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Quantum entanglement lies at the heart of quantum mechanics and quantum information processing. In
this work, we show a framework where entangled states play the role of witnesses. We extend the notion of
entanglement witnesses, developing a hierarchy of witnesses for classes of observables. This hierarchy captures
the fact that entangled states act as witnesses for detecting entanglement witnesses and separable states act as
witnesses for the set of non-block-positive Hermitian operators. Indeed, more hierarchies of witnesses exist. We
introduce the concept of finer and optimal entangled states. These definitions not only give an unambiguous and
non-numeric quantification of entanglement and an alternative perspective on edge states but also answer the
open question of what the remainder of the best separable approximation of a density matrix is. Furthermore,
we classify all entangled states into disjoint families with optimal entangled states at its heart. This implies that
we can focus only on the study of a typical family with optimal entangled states at its core when we investigate
entangled states. Our framework also assembles many seemingly different findings with simple arguments that
do not require lengthy calculations.
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Introduction. Quantum correlations, especially quantum en-
tanglement, have been recognized as a novel resource that may
be used for tasks that are either very inefficient or impossible
in the classical realm [1–3]. However, quantum entanglement
has not been fully understood. An effective method has not yet
been found to detect whether or not a given state is entangled.
And even if a given mixed state is known to be entangled,
quantifying the amount of entanglement it contains is hard. In
this work, we show entanglement witnesses can unequivocally
answer both questions.

Another essential approach in the study of entanglement
comes from the best separable approximation (BSA) decom-
position [4] (also called Lewenstein-Sanpera decomposition)
of a density matrix. The BSA of an arbitrary state ρ was
defined from its convex decomposition as ρ = λρs + (1 −
λ)ρE , where ρs is a separable state, ρE is a state that does
not have any product vector in its range, and the real parameter
λ is maximal. The separable state ρs is called the best separable
approximation of ρ. The Lewenstein-Sanpera decomposition
was based on subtracting projections on product vectors from
a given density matrix in such a way that the unique remainder
remains positive semidefinite. This approach can naturally
serve as a quantification of entanglement and allowed for the
derivation of many very strong results [5–9]. Various works
have developed on this topic [10–13], but the remainder of the
Lewenstein-Sanpera decomposition has remained unknown
[9]. Furthermore, how to parametrize the remainders (the
so-called edge states in the case of positive partial transposition
entangled states) still remains open [9,14].

*Corresponding author: bhwang@gdut.edu.cn

In this work, we fill in this gap by introducing the hi-
erarchies of witnesses. Entanglement witnesses, entangled
states, separable states, and so on constitute a hierarchy of
witnesses, each detecting a different class of operator. We
then define the notions of finer and optimal entangled states.
Theses definitions show an unambiguous and non-numeric
quantification of entanglement. We show that the optimal en-
tangled state corresponds to the remainder of the Lewenstein-
Sanpera decomposition and the edge state is typical of the
optimal entangled state. We further unambiguously classify
all entangled states into disjoint families, each with a single
optimal entangled state at its core. Finally, we show some
known finds with simple arguments.

The hierarchies of “witnesses”. A remarkable research
effort has been devoted to detecting and quantifying en-
tanglement [1,2]. The method of entanglement witnesses is
currently considered to be the most important and best method
for detecting entanglement [15]. It is known that the set of
separable states is convex and compact. For any entangled
state, by the Hahn-Banach theorem [16] there exists at least
one operator that can be used to detect it. Such operators were
investigated in the field of the quantum theory because the
corresponding positive maps were rediscovered by Peres and
Horodecki [1,17], and later they were called entanglement
witnesses by Terhal [18]—stressing their physical impor-
tance as entanglement detectors. More precisely, an entan-
glement witness is a Hermitian operator, W = W †, such that
(i) tr(Wσ ) � 0 for all separable states σ , and (ii) there exists
an entangled state π such that tr(Wπ ) < 0. Entanglement
witnesses have raised considerable attention [4,19–26] (for
a recent review, see Ref. [14]). Unfortunately, constructing
them for a given entangled state is a difficult task, and the
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FIG. 1. (a) What witnesses entanglement witnesses? (b) A hier-
archy structure of witnesses.

determination of entanglement witnesses for all entangled
states is a nondeterministic polynomial-time (NP) hard prob-
lem [19,24,27].

