
X2,X1

(t2,t1) = TrS[X2VS(t2,t1)X1VS(t1,t0)WS]. (34)

The lowest-order correlation function C
(0)
X2,X1

(t2,t1) can also
be derived by applying the quantum regression theorem. To
show this, we note that the reduced density operator of the
relevant quantum system is given by WS(t) = 〈eL(t−t0)〉RWS =
VS(t,t0)WS if there is no initial correlation between the relevant
quantum system and the thermal reservoir. Then the average
value of a system observable X at time t2 is 〈X(t2)〉 =
TrS[XVS(t2,t0)WS]. Differentiating the average value with
respect to t2, we obtain the equation of motion for the average
value,

∂

∂t2
〈X(t2)〉 = TrS[XKS(t2,t0)VS(t2,t0)WS]

= TrS[(K̃S(t2,t0)X)VS(t2,t0)WS], (35)
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where KS(t2,t0) = 〈LeL(t2−t0)〉R/〈eL(t2−t0)〉R and
TrS[(K̃S(t2,t0)A)B] = TrS[AKS(t2,t0)B]. Here let {Ek}
be a complete set of system operators and we expand as
K̃S(t2,t0)Ej =∑k Gjk(t2,t0)Ek . Then the equation of motion
for 〈Ej (t2)〉 is given by

∂

∂t2
〈Ej (t2)〉 =

∑
k

Gjk(t2,t0)〈Ek(t2)〉. (36)

On the other hand, differentiating Eq. (34) with respect
to time t2 and substituting X2 = Ej and X1 = El , we
obtain

∂

∂t
C

(0)
Ej ,El

(t2,t1) =
∑

k

Gjk(t2,t1)C(0)
Ek,El

(t2,t1). (37)

Although Gjk(t2,t1) �= Gjk(t2,t0) in general, Gjk(t2,t1) is ob-
tained by replacing the initial time t0 by the later time t1 in
Gjk(t2,t0). Hence this result shows that the quantum regres-
sion theorem leads to the lowest-order correlation function
C

(0)
X2,X1

(t2,t1) =∑j,k ajbkC
(0)
jk (t2,t1) with X2 =∑j ajEj and

X1 =∑k bkEk . However, the quantum regression theorem is
not valid in general [46–51] due to the correction terms to
CX2,X1 (t2,t1).

B. First- and second-order correction terms

Next we obtain the first-order correction �C
(1)
X2,X1

(t2,t1) to
the two-time correlation function with respect to the discon-
nected integral. Picking up the term with n = 1 in the sum on
the right-hand side of Eq. (26), we have

�CX2,X1 (t2,t1) = −
∑
μ,ν

∫∫
T

t2←t1
t1←t0

d2τ21 Cμ,ν(τ2 − τ1)TrS
[
X2e

LS (t2−t1)Lμ(t2,t1; τ2|t1)X1e
LS (t1−t0)Lν(t1,t0; τ1|t0)WS

]
, (38)

with

Lν(t1,t0; τ1|t0) = T S
(t1,t0)

[
Sν(τ1,t0) exp

(
−
∫∫

Tt1←t0

dτ ′
21 G(τ ′

2,τ
′
1|t0)

)]
, (39)

Lμ(t2,t1; τ2|t1) = T S
(t2,t1)

[
Sμ(τ2,t1) exp

(
−
∫∫

Tt2←t1

d2τ ′
21 G(τ ′

2,τ
′
1|t1)

)]
. (40)

Here we note that the superoperator Lν(t1,t0; τ1|t0) is decomposed into

Lν(t1,t0; τ1|t0) = T S
(t1,t0)

{[
exp

(
−
∫∫

Tt1←τ1

d2τ ′
21 G(τ ′

2,τ
′
1|t0)

)]

×
[

Sν(τ1,t0) exp

(
−
∫∫

T
t1←τ1
τ1←t0

d2τ ′
21 G(τ ′

2,τ
′
1|t0)

)][
exp

(
−
∫∫

Tτ1←t0

d2τ ′
21 G(τ ′

2,τ
′
1|t0)

)]}
. (41)

If we remove the τ1-disconnected integral from Eq. (41), we obtain

eLS (t1−t0)Lν(t1,t0; τ1|t0) ≈ VS(t1,τ1)SνVS(τ1,t0). (42)

In the same way, neglecting the τ2-disconnected integral in Eq. (40), we can also derive

eLS (t2−t1)Lμ(t2,t1; τ2|t1) ≈ VS(t2,τ2)SμVS(τ2,t1). (43)

Since Eq. (38) has the t1-disconnected integral, substituting Eqs. (42) and (43) into Eq. (38), we obtain the first-order correction
�C

(1)
X2,X1

(t2,t1) to the correlation function,

�C
(1)
X2,X1

(t2,t1) = −
∑
μ,ν

∫∫
T

t2←t1
t1←t0

d2τ21 Cμ,ν(τ2 − τ1)

× TrS[X2VS(t2,τ2)SμVS(τ2,t1)X1VS(t1,τ1)SνVS(τ1,t0)WS]. (44)

To obtain the second-order correction �C
(2)
X2,X1

(t2,t1), we have to perform straightforward but lengthy calculation, which is
given in Appendix C. Here we only provide the result,

�C
(2)
X2,X1

(t2,t1) =
∑

μ1,μ2,μ3,μ4

∫∫
Tt2←t1

d2τ43

∫∫
Tt1←t0

d2τ21 Cμ4,μ1 (τ4 − τ1)Cμ3,μ2 (τ3 − τ2)

×TrS
[
X2VS(t2,τ4)Sμ4VS(τ4,τ3)Sμ3VS(τ3,t1)X1VS(t1,τ2)Sμ2VS(τ2,τ1)Sμ1VS(τ1,t0)WS

]
+

∑
μ1,μ2,μ3,μ4

∫∫
Tt2←t1

d2τ43

∫∫
Tt1←t0

d2τ21 Cμ4,μ2 (τ4 − τ2)Cμ3,μ1 (τ3 − τ1)

