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Retrieval of all effective susceptibilities in nonlinear metamaterials
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Electromagnetic metamaterials offer a great avenue to engineer and amplify the nonlinear response of materials.
Their electric, magnetic, and magnetoelectric linear and nonlinear response are related to their structure, providing
unprecedented liberty to control those properties. Both the linear and the nonlinear properties of metamaterials are
typically anisotropic. While the methods to retrieve the effective linear properties are well established, existing
nonlinear retrieval methods have serious limitations. In this work, we generalize a nonlinear transfer matrix
approach to account for all nonlinear susceptibility terms and show how to use this approach to retrieve all
effective nonlinear susceptibilities of metamaterial elements. The approach is demonstrated using sum frequency
generation, but can be applied to other second-order or higher-order processes.
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I. INTRODUCTION

Nonlinear metamaterials offer unprecedented control over
the nonlinear properties of materials, as well as access to new
exotic properties not available in standard materials [1]. It has
been proposed that they will play a significant role for new
devices operating over a wide range of the electromagnetic
spectrum [2,3].

The advantage of metamaterials over other structured mate-
rials is the possibility to assign them effective properties, i.e.,
the properties of a homogeneous effective material producing
the same effect as the metamaterial. This is a powerful concept
allowing one to separate the design of the metamaterial unit
cell from that of the device where the metamaterial is used. The
latter would be prohibitively difficult, if it were even possible,
if one needed to consider all the details of the structure of every
unit cell.

The retrieval of metamaterial effective linear properties is
well established [4–6]. Some approaches for the retrieval of
effective nonlinear properties of metamaterials have also been
proposed [7–11], but they are limited to metamaterials with
enough symmetry (such as isotropic metamaterials) that it is
possible to treat the elements of the nonlinear susceptibility ten-
sors separately. Many nonlinear metamaterials do not respect
this assumption and it is necessary to generalize the nonlinear
retrieval approach to account for all nonlinear susceptibilities
at once [12].

In this paper, we present a general retrieval approach
for nonlinear metamaterials. The idea behind the retrieval
approach, like for its linear counterpart, is to find the properties
of a uniform slab of material producing the same effect as a slab
of metamaterial. We therefore show how to calculate the waves
generated by a slab of general bianisotropic nonlinear material,
and how to express the retrieval problem as the solution of a
linear system of equations. In order to calculate the nonlinearly
generated waves, we need to know the fields inside the
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bianisotropic slab. We therefore first review a transfer matrix
approach for linear bianisotropic materials. Then, we extend a
nonlinear transfer matrix approach to include such materials, as
well as magnetic and magnetoelectric nonlinearities. Finally,
we show how the nonlinear transfer matrix approach can be
used to build a linear system of equations to retrieve all the
nonlinear susceptibility terms.

II. TRANSFER MATRIX APPROACH FOR
BIANISOTROPIC MATERIALS

Calculating the reflection and transmission of a stack of ma-
terial slabs is a one-dimensional problem. For linear isotropic
materials, the problem can be separated into transverse electric
(TE) and transverse magnetic (TM) waves. Many approaches
based on 2 × 2 matrices exist for this problem, and are
often presented in electromagnetics and optics textbooks, such
as that of Born and Wolf [13]. In the case of anisotropic,
magnetoelectric, or bianisotropic materials, it is impossible to
separate the problem into TE and TM waves. In this case, 4 × 4
matrix approaches can be used [14,15]; in this paper, we use
the approach of Berreman [14]. As this approach is not widely
used, and it is necessary to understand it for the nonlinear
calculations, we review it in this section. We first determine
the propagation modes in a bianisotropic material. We then
build transfer and scattering matrices to calculate reflection
and transmission, as well as the fields at all positions in the
stack.

A. Propagation modes

To calculate the propagation of a wave through a series
of slabs of materials it is possible, without loss of generality,
to choose the system of coordinates such that the system is
uniform in the xy plane, and varies only in the z direction. In the
absence of interfacial currents, the in-plane components of the
electric and magnetic fields Ex , Ey , Hx , and Hy are continuous
at the interfaces, making them a natural choice to express the
propagation modes. Furthermore, the in-plane components of
the propagation constant, kx and ky , are invariant through the
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FIG. 1. The system considered consists of a series of slabs of
potentially bianisotropic materials in which we need to determine the
modes and their propagation constants. The propagation constant of
the applied wave (k1 here) sets the in-plane propagation constants kx

and ky (jointly indicated by kx,y), which are invariant throughout the
whole system. Inside every slab, there are four modes with potentially
different propagation constants. Since kx and ky are invariant, only
kz varies for each mode and can be determined using the approach
described in the text. In medium 2, for example, we want to determine
the z component of the propagation constant of the four modes
k2,1,z, k2,2,z, k2,3,z, and k2,4,z. The determination must be performed
independently for each medium.

whole system. As shown in Fig. 1, our goal is to determine
the propagation constant in the z direction and the associated
modes.