Entanglement witnesses were introduced because we can-
not directly detect entanglement. Constructing entanglement
witnesses in general, and finding the minimal set of them that
allows for the detection of all entangled states is one of the
most challenging open questions [28]. When an entanglement
witness W detects an entangled state π , we say that W

“witnesses” the entanglement of π . How do we tell if an
operator is an entanglement witness? Put another way, what
“witnesses” entanglement witnesses? We denote by S the set
of all separable states, E the set of all entangled states, W the
set of all entanglement witnesses, and Q ≡ S ∪ E the set of all
quantum states. Figure 1(a) illustrates the schematic picture.

It is known that the set of quantum states (separable states
and entangled states) is also convex and compact. Hence, by the
Hahn-Banach theorem, there is at least one “super” or in other
words “high-level” witness “witnessing” an entanglement
witness [29].

For a high-level witness �, (i ′) tr(�ρ) � 0 for all quantum
state ρ (entangled or not); and (ii ′) there exists an entanglement
witness W such that tr(�W ) < 0.

Operators that satisfy the above two conditions and play
the role of high-level witnesses are none other than entangled
states. Entanglement witnesses “witness” entangled states
and entangled states witness entanglement witnesses. While
this answer is not difficult to obtain, the role of entangled
states as high-level witnesses motivates the study of entangled
states in an alternative way. It follows that the quantum states,
entanglement witnesses, and so on are both operators on the
Hilbert space and also points in a closed convex set in a real
Hilbert space. It is this dual role which underlies our analysis.

Furthermore, one may ask whether or not there exist
“higher-level” witnesses that separate other observables from
the set of the quantum states (separable and entangled) and
entanglement witnesses, as shown in Fig. 1(b). To investigate
these, let us consider the set of bounded Hermitian operators,
which have positive expectation values for separable states:

B ≡ {b |b = b†,tr(σb) � 0 ∀σ ∈ S}. (1)

The set B is called the set of block-positive [14,30] or partial
positive operators [20,22]. In standard quantum mechanics, all
observables are mathematically denoted by Hermitian opera-
tors. We can also separate other observables from entanglement

witnesses. We can easily conclude that B = S ∪ E ∪ W and B
is also convex and compact.

To investigate these higher-level witnesses, let us consider
the set of bounded Hermitian operators

O ≡ H − S − E − W, (2)

where H = {h|h = h†} denotes the set of all Hermitian op-
erators. For a higher-level witness �, (i ′′) tr(�b) � 0 for
an arbitrary block-positive operator b ∈ B (a quantum state
or an entanglement witness); and (ii ′′) there exists a non-
block-positive observable o ∈ O such that tr(�o) < 0. We can
conclude that the higher-level witnesses are just the separable
states. Separable states separate entanglement witnesses from
the non-positive–and–non-entanglement-witness observables.
Sometimes, the measurement of non-Hermitian operators
[31,32] occurs in quantum mechanics [33]. We can also find
the witnesses of non-Hermitian operators. Mathematically, we
can construct more and more convex and compact sets such
that they include the set of Hermitian operators. This leads to
a hierarchy of witnesses, and a question as to whether or not
there are “infinite higher levels” of witnesses, physically, or
mathematically, as shown in Fig. 1(b).

If an entanglement witness can be written in the form

Wd = aP + (1 − a)Q�, (3)

where a ∈ [0,1], P � 0, and Q � 0, the entanglement witness
is called decomposable [8]. If it does not admit this form, it
is called nondecomposable. The set of decomposable entan-
glement witnesses Wd is convex and compact [8]. There ex-
ist witnesses separating nondecomposable entanglement wit-
nesses from decomposable entanglement witnesses. Clearly,
these witnesses are just bound entangled states. Moreover, all
quantum states can be written in the form of Eq. (3) and the
set D ≡ S ∪ E ∪ Wd is also convex and compact [34]. There
exist witnesses detecting the observables out of the set D (here
we call D the set of decomposable observables). Therefore,
the decomposable observables, the bound entangled states,
and the separable states form another different hierarchy of
witnesses. Recently, the concept of the coherence witness
was put forward and the relation was revealed between the
coherence witness and the robustness of coherence [35,36].
The coherence witnesses, the coherent states (as high-level
coherence witnesses [37]), and the non-Hermitian witnesses
form another hierarchy of witnesses. We denote I the set of
incoherent states, C the set of coherent states, and Wn the
set of nondecomposable entanglement witnesses. Figure 2(a)
illustrates the schematic picture.