×TrS
[
X2VS(t2,τ4)Sμ4VS(τ4,τ3)Sμ3VS(τ3,t1)X1VS(t1,τ2)Sμ2VS(τ2,τ1)Sμ1VS(τ1,t0)WS

]
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+
∑

μ1,μ2,μ3,μ4

∫∫∫
Tt2←t1

d3τ432

∫
Tt1←t0

dτ1 Cμ4,μ2 (τ4 − τ2)Cμ3,μ1 (τ3 − τ1)

×TrS
[
X2VS(t2,τ4)Sμ4VS(τ4,τ3)Sμ3VS(τ3,τ2)Sμ2VS(τ2,t1)X1VS(t1,τ1)Sμ1VS(τ1,t0)WS

]
+

∑
μ1,μ2,μ3,μ4

∫
Tt2←t1

dτ4

∫∫∫
Tt1←t0

d3τ321 Cμ4,μ2 (τ4 − τ2)Cμ3,μ1 (τ3 − τ1)

×TrS
[
X2VS(t2,τ4)Sμ4VS(τ4,t1)X1VS(t1,τ3)Sμ3VS(τ3,τ2)Sμ2VS(τ2,τ1)Sμ1VS(τ1,t0)WS

]
, (45)

where we have denoted the time-order integral as∫∫
· · ·
∫∫

Ttb←ta

dnτn n−1···21 f (τn,τn−1, . . . ,τ2,τ1) =
∫ tb

ta

dτn

∫ τn

ta

dτn−1 · · ·
∫ τ3

ta

dτ2

∫ τ2

ta

dτ1 f (τn,τn−1, . . . ,τ2,τ1). (46)

Therefore, the two-time correlation function CX2,X1 (t2,t1) up
to the second order with respect to the disconnected integral is
given by

CX2,X1 (t2,t1) = C
(0)
X2,X1

(t2,t1) + �C
(1)
X2,X1

(t2,t1)

+ �C
(2)
X2,X1

(t2,t1), (47)

which is diagrammatically represented in Fig. 2. It is easy to
see that the two-time arguments of the reservoir correlation
function in the disconnected integral are separated by the times
t1 and τk . To roughly estimate the order of the disconnected
integral, we assume that the reservoir correlation function
is given by 〈Rμ(τ2,t0)Rν(τ1,t0)〉R ∼ gf (τ2 − τ1), where the

FIG. 2. Diagrammatic representation of the two-time correlation
function CX2,X1 (t2,t1) up to the second order with respect to the
disconnected integral. In this figure, the arrowed thick and dashed
lines from zk to zj respectively represent the reduced time evolu-
tion superoperator VS(tj ,tk) and the reservoir correlation function
Cμj ,μk

(τj − τk); the bullet • with zj is the system operator Sμj
. Here

we set zj = (τj ,μj ). The sum is taken for all μ’s and the time-ordered
integration is performed for all τ ’s. The first and second terms are
the lowest-order correlation function C

(0)
X2,X1

(t2,t1) and the first-order

correction�C
(1)
X2,X1

(t2,t1). The terms from the third to the sixth provide

the second-order correction �C
(2)
X2,X1

(t2,t1) to the correlation function.

parameter g stands for a strength of the correlation and
f (τ ) a normalized function of time τ . For instance, it is
given by f (τ ) = (1/τR)e−|τ |/τR , where τR is a correlation
time of the Gaussian reservoir. Then, assuming that the
reservoir correlation time is short in comparison with a
characteristic time of the relevant system, we can see that
the contribution of the reservoir correlation Cμj ,μk

(τ2 − τ1)
function to the disconnected integral is of the order gτR .
The second order of the disconnected integral is found to
be (gτR)2.

Before proceeding further, we briefly comment on the
difference between our result and those given in Refs. [52–54],
which have been derived by means of the quantum master
equation or the projection operator method. It should be
noted that the quantum master equation has not been used for
deriving the two-time correlation function CX2,X1 (t2,t1) given
by Eq. (29). The two-time correlation function based on the
projection operator method is calculated perturbatively with
respect to the system-reservoir interaction. The approximated
two-time correlation function CX2,X1 (t2,t1) given by Eq. (47)
can be calculated in terms of the reduced time-evolution
operator VS(t2,t1) of the relevant quantum system, which is
given by VS(t2,t1) = 〈eL(t2−t1)〉R . If we use the projection oper-
ator method, the reduced time-evolution operator appearing in
the two-time correlation function is replaced by ṼS(t2,t1) =
VS(t2,t0)V −1

S (t1,t0) [54] and correction terms to the lowest
order are different from �C

(1)
X2,X1

(t2,t1) and �C
(2)
X2,X1

(t2,t1).
The expansion formula (47) and those given in Refs. [52–54]
become equivalent only if the reduced time evolution of the
relevant system is described by a dynamical semigroup [4–6].
In this case, the equality VS(t2,t1) = ṼS(t2,t1) = eLS (t2−t1)

holds, where LS is a generator of the dynamical semigroup.
Therefore, it should be considered that our result and those
in Refs. [52–54] provide the different expansion formulas for
the same two-time correlation function of an open quantum
system. It depends on problems for which the expansion
formula provides a good approximation.

C. Rotating wave approximation for the two-time
correlation function

In this subsection, we introduce the rotating wave approx-
imation [6] in the calculation of the two-time correlation
function. In deriving Eq. (29), we have assumed that the
interaction between the relevant quantum system and the
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Gaussian thermal reservoir is given by Ĥint(t,t0) = S(t,t0) ⊗
R(t,t0) in the interaction picture. Here we decompose the
two operators S(t,t0) and R(t,t0) into positive and negative
frequency parts [24], that is, S(t,t0) = S+(t,t0) + S−(t,t0) and

R(t,t0) = R+(t,t0) + R−(t,t0) with S
†
+(t,t0) = S−(t,t0) and

R
†
+(t,t0) = R−(t,t0). For the sake of simplicity, we assume

that 〈R+(t2,t0)R+(t1,t0)〉R = 〈R−(t2,t0)R−(t1,t0)〉R = 0. Then
we have the equality for the reservoir correlation function,

CR(τ2 − τ1) + iCI (τ2 − τ1) = C+−(τ2 − τ1) + C−+(τ2 − τ1), (48)

where we set C±∓(τ2 − τ1) = 〈R±(τ2,t0)R∓(τ1,t0)〉R . In this case, Eq. (8) becomes

G(τ2,τ1|t0) = [S×
+ (τ2,t0) + S×

− (τ2,t0)][C+−(τ2 − τ1) + C−+(τ2 − τ1)][S+(τ1,t0) + S−(τ1,t0)]

− [S×
+ (τ2,t0) + S×

− (τ2,t0)][C∗
+−(τ2 − τ1) + C∗

−+(τ2 − τ1)][S̃+(τ1,t0) + S̃−(τ1,t0)], (49)

with S̃j• = •Sj . When applying the rotating wave approximation to Eq. (8), we obtain

G(τ2,τ1|t0)
RWA≈ S×

+ (τ2,t0)C−+(τ2 − τ1)S−(τ1,t0) + S×
− (τ2,t0)C+−(τ2 − τ1)S+(τ1,t0)

− S×
+ (τ2,t0)C∗

+−(τ2 − τ1)S̃−(τ1,t0) − S×
− (τ2,t0)C∗

−+(τ2 − τ1)S̃+(τ1,t0)

≡ Ĝ(τ2,τ1|t0). (50)

To proceed further, we introduce the 4 × 4 matrix,

Ĉ(t) =

⎛
⎜⎜⎜⎝

C−+(t)+C∗
+−(t)

2
C−+(t)−C∗

+−(t)
2 0 0

0 0 0 0
0 0 C+−(t)+C∗

−+(t)
2

C+−(t)−C∗
−+(t)

2

0 0 0 0

⎞
⎟⎟⎟⎠, (51)

and the superoperator vectors,

Ŝ+(t,t0) =

⎛
⎜⎝

S×
+ (t,t0)

S◦
+(t,t0)

S×
− (t,t0)

S◦
−(t,t0)

⎞
⎟⎠, Ŝ−(t,t0) =

⎛
⎜⎝

S×
− (t,t0)

S◦
−(t,t0)

S×
+ (t,t0)

S◦
+(t,t0)

⎞
⎟⎠. (52)

Then Ĝ(τ2,τ1|t0) can be expressed as

Ĝ(τ2,τ1|t0) =
∑
μ,ν

Ĉμ,ν(τ2 − τ1)Ŝ+
μ (τ2,t0)Ŝ−

ν (τ1,t0). (53)

Thus, in the rotating wave approximation, Eqs. (28) and (29) are replaced by

CX2,X1 (t2,t1) = exp

(
−
∑
μ,ν

∫∫
Tt2←t0

d2τ21 Ĉμ,ν(τ2 − τ1)
δ2

δJ+
μ (τ2)δJ−

ν (τ1)

)

× TrS[X2e
LS (t2−t1)L+(t2,t1|J+(t))X1e

LS (t1−t0)L−(t1,t0|J−(t))WS]|J±(t)→0, (54)

with

L±(tj ,tk|J±(t)) = T S
(tj ,tk ) exp

(
−
∫∫

Ttj ←tk

d2τ21 Ĝ(τ2,τ1|tk) +
∑

μ

∫ tj

tk

dτ J±
μ (τ )S±

μ (τ,tk)

)
. (55)

Furthermore, the expansion formula for the two-time correlation function in the rotating wave approximation can be derived
from Eqs. (34), (44), and (45) as follows. (i) The matrix element Cμj μk

(τj ,τk) is replaced by Ĉμj ,μk
(τj ,τk). (ii) The system

operators Sμk
(τk) and Sμj

(τj ), which have the earlier time τk and the later one τj in the matrix element Ĉμj ,μk
(τj ,τk), are replaced

respectively by Ŝ−
μk

(τk) and Ŝ+
μj

(τj ). (iii) The upper limit of the summation is extended to four.

V. SIMPLE EXAMPLE OF THE
CORRELATION FUNCTION

In this section, we calculate the two-time correlation func-
tion up to the first order and compare the result with the exact
correlation function. For this purpose, we consider an exactly
solvable model consisting of a two-level system with transition
frequency ω and a set of independent harmonic oscillators with

frequency ωk [6,55]. The total Hamiltonian is given by

H = 1

2
h̄ωσz +

∑
k

h̄ωka
†
kak +

∑
k

h̄(gkσ+ak + g∗
k σ−a

†
k),

(56)

where σz is the Pauli operator, σ± is the raising (lowering)
operator, and ak (a†

k) is an annihilation (creation) operator of the
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kth reservoir oscillator and gk represents a coupling strength
between the two-level system and the reservoir oscillator.
Note that the rotating wave approximation is applied to the
Hamiltonian (56). The system operator S± and the reservoir
operator R± are respectively given by

S± = σ±, R− = R
†
+ =

∑
k

h̄gkak. (57)

Furthermore, we assume that the thermal reservoir is initially
in the vacuum state so that it becomes Gaussian and the spectral
density J (
) of the system-reservoir coupling is given by the
Lorentzian distribution with detuning δ,

J (
) =
( γ

2π

) λ2

(
 − ω − δ)2 + λ2
, (58)

where γ is a system-reservoir coupling strength and λ is an
inverse of the reservoir correlation time. In the previous work
[54,57], the exact two-time correlation function Czz(t2,t1) =
〈σz(t2)σz(t1)〉 has been obtained,

Czz(t2,t1) = 1 − [|A(t2)|2 + |A(t1)|2
−2A∗(t2)A(t2 − t1)A(t1)](1 + 〈σz〉), (59)

where the time-dependent parameter A(t) is given by

A(t) = e−iωt− 1
2 (λ+iδ)t

×
[

cosh

(
λ + iδ

2
at

)
+ 1

a
sinh

(
λ + iδ

2
at

)]
, (60)

with a =
√

1 − 2γ λ/(λ + iδ)2. In Eq. (59), we set the initial
time t0 = 0 and 〈σz〉 stands for an initial average of the Pauli
operator σz.