Any quantum state can be mathematically considered as
a tight and convex set. There exist hyperplanes between any
two different states by the Hahn-Banach theorem. Therefore,
there exist many witnesses which are ubiquitous in nature. All
in all, we can find and even mathematically construct more
witnesses (e.g., ultrafine entanglement witnessing [38]) and
more hierarchies of witnesses (e.g., Schmidt-number witnesses
[39,40]).

Once we find that there exist witnesses between two sets,
how do we generally construct them? IfS1,S2 are convex closed
sets in a real Banach space and one of them is compact, there
exists a continuous functional f and c ∈ C such that for all
pairs e1 ∈ S1, e2 ∈ S2, we have f (e1) < c � f (e2) [17]. It is

050302-2



ENTANGLED STATES IN THE ROLE OF WITNESSES PHYSICAL REVIEW A 97, 050302(R) (2018)

FIG. 2. (a) More hierarchies of witnesses. (b) Two families (the
Werner states as a part of members) of entangled states in C2 ⊗ C2.

known that any continuous functional f on a Hilbert space
can be represented by a vector from this space. Any linear
functional g, acting on trace class operators ρ, can be written
as g(ρ) = tr(ρH ) for a bounded, Hermitian operator H [41].
Therefore, we need to find Hermitian operators, which witness
ρ2 ∈ S2, such that min{tr(e2H )} < tr(ρ2H ) � min{tr(e1H )}.
Moreover, the optimization problem (under certain constraints)
can be solved by the method of Lagrange’s multipliers [22,41].

The entangled states as high-level witnesses. Inspired by
the investigation for entanglement witnesses [8], we define as
follows. Given a high-level witness (entangled state) ρ, define
Dρ = {W |tr(ρW ) < 0}; that is the set of operators “witnessed”
by ρ. Given two high-level witnesses, ρ1 and ρ2, we say that
ρ2 is finer than ρ1, if Dρ1 ⊆ Dρ2 ; that is, if all the operators
witnessed by ρ1, are also witnessed by ρ2. We say that ρ is an
optimal high-level witness if there exists no other high-level
witness which is finer.

Naturally, we have the properties and characterization of
entangled states as high-level witnesses.

Lemma 1. ([21]) Let ρ2 be finer than ρ1 and δ ≡
infW1∈Dρ1

| tr(W1ρ2)
tr(W1ρ1) |. Then we have the following: (i) If

tr(Wρ1) = 0, then tr(Wρ2) � 0; (ii) if tr(Wρ1) < 0, then
tr(Wρ2) � tr(Wρ1); (iii) if tr(Wρ1) > 0, then δ tr(Wρ1) �
tr(Wρ2); and (iv) δ � 1. In particular, δ = 1 if and only if
ρ1 = ρ2.

Corollary 1. ([21]) Dρ1 = Dρ2 if and only if ρ1 = ρ2.
This result tells us that we can completely characterize

entangled states by entanglement witnesses.
If we replace “finer” with “more entangled” in the previous

definition, we can immediately get a characterization of how
entangled a given state is. Given two entangled states, ρ1 and
ρ2, we say that ρ2 is more entangled than ρ1, if Dρ1 ⊆ Dρ2 .
We say that ρ is an optimal entangled state if there exists
no other high-level witness which is more entangled. This
definition shows the “witnessing power” of entangled states.
Let us express the above idea in a more rigorous way.

Theorem 1. All entangled states are unambiguously quanti-
fied by the sets of observables that are “high-level- witnessed”
by the entangled state.

It is easy to conclude that this entanglement measure is a
“good” measure of entanglement by the axiomatic approach
to quantifying entanglement [42]: (i) all sets of entanglement
witnesses for separable states are empty; (ii) local unitary
operations leave it invariant; and (iii) this measure of entan-
glement cannot increase under local operations and classical

communication [3]. Alternatively, the entanglement con-
tent of a state can be quantified via E(ρ) = max{0, −
minW∈M tr(Wρ)}, where M is the intersection of the set of
entanglement witnesses with some other set C, such that M

is compact [43]. In contrast, our entanglement measure is
quantified by the number of witnesses that are witnessed by
the entangled states, not by a numerical value.