To evaluate our expansion formula, we obtain the lowest-
order two-time correlation function C(0)

zz (t2,t1) and the first-

order correction �C(1)
zz (t2,t1). To calculate these quanti-

ties, we need to find the reduced time-evolution operator
VS(tj ,tk) = 〈eL(tj −tk )〉R of the two-level system, where the
average is taken with the vacuum state of the reservoir. The
exact reduced time-evolution operator VS(tj ,tk) can be derived
from the reduced density operator WS(t) of the two-level
system, which is obtained by solving the Schrödinger equation
of the whole system [6,55]. The application of VS(tj ,tk) to σz,
σ±, and 1 is given by

VS(tj ,tk)σz = |A(tj − tk)|2σz, (61)

VS(tj ,tk)σ− = A∗(tj − tk)σ−, (62)

VS(tj ,tk)σ+ = A(tj − tk)σ+, (63)

VS(tj ,tk)1 = 1 − (1 − |A(tj − tk)|2)σz, (64)

which yields the lowest-order correlation function,

C(0)
zz (t2,t1) = TrS[σzVS(t2,t1)σzVS(t1,0)WS]

= 1 − |A(t1)|2(1 − |A(t2 − t1)|2)(1 + 〈σz〉). (65)

Different from the exact correlation function Czz(t2,t1), the
lowest-order correlation function C(0)

zz (t2,t1) is a real-valued
function. It is easy to check that, substituting t1 = 0 into
Eqs. (59) and (65), we obtain the equality Czz(t2,0) =
C(0)

zz (t2,0) for any γ and λ. In Appendix D, we show that the
necessary and sufficient condition that the equality Czz(t2,t1) =
C(0)

zz (t2,t1) is satisfied for any t2 and t1 with t2 > t1 � 0 is
that the time-dependent parameter A(t) satisfies A(t1)A(t2) =
A(t1 + t2). Since A(t) is given by Eq. (60), the condition is
equivalent to λ � γ . In this case, the reduced time evolution
of the two-level system is described by a dynamical semigroup.

Next we obtain the first-order correction �C(1)
zz (t2,t1) to the

correlation function. Since the Hamiltonian is given in the
rotating wave approximation, the first-order correction is

�C(1)
zz (t2,t1) = −

4∑
μ,ν=1

∫∫
T

t2←t1
t1←0

d2τ21 Ĉμ,ν(τ2 − τ1)TrS[σzVS(t2,τ2)Ŝ+
μVS(τ2,t1)σzVS(t1,τ1)Ŝ−

ν VS(τ1,0)WS]. (66)

In this equation, the matrix Ĉ(τ2 − τ1) and the vectors Ŝ± of superoperators are given respectively by

Ĉ(τ2 − τ1) = 1

2

⎛
⎜⎜⎜⎝

f (τ2 − τ1) f (τ2 − τ1) 0 0

0 0 0 0

0 0 f ∗(τ2 − τ1) −f ∗(τ2 − τ1)

0 0 0 0

⎞
⎟⎟⎟⎠ (67)

and

Ŝ+ =

⎛
⎜⎜⎜⎝

σ×
+

σ ◦
+

σ×
−

σ ◦
−

⎞
⎟⎟⎟⎠, Ŝ− =

⎛
⎜⎜⎜⎝

σ×
−

σ ◦
−

σ×
+

σ ◦
+

⎞
⎟⎟⎟⎠, (68)

with f (t) = 1
2γ λ e−i(ω+δ)t−λt . Then �C(1)

zz (t2,t1) becomes

�C(1)
zz (t2,t1) = −

∫∫
T

t2←t1
t1←0

d2τ21 [f (τ2 − τ1)G1(τ2,τ1) − f ∗(τ2 − τ1)G2(τ2,τ1)], (69)
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FIG. 3. Real part of the two-time correlation function 〈σz(t + τ )σz(τ )〉 of the Pauli operator σz, where the solid (blue) line stands for the
exact correlation function and the dashed (red) line for the approximated one up to the first order. In the figure, we set δ/γ = 0.5 and 〈σz〉 = 1.

with

G1(τ2,τ1) = TrS[σzVS(t2,τ2)σ×
+ VS(τ2,t1)σzVS(t1,τ1)σ−VS(τ1,0)WS], (70)

G2(τ2,τ1) = TrS[σzVS(t2,τ2)σ×
− VS(τ2,t1)σzVS(t1,τ1)σ̃+VS(τ1,0)WS], (71)

FIG. 4. Imaginary part of the two-time correlation function 〈σz(t + τ )σz(τ )〉 of the Pauli operator σz with δ/γ = 0.5 and 〈σz〉 = 1. In
the figure, the solid (blue) line stands for the exact correlation function and the dashed (red) line for the approximated one up to the first
order.
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FIG. 5. Absolute value and argument of the two-time correlation function 〈σz(t + τ )σz(τ )〉 of the Pauli operator σz, where the solid (blue)
line stands for the exact correlation function, the dashed (red) line for the one including the first-order correction, and the dotted (black) line
for the lowest-order correlation function. In the figure, we set δ/γ = 0.5 and 〈σz〉 = 1.

which are calculated to be

G1(τ2,τ1) = −(1 + 〈σz〉)|A(τ1)|2A∗(t1 − τ1)A∗(τ2 − t1)|A(t2 − τ2)|2, (72)