Generally, there are two categories of entanglement mea-
sures [1]. One is based on definitions of operational tasks.
This entanglement measure has a directly physical implication,
but it is generally difficult to compute. A variety of such
entanglement measures (for example, entanglement cost and
entanglement of distillation) are NP-hard to compute [44].
The second category is more axiomatic [42]. An entanglement
measure (also called an entanglement monotone) is often an
operator function satisfying several basic properties. Examples
include entanglement of formation [45], concurrence [46,47],
negativity [48,49], Schmidt number [39,50], and so on [51] (for
a review, see Ref. [3]). Almost all known criteria, however, map
an entangled state to a real number (sometimes between 0 and
1 for comparison). Generally whether a state is regarded as
being more entangled than another is dependent on the choice
of criterion used. Therefore, there exists the possibility that two
different entangled states obtain the same value with respect to
some measure. There also exists the possibility that a criterion
indicates ρ1 is more entangled than ρ2 but another criterion
shows ρ2 is more entangled than ρ1.

Here we have quantified the entanglement of a state by the
entanglement witnesses that are high-level-witnessed by the
state. For two different entangled states, there exist different
sets of witnesses that characterize them. This result indicated
that two different, optimal entangled states are incomparable—
one cannot say that one is more entangled than the other just
as we cannot say which one is “finer” between the badminton
and tennis world champions.

The remainder of the best separable approximation decom-
position and the structure of entangled states. Furthermore, we
have the following properties of entangled states in the role of
witnesses.

Lemma 2. ρ2 is finer (more entangled) than ρ1 if and only if
there exists 1 > ε � 0 such that ρ1 = (1 − ε)ρ2 + εP , where
P is not finer than ρ1 or it is separable.

Proof. (If) For all W ∈ Dρ1 we have that 0 > tr(Wρ1) =
(1 − ε)tr(Wρ2) + ε tr(WP ) which implies tr(Wρ2) < 0 and
therefore W ∈ Dρ2 . (Only if) We define δ as in Lemma 1. Using
Lemma 1(iv) we have δ � 1. First, if δ = 1, then according
to Lemma 1(iv) we have ρ1 = ρ2 (i.e., ε = 0). For δ > 1,
we define P = (δ − 1)−1(δρ1 − ρ2) and ε = 1 − 1/δ > 0. We
have that ρ1 = (1 − ε)ρ2 + εP , so that it only remains to be
shown that P � 0. But this follows from Lemma 1(i)–1(iii)
and the definition of δ, δ = infW1∈Dρ1

| tr(W1ρ2)
tr(W1ρ1) |. We can easily

know P is not finer than ρ1 or it is separable. �
Corollary 2. ρ is optimal if and only if for all projectors

on product vectors P and ε > 0, ρ ′ = (1 + ε)ρ − εP is not a
high-level witness (legitimate entangled state).

Proof. (If) According to Lemma 2, there is no entangled
state which is finer than ρ, and therefore ρ is optimal. (Only
if) If ρ ′ is an entangled state, then according to Lemma 2 ρ is
not optimal. �
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By Corollary 2, we can conclude that we can construct
optimal entangled states by the technique of “subtracting
projectors on product vectors” [8]. We have the following
result.

Theorem 2. An arbitrary (normalized) density matrix ρ has
a unique decomposition in the form

ρ = �ρS + (1 − �)ρopt E ; � ∈ [0,1], (4)

where ρopt E denotes the optimal entangled state of ρ, ρS

denotes the BSA [4,9] of the density matrix, and � is
maximal.

What the remainder of the Lewenstein-Spanpera decompo-
sition is yet to be known [4,9]. It is not difficult to conclude that
the procedure of optimization for a general entangled state ρ

is merely to find the Lewenstein-Sanpera decomposition of ρ,
and the remainder of the Lewenstein-Sanpera decomposition
of ρ is just the optimal entangled states. If we subtract any
projector onto a product vector from a positive partial transpo-
sition entangled state (PPTES), then the resulting operator is no
longer a PPTES. It is called an edge state [4–8,28,52], because
it lies on the edge between PPTESs and entangled states
with nonpositive partial transposition. However, the complete
characterization of edge states is lacking in the literature
[14]. Our results show edge states are optimal entangled
states and they can be generalized to the so-called k-edge
state [40].