G2(τ2,τ1) = −(1 + 〈σz〉)|A(τ1)|2A(t1 − τ1)A(τ2 − t1)|A(t2 − τ2)|2. (73)

Thus we obtain the first-order correction to the two-time correlation function,

�C(1)
zz (t2,t1) = −iγ λ(1 + 〈σz〉)

∫∫
T

t2←t1
t1←0

d2τ21 e−λ(τ2−τ1)|A(τ1)|2Im[ei(ω+δ)(τ2−τ1)A(t1 − τ1)A(τ2 − t1)]|A(t2 − τ2)|2. (74)

It is found that, although the lowest-order correlation func-
tion C(0)

zz (t2,t1) is real, the first-order correction �C(1)
zz (t2,t1)

yields an imaginary part of the correlation function. Then
we compare the approximated correlation function up to the
first order, C(0)

zz (t2,t1) + �C(1)
zz (t2,t1), with the exact correlation

function Czz(t2,t1). The result is depicted in Figs. 3 and 4.
It is found from the figures that the correlation function
provided by our formula is a good approximation even if
the Gaussian thermal reservoir has a finite correlation time.
Furthermore, to compare the exact, the first-order, and the
lowest-order correlation functions, we plot the amplitude
|〈σz(t + τ )σz(t)〉| and the argument arg〈σz(t + τ )σz(t)〉 in
Fig. 5.

VI. SUMMARY

In this paper, we have considered a two-time correlation
function of an open quantum system interacting with a Gaus-
sian thermal reservoir. We have derived the exact formula
for the correlation function which is given by making use
of the functional derivative with respect to fictitious fields.

We have also developed the perturbative expansion, where
a small expansion parameter is related to the correlation
time of the thermal reservoir via the disconnected integral
and thus the higher-order terms become negligible if the
correlation time of the thermal reservoir is sufficiently small.
We have explicitly obtained the correlation function up to
the second order with respect to the disconnected integral.
The diagrammatic representation of the perturbative expansion
has also been presented. Using a model consisting of a two-
level system and independent harmonic oscillators, which
is exactly solvable if the total system does not have more
than a single excitation, we have calculated the two-time
correlation function of the Pauli operator σz up to the first
order. Comparing the approximated correlation function with
the exact one, we have found that our expansion formula
provides a good approximation. In this paper, we have assumed
that there is no initial correlation between a relevant quantum
system and a Gaussian thermal reservoir. However, our result
may be generalized to the case that a relevant quantum
system has initial correlation as long as a thermal reservoir is
Gaussian.
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APPENDIX A: REDUCED TIME EVOLUTION WITH INITIAL CORRELATION

In this Appendix, we briefly consider the reduced density operator of a relevant quantum system which is initially correlated
with a Gaussian thermal reservoir. Assuming the interaction Hamiltonian HSR(t,t0) = S(t,t0) ⊗ R(t,t0) in the interaction picture,
we have the time-evolved state W (t) = U (t,t0)WU †(t,t0) of the whole system. The unitary operator U (t,t0) is given by

U (t,t0) = TSTR exp

[
−i

∫ t

t0

dτ S(τ,t0) ⊗ R(τ,t0)

]
, (A1)

where TS (TR) stands for the usual time ordering of the system (reservoir) operators S(t,t0)’s [R(t,t0)’s]. Furthermore, we assume
the commutation relation [R(t2,t0),R(t1,t0)] = 2if (t2,t1), where f (t2,t1) is some c-number function. Then we can remove the
time ordering TR from the unitary operator U (t,t0),

U (t,t0) = TS exp

[
−i

∫ t

t0

dτ S(τ,t0) ⊗ R(τ,t0) − i

∫∫
Tt←t0

d2τ21 f (τ2,τ1)S(τ2,t0)S(τ1,t0)

]
, (A2)

where we have used the operator identity [58],

T exp

[
−i

∫ t2

t1

dτ X(τ,t0)

]
= exp

[
−i

∫ t2

t1

dτ X(τ,t0) − 1

2

∫∫
Tt2←t1

d2τ21 [X(τ2,t0),X(τ1,t0)]

]
, (A3)

with [X(τ2,t0),X(τ1,t0)] being a c-number function. Hence we can derive the reduced density operator WS(t) = TrRW (t) of the
relevant quantum system from Eq. (A2),

WS(t) = TS

{
exp

[
−i

∫∫
Tt←t0

d2τ21 f (τ2,τ1)S×(τ2,t0)S◦(τ1,t0)

]
TrR

[
exp

(
−i

∫ t

t0

dτ S×(τ,t0) ⊗ R(τ,t0)

)
W

]}
. (A4)

In terms of complete orthonormal set {|ψk〉 | k ∈ S} of the relevant quantum system, we express the initial state W as W =∑
j,k∈S pjk|ψj 〉〈ψk| ⊗ W

jk

R , where pjk = TrR〈ψj |W |ψk〉 and W
jk

R = (1/pjk)〈ψj |W |ψk〉. Substituting this into Eq. (A4), we
obtain

WS(t) =
∑
j,k∈S

pjkTS

{
exp

[
−i

∫∫
Tt←t0

d2τ21 f (τ2,τ1)S×(τ2,t0)S◦(τ1,t0)

]

×TrR

[
exp

(
−i

∫ t

t0

dτ S×(τ,t0) ⊗ R(τ,t0)

)
W

jk

R

]}
|ψj 〉〈ψk|. (A5)

Here we note that, although W
jk

R is not a density operator, the cumulant expansion technique [59,60] can be applied since the
equality TrRW

jk

R = 1 is satisfied. Assuming that the quasidensity operator W
jk

R is still Gaussian, we can calculate the trace in
Eq. (A5),

TrR

[
exp

(
−i

∫ t

t0

dτ S×(τ,t0) ⊗ R(τ,t0)

)
W

jk

R

]

= exp

[
−i

∫ t

t0

dτ 〈R(τ,t0)〉jkS
×(τ,t0) −

∫∫
Tt←t0

d2τ21 Re〈R(τ2,t0)R(τ1,t0)〉cjkS
×(τ2,t0)S×(τ1,t0)

]
, (A6)

with 〈R(τ,t0)〉jk = TrR[R(τ,t0)Wjk

R ] and

〈R(τ2,t0)R(τ1,t0)〉cjk = 〈R(τ2,t0)R(τ1,t0)〉jk − 〈R(τ2,t0)〉jk〈R(τ1,t0)〉jk. (A7)

Substituting this equation into Eq. (A5) and using f (τ2,τ1) = Im〈R(τ2,t0)R(τ1,t0)〉cjk , we obtain the reduced density operator of
the relevant quantum system,

WS(t) =
∑

μ,ν∈S
pjkTS exp

[
−
∫ t

t0

dτ Ḡjk(τ,t0)

]
|ψj 〉〈ψk|, (A8)

with

Ḡjk(t,t0) = i〈R(t,t0)〉jkS
×(t,t0) +

∫ t

t0

dτ S×(t,t0)
[
C

jk

R (t,τ )S×(τ,t0) + iC
jk

I (t,τ )S◦(τ,t0)
]
. (A9)

In this equation, we set Cjk(t2,t1) = 〈R(t2,t0)R(t1,t0)〉cjk = C
jk

R (t2,t1) + iC
jk

I (t2,t1). If there is no initial correlation, Ḡjk(t,t0)
becomes independent of j and k and thus Eq. (A8) reduces to Eq. (3). The perturbative expansion for the time-local and
time-nonlocal quantum master equations with initial correlation has been developed in Ref. [61].
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APPENDIX B: DERIVATION OF EQ. (30)

In this Appendix, we show that the formula (29) yields the average value of an observable with the reduced density operator.
First substituting X2 = 1 into Eq. (29), we obtain

C1,X1 (t2,t1) = exp

(
−
∑
μ,ν

∫∫
T

t2←t1
t1←t0

d2τ21 Cμ,ν(τ2 − τ1)
δ2

δJ+
μ (τ2)δJ−

ν (τ1)

)

× TrS[eLS (t2−t1)L(t2,t1|J+(t))X1e
LS (t1−t0)L(t1,t0|J−(t))WS]|J±(t)→0. (B1)

Here we note that TrSLS• = TrSS×(t,t ′)• = 0 and C2,1(τ2 − τ1) = C2,2(τ2 − τ1) = 0. Then this equation becomes

C1,X1 (t2,t1) = TrS[X1e
LS (t1−t0)L(t1,t0|0)WS]

= TrS[X1VS(t1,t0)WS] = TrS[X1WS(t1)], (B2)

where we have used Eqs. (3)–(5), (7), and (28). Next substituting X1 = 1 into Eq. (29), we obtain

CX2,1(t2,t1) = exp

(
−
∑
μ,ν

∫∫
T

t2←t1
t1←t0

d2τ21 Cμ,ν(τ2 − τ1)
δ2

δJ+
μ (τ2)δJ−

ν (τ1)

)

× TrS[X2e
LS (t2−t1)L(t2,t1|J+(t))eLS (t1−t0)L(t1,t0|J−(t))WS]|J±(t)→0

= exp

(
−
∑
μ,ν

∫∫
T

t2←t1
t1←t0

d2τ21 Cμ,ν(τ2 − τ1)
δ2

δJ+
μ (τ2)δJ−

ν (τ1)

)

× TrS[X2e
LS (t2−t0)L(t2,t0|J+(t))L(t1,t0|J−(t))WS]|J±(t)→0

= exp

(
−
∑
μ,ν

∫∫
T

t2←t1
t1←t0

d2τ21 Cμ,ν(τ2 − τ1)
δ2

δJ+
μ (τ2)δJ−

ν (τ1)

)

× TrS

{
X2e

LS (t2−t0)T S
(t2,t0) exp

[
−
∫∫

Tt2←t1

d2τ21 G(τ2,τ1|t0) −
∫∫

Tt1←t0

d2τ21 G(τ2,τ1|t0)

+
∑

μ

∫ t2

t1

dτ J+
μ (τ )Sμ(τ,t0)+

∑
ν

∫ t1

t0

dτ J−
ν (τ )Sν(τ,t0)

]
WS

}∣∣∣∣∣
J±(t)→0

= TrS

[
X2e

LS (t2−t0)T S
(t2,t0) exp

(
−
∫∫

Tt2←t0

d2τ21 G(τ2,τ1|t0)

)
WS

]

= TrS[X2VS(t2,t0)WS] = TrS[X2WS(t2)]. (B3)

In deriving this equation, we have used Tt2←t0 = Tt2←t1 + Tt2←t1
t1←t0 + Tt1←t0 (see Fig. 1). Therefore, we have derived Eq. (30).

APPENDIX C: CALCULATION OF THE SECOND-ORDER CORRECTION TERMS

We derive the second-order correction �C
(2)
X2,X1

(t2,t1) to the two-time correlation function, which is given by Eq. (45). The
second-order correction consists of two parts. (i) One is obtained from Eq. (38), in which the first order with respect to the
disconnected integral is taken into account in Eqs. (39) and (40). (ii) The other comes from the term with n = 2 in the sum on
the right-hand side of Eq. (26).