According to our results and the range criterion [53], the
definitions of completely entangled subspace (CES) [54–57],
we can easily conclude the following results.

Remark 1. If a quantum state is such that its range does not
contain any product vector |e,f 〉, then it is an optimal entangled
state.

Remark 2. If the support of an entangled state π does not
contain any product vector or Support(π ) is a CES, which does
not contain any product state, then π is an optimal entangled
state.

Remark 3. All mixed states on a CES are optimal entangled
states.

We need the following results before we sketch the proof
of Theorem 2. Note that the uniqueness of the Lewenstein-
Sanpera decomposition in any bipartite system was also proven
by Karnas and Lewenstein in a different way in Ref. [9].

Lemma 3. For an entanglement witness W , there exists
one and only one optimal entangled state ρopt E to high-level-
witness it.

Proof. It is clear there exists at least one optimal entangled
state to high-level-witness it for an entanglement witness.
Suppose two different optimal entangled states ρopt E and
ρopt E′

high-level-witness the same entanglement witness W .
By Corollary 4 (below in the main text, also see [21]), ρp =
pρopt E + (1 − p)ρopt E′

is a high-level witness (entangled
state) for 0 � p � 1, and we can find a sufficiently small p∗
such that W high-level-witnessed by ρp∗ [i.e., tr(Wρp∗ ) < 0]
since tr(Wρopt E) < 0 is bound. Thus, Dρ ⊇ Dρopt E′ . By the
optimality of ρopt E′

, Dρ = Dρopt E′ . In the same way, Dρ ⊇
Dρopt E and Dρ = Dρopt E . By Corollary 1, ρopt E = ρopt E′

. �
Corollary 3. For an arbitrary entangled state, there exists

one and only one optimal entangled state.

Lemma 4. For any density matrix ρ (separable, or not) and
for any set V of product vectors belonging to the range of
ρ, i.e., |e,f 〉 ∈ R(ρ), there exists a separable (in general not
normalized) matrix

ρS =
∑

α

�αPα (5)

with all �α � 0, such that ρopt E = ρ − ρS � 0, and ρS

provides the unique BSA to ρ and ρopt E provides the (un-
normalized) optimal entangled state to ρ in the sense that
the trace tr(ρopt E) is minimal (or, equivalently, trρS � 1 is
maximal).

Proof. By Corollary 2 and Ref. [4], we can know ρopt E is an
optimal entangled state while trρS � 1 is maximal. Different
from the result in Ref. [4], now we only need to show the
uniqueness of the BSA to ρ. Following from Ref. [4], the trace
of ρS is unique, and the trace of ρopt E is unique. By Corollary
3, normalized ρopt E is unique. Given ρ,ρS = ρ − ρopt E , the
BSA of ρ is also unique. �

Now we show our proof of Theorem 2.
Proof. By normalizing the optimal entangled state ρopt E

and the BSA ρS of ρ in Lemma 4, we can easily conclude
Theorem 2. �

As an immediate consequence, we obtain an unambiguous
classification of entangled states.

Theorem 3. The set of entangled states is composed of dis-
joint families. Each family contains a single optimal entangled
state and the other members of the family are obtained by
mixing this optimal entangled state with product states.

This result implies a family structure of entangled states.
Our results indicate that we can restrict ourselves to the study
of a typical family centered around an optimal entangled state
when we investigate entangled states.

Different findings with simple arguments. Our framework
assembles many seemingly different findings with simple
arguments. Let us first focus on the question of when different
entanglement witnesses can detect the same entangled states.

Lemma 5. [20] There exists an entangled state ρ detected
by W1 and W2 if and only if for all λ ∈ [0,1], W = λW1 +
(1 − λ)W2 is not a positive operator [in other words, W =
λW1 + (1 − λ)W2 must be an entanglement witness because
tr(W1σ ) � 0, tr(W2σ ) � 0 implies that tr(Wσ ) � 0 for all
separable states σ ].

Since entangled states are also (high-level) witnesses, this
question can be changed into the question of when different
high-level witnesses (entangled states) can detect the same
entanglement witness.