We first obtain the contribution (i). Thanks to the time-ordering operation, expanding the exponential, we can obtain the
first-order term of Lν(t1,t0; τ1|t0) with respect to the t1-disconnected integral,

�L(1)
ν (t1,t0; τ1|t0) = −T S

(t1,t0)

[∫∫
T

t1←τ1
τ1←t0

d2τ ′
21Sν(τ1,t0)G(τ ′

2,τ
′
1|t0)

× exp

(
−
∫∫

Tt1←τ1

d2τ ′′
21G(τ ′′

2 ,τ ′′
1 |t0)

)
exp

(
−
∫∫

Tτ1←t0

d2τ ′′
21G(τ ′′

2 ,τ ′′
1 |t0)

)]
. (C1)
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Note that the two exponentials in this equation include the τ ′
2- and τ ′

1-disconnected integrals, where these times appear in
G(τ ′

2,τ
′
1|t0). Then we can approximate up to the first order as∫∫

Tt1←τ1

d2τ ′′
21 • =

∫∫
Tt1←τ ′

2

d2τ ′′
21 • +

∫∫
T

t1←τ ′
2

τ ′
2←τ1

d2τ ′′
21 • +

∫∫
Tτ ′

2←τ1

d2τ ′′
21 •

≈
∫∫

Tt1←τ ′
2

d2τ ′′
21 • +

∫∫
Tτ ′

2←τ1

d2τ ′′
21 • , (C2)

∫∫
Tτ1←t0

d2τ ′′
21 • =

∫∫
Tτ1←τ ′

1

d2τ ′′
21 • +

∫∫
T

τ1←τ ′
1

τ ′
1←t0

d2τ ′′
21 • +

∫∫
Tτ ′

1←t0

d2τ ′′
21 •

≈
∫∫

Tτ1←τ ′
1

d2τ ′′
21 • +

∫∫
Tτ ′

1←t0

d2τ ′′
21 • , (C3)

where we have used the fact that τ ′′
2 ,τ ′′

1 > τ ′
1 in Eq. (C2) and τ ′

1 > τ ′′
2 ,τ ′′

1 in Eq. (C3). Substituting these approximations into
Eq. (C1), after some calculation we obtain the first-order term of Lν(t1,t0; τ1|t0):

�L(1)
ν (t1,t0; τ1|t0) = −e−LS (t1−t0)

∑
μ′,ν ′

∫∫
T

t1←τ1
τ1←t0

d2τ ′
21 Cμ′,ν ′ (τ ′

2 − τ ′
1)VS(t1,τ

′
2)Sμ′VS(τ ′

2,τ1)SνVS(τ1,τ
′
1)Sν ′VS(τ ′

1,t0). (C4)

Then, up to the first order, eLS (t1−t0)Lν(t1,t0; τ1|t0) is given by

eLS (t1−t0)Lν(t1,t0; τ1|t0)

≈ VS(t1,τ1)SνVS(τ1,t0) −
∑
μ′,ν ′

∫∫
T

t1←τ1
τ1←t0

d2τ ′
21 Cμ′,ν ′ (τ ′

2 − τ ′
1)VS(t1,τ

′
2)Sμ′VS(τ ′

2,τ1)SνVS(τ1,τ
′
1)Sν ′VS(τ ′

1,t0). (C5)

In the same way, we can derive up to the first order

eLS (t2−t1)Lμ(t2,t1; τ2|t1)

≈ VS(t2,τ2)SμVS(τ2,t1) −
∑
μ′,ν ′

∫∫
T

t2←τ2
τ2←t1

d2τ ′
21 Cμ′,ν ′ (τ ′

2 − τ ′
1)VS(t2,τ

′
2)Sμ′VS(τ ′

2,τ2)SμVS(τ2,τ
′
1)Sν ′VS(τ ′

1,t1). (C6)

Substituting Eqs. (C5) and (C6) into Eq. (38) and picking up the second-order terms with respect to the disconnected integral,
we obtain the contribution (i),

�(i)C
(2)
X2,X1

(t2,t1) =
∑
μ,ν

∑
μ′,ν ′

∫∫
T

t2←t1
t1←t0

d2τ21

∫∫
T

t1←τ1
τ1←t0

d2τ ′
21 Cμ,ν(τ2 − τ1)Cμ′,ν ′(τ ′

2 − τ ′
1)

× TrS[X2VS(t2,τ2)SμVS(τ2,t1)X1VS(t1,τ
′
2)Sμ′VS(τ ′

2,τ1)SνVS(τ1,τ
′
1)Sν ′VS(τ ′

1,t0)WS]

+
∑
μ,ν

∑
μ′,ν ′

∫∫
T

t2←t1
t1←t0

d2τ21

∫∫
T

t2←τ2
τ2←t1

d2τ ′
21 Cμ,ν(τ2 − τ1)Cμ′,ν ′(τ ′

2 − τ ′
1)

× TrS[X2VS(t2,τ
′
2)Sμ′VS(τ ′

2,τ2)SμVS(τ2,τ
′
1)Sν ′VS(τ ′

1,t1)X1VS(t1,τ1)SνVS(τ1,t0)WS]. (C7)

Next, in order to obtain the contribution (ii), picking up the term with n = 2 in the sum on the right-hand side of Eq. (26), we
have

�(ii)C
(2)
X2,X1

(t2,t1) = 1

2

∑
μ,ν

∑
μ′,ν ′

∫∫
Tt2←t0

d2τ21

∫∫
Tt2←t0

d2τ ′
21 Cμ,ν(τ2 − τ1)Cμ′,ν ′ (τ ′

2 − τ ′
1)

× TrS[X2e
LS (t2−t1)Lμ,μ′(t2,t1; τ2,τ

′
2|t1)X1e

LS (t1−t0)Lν,ν ′(t1,t0; τ1,τ
′
1|t0)WS], (C8)

with

Lν,ν ′(t1,t0; τ1,τ
′
1|t0) = T S

(t1,t0)

[
Sν(τ1,t0)Sν ′(τ ′

1,t0) exp

(
−
∫∫

Tt1←t0

d2τ ′′
21G(τ ′′

2 ,τ ′′
1 |t0)

)]
, (C9)

Lμ,μ′(t2,t1; τ2,τ
′
2|t1) = T S

(t2,t1)

[
Sμ(τ2,t1)Sμ′(τ ′

2,t1) exp

(
−
∫∫

Tt2←t1

d2τ ′′
21G(τ ′′

2 ,τ ′′
1 |t1)

)]
. (C10)
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Using the fact that the integral on the right-hand side of Eq. (C8) is decomposed into∫∫
Tt2←t0

d2τ43

∫∫
Tt2←t0

d2τ21 • =
∫∫

Tt2←t1

d2τ42

∫∫
Tt1←t0

d2τ31 • +
∫∫

Tt2←t1

d2τ24

∫∫
Tt1←t0

d2τ13 •

+
∫∫

Tt2←t1

d2τ42

∫∫
Tt1←t0

d2τ13 • +
∫∫

Tt2←t1

d2τ24

∫∫
Tt1←t0

d2τ31 • , (C11)

we can rewrite Eq. (C8) into

�(ii)C
(2)
X2,X1

(t2,t1) =
∑

μ4,μ3,μ2,ν1

∫∫
Tt2←t1

d2τ42

∫∫
Tt1←t0

d2τ31 Cμ4,μ3 (τ4 − τ3)Cμ2,ν1 (τ2 − τ1)

× TrS
[
X2e

LS (t2−t1)Lμ4,μ2 (t2,t1; τ4,τ2|t1)X1e
LS (t1−t0)Lμ3,ν1 (t1,t0; τ3,τ1|t0)WS

]
+

∑
μ4,μ3,μ2,ν1

∫∫
Tt2←t1

d2τ42

∫∫
Tt1←t0

d2τ13 Cμ4,μ3 (τ4 − τ3)Cμ2,μ1 (τ2 − τ1)

× TrS
[
X2e

LS (t2−t1)Lμ4,μ2 (t2,t1; τ4,τ2|t1)X1e
LS (t1−t0)Lμ3,μ1 (t1,t0; τ3,τ1|t0)WS

]
. (C12)

Up to the lowest order with respect to the τ2,1- and τ ′
2,1-disconnected integrals, the superoperators Lν,ν ′(t1,t0; τ1,τ

′
1|t0) and

Lμ,μ′(t2,t1; τ2,τ
′
2|t1) are approximated as

Lν,ν ′(t1,t0; τ1,τ
′
1|t0) ≈

{
e−LS (t1−t0)VS(t1,τ1)SνVS(τ1,τ

′
1)Sν ′VS(τ ′

1,t0) (τ1 > τ ′
1),

e−LS (t1−t0)VS(t1,τ ′
1)Sν ′VS(τ ′

1,τ1)SνVS(τ1,t0) (τ1 < τ ′
1),

(C13)

Lμ,μ′(t2,t1; τ2,τ
′
2|t1) ≈

{
e−LS (t2−t1)VS(t2,τ2)SμVS(τ2,τ

′
2)Sμ′VS(τ ′

2,t1) (τ2 > τ ′
2),

e−LS (t2−t1)VS(t2,τ ′
2)Sμ′VS(τ ′

2,τ2)SμVS(τ2,t1) (τ2 < τ ′
2).

(C14)

Then we obtain the terms from the contribution (ii),

�(ii)C
(2)
X2,X1

(t2,t1) =
∑

μ4,μ3,μ2,μ1

∫∫
Tt2←t1

d2τ42

∫∫
Tt1←t0

d2τ31 Cμ4,μ3 (τ4 − τ3)Cμ2,μ1 (τ2 − τ1)

× TrS
[
X2VS(t2,τ4)Sμ4VS(τ4,τ2)Sμ2VS(τ2,t1)X1VS(t1,τ3)Sμ3VS(τ3,τ1)Sμ1VS(τ1,t0)WS

]
+

∑
μ4,μ3,μ2,μ1

∫∫
Tt2←t1

d2τ42

∫∫
Tt1←t0

d2τ13 Cμ4,μ3 (τ4 − τ3)Cμ2,μ1 (τ2 − τ1)

× TrS
[
X2VS(t2,τ4)Sμ4VS(τ4,τ2)Sμ2VS(τ2,t1)X1VS(t1,τ1)Sμ1VS(τ1,τ3)Sμ3VS(τ3,t0)WS

]
. (C15)

Therefore, the second-order correction �C
(2)
X2,X1

(t2,t1) to the two-time correlation function is given by

�C
(2)
X2,X1

(t2,t1) = �(i)C
(2)
X2,X1

(t2,t1) + �(ii)C
(2)
X2,X1

(t2,t1). (C16)

After rearranging the order of integration and changing the integral variables, we finally obtain Eq. (45).

APPENDIX D: PROOF OF THE NECESSARY AND SUFFICIENT CONDITION

In this Appendix, we prove that the equality A(t1)A(t2) = A(t1 + t2) is a necessary and sufficient condition that the lowest-order
correlation function is exact, namely, Czz(t2,t1) = C(0)

zz (t2,t1). First, when A(t1)A(t2) = A(t1 + t2), it is obvious from Eqs. (59)
and (65) that the equality Czz(t2,t1) = C(0)

zz (t2,t1) is established. Next we assume that the equality Czz(t2,t1) = C(0)
zz (t2,t1) holds.

Then we obtain from Eqs. (59) and (65)

2A∗(t2)A(t2 − t1)A(t1) = |A(t2)|2 + |A(t2 − t1)|2|A(t1)|2, (D1)

the real and imaginary parts of which are given by

2 ReA∗(t2)A(t2 − t1)A(t1) = |A(t2)|2 + |A(t2 − t1)|2|A(t1)|2, (D2)

2 ImA∗(t2)A(t2 − t1)A(t1) = 0. (D3)

Then we obtain

|A(t2) − A(t2 − t1)A(t1)|2 = |A(t2)|2 + |A(t2 − t1)|2|A(t1)|2 − 2 ReA∗(t2)A(t2 − t1)A(t1)

= 0, (D4)

which yields the equality A(t2) = A(t1)A(t2 − t1). Thus the proof is completed.
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