Corollary 4. There exists an entanglement witness W

detected by a high-level witness (entangled state) �1 and
a high-level witness (entangled state) �2 if and only if for
any λ ∈ [0,1], � = λ�1 + (1 − λ)�2 is a high-level witness
(entangled state).

This recovers the main result of Ref. [21].
Since the maximum dimension of the CES subspace inH =

H1 ⊗ H2 ⊗ · · · ⊗ Hk is d1d2 · · · dk − (d1 + d2 + · · · · · · +
dk) + k − 1 (di denotes the dimension of Hi) [55], we can
immediately conclude the following result.

Corollary 5. A high-level witness in C2 ⊗ C2 is optimal if
and only if it is a pure entangled state.
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This recovers one of the main results in Ref. [4].
To illustrate these concepts, consider the Werner state

ρp = p|ψ+〉〈ψ+| + (1 − p)
I

4
, (6)

where |ψ+〉 = 1√
2
(|00〉 + |11〉) and 0 � p � 1 [58]. It is

known that ρp is entangled for 1
3 < p � 1. Therefore, ρp is

a high-level witness for 1
3 < p � 1, and the set high-level-

witnessed by ρp,Dρp
= {Wp|Wp � 0,tr(ρpWp) < 0}.

We can easily determine that Wp takes the form Wp =
q|ϕ〉〈ϕ|� + (1 − q)� such that tr(ρpWp) < 0, where 0 � q �
1, |ϕ〉 = 1√

2
(|10〉 − |01〉), and � is a quantum state. This

follows from the fact that the entanglement witness W =
|ϕ〉〈ϕ|� is optimal for this state [15] and the eigenvector of
the negative eigenvalue of W is just |ψ+〉. Note that ρs is
finer (more entangled) than ρt for 1

3 < s < t � 1, and |ψ+〉
is the optimal entangled state because the Lewenstein-Sanpera
decomposition of ρp is

ρp = 1
2 (3 − 3p)ρBSA

1/3 + 1
2 (3p − 1)|ψ+〉〈ψ+|, (7)

for 1
3 < p � 1, where ρBSA

1/3 = 1
3 |ψ+〉〈ψ+| + 2

3
I
4 [59,60].

Mixing |ψ+〉 with |ψ−〉 = 1√
2
(|00〉 − |11〉), ηq =

q|ψ−〉〈ψ−| + (1 − q)|ψ+〉〈ψ+|. Interestingly, η1/2 is
separable, but η3/4 belongs to the family of |ψ−〉 instead
of the family of |ψ+〉. Figure 2(b) illustrates the schematic
picture.

The set of Werner states forms part of the family of
entangled states that has the Bell state at its core. It has often
been used to successfully verify some results [1,2]. However,
there exist states in the family associated with the Bell state
which are not Werner states. This incompleteness, together
with the low dimension, may explain why some results cannot
be applied to the Werner states (e.g., the Horodeci states [61]).

Conclusions and discussions. We have showed a framework
where entangled states play the role of witnesses. We answer
the open question of what the remainder of the Lewenstein-
Sanpera decomposition of a density matrix is. We gave an un-
ambiguous and non-numeric quantification of entanglement,
and gave a family-structure classification and a completely
different structure description of entangled states. We argue
that we cannot simply tell which one is more entangled than

another one between entangled states in different families.
Our results indicate that we can focus only on the study
of a typical family of entangled states when we investigate
entangled states. Our framework assembles many seemingly
different findings with simple arguments that do not require
lengthy calculations.

Here we mainly consider the case of discrete bipartite
systems on the finite-dimensional Hilbert space, but we can
also generalize our results to continuous-variable systems,
multipartite systems, and infinite-dimensional Hilbert space
because they all have a common mathematical foundation and
physical interpretation. However, entanglement in continuous-
variable systems like harmonic oscillators or light modes
is significantly different [62] from the case of the discrete
systems. We have not discussed these systems here. Recently,
Demianowicz and Augusiak [63] showed a method for con-
structing optimal entangled states (genuinely entangled states)
in a multiparty scenario by finding a genuinely entangled
subspace. The result also shows evidence that our results
can be generalized into the multiparty scenario. However, the
complexity of the separability problem increases substantially
when we study multipartite systems [64], and the structure
of multipartite entanglement is much richer than the bipartite
entanglement [50,64–68].
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