As described in details in Appendix A, Maxwell’s and
material equations can be combined to create a system of
six coupled equations for all components of the electric and
magnetic fields. The invariance of kx and ky allows the
elimination of two equations. Choosing to keep the in-plane
components, for the reasons just described, we arrive at

kz

⎡
⎢⎣

Ex

Hy

Ey

−Hx

⎤
⎥⎦ = �

⎡
⎢⎣

Ex

Hy

Ey

−Hx

⎤
⎥⎦, (1)

where

� = ω

⎡
⎢⎣

0 0 0 1
1 0 0 0
0 0 −1 0
0 1 0 0

⎤
⎥⎦

⎛
⎜⎜⎝

⎡
⎢⎣

εxx εxy ξxx ξxy

εyx εyy ξyx ξyy

ζxx ζxy μxx μxy

ζyx ζyy μyx μyy

⎤
⎥⎦ −

⎡
⎢⎢⎣

εxz ξxz + ky

ω

εyz ξyz − kx

ω

ζxz − ky

ω
μxz

ζyz + kx

ω
μyz

⎤
⎥⎥⎦

[
εzz ξzz

ζzz μzz

]−1

×
[

εzx εzy ξzx − ky

ω
ξzy + kx

ω

ζzx + ky

ω
ζzy − kx

ω
μzx μzy

]⎞
⎟⎠

⎡
⎢⎣

1 0 0 0
0 0 1 0
0 0 0 −1
0 1 0 0

⎤
⎥⎦ , (2)

while ω is the angular frequency,

ε =
⎡
⎣εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ and ε =

⎡
⎣μxx μxy μxz

μyx μyy μyz

μzx μzy μzz

⎤
⎦

are the permittivity and permeability of the material, and

ξ =
⎡
⎣ξxx ξxy ξxz

ξyx ξyy ξyz

ξzx ξzy ξzz

⎤
⎦ and ζ =

⎡
⎣ζxx ζxy ζxz

ζyx ζyy ζyz

ζzx ζzy ζzz

⎤
⎦

are the magnetoelectric coupling constants.
Equation (1) is an eigenvalue equation. The propagation

constants in the z direction are the eigenvalues of � while the
propagation modes are its eigenvectors. There are four propa-
gation modes, each with its associated propagation constant.

It is worth noting that in anisotropic materials the direction
of kz is not always the propagation direction. The latter
must be determined using the Poynting vector, which can be
calculated from the modes. There are always two forward and
two backward propagating modes. The modes can also be
grouped by polarization as there are always pairs of forward
and backward propagating modes with the same polarization,
such as right and left elliptically polarized.

In materials with high symmetry, the propagation constants
are often degenerate. For example, in an isotropic material, all

four propagation constants have the same absolute value, two
of them positive and two of them negative. Furthermore, if the
plane of incidence is either the xz or yz planes (which is always
possible by an appropriate choice of system of coordinates),
� is block diagonal and can be separated into a pair of 2 × 2
matrices for TE and TM waves.

B. Transfer matrices

In the previous section, we determined the propagation
modes and constants in a uniform medium. In this section,
we show how to calculate the properties of a stack of material
slabs.

As mentioned in the previous section, there are four propa-
gation modes in each slab of material. We can express the fields
in a slab as a vector of the amplitudes of those four modes:

A =

⎡
⎢⎣

A1

A2

A3

A4

⎤
⎥⎦.

The modes can be arranged in any order. For simplicity, let
us suppose that modes 1 and 3 are forward propagating, while
modes 2 and 4 are backward propagating. Let us also suppose
that modes 1 and 2, as well as modes 3 and 4, are of the same
polarization pairwise.
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At the interface between two materials, in the absence of
surface currents and charges, the tangential components of the
electric and magnetic fields are continuous. To determine the
tangential components at the interface, we need to sum the x

and y components from the four modes using⎡
⎢⎣

Ex

Hy

Ey

−Hx

⎤
⎥⎦ = �A,

where � is a matrix whose rows are the propagation modes
inside of the slab (in the same order selected for A). At the
interface between slabs i − 1 and i,

�i−1 Ai−1(zi) = �i Ai(zi),

where zi is the position of the interface. Therefore, the transfer
matrix of the interface is

Mi−1,i = �−1
i �i−1. (3)

Inside a uniform slab, the modes propagate without interact-
ing and simply accumulate phase. The transfer matrix related
to the propagation inside slab i is

�i =

⎡
⎢⎢⎣

eikz,i,1di 0 0 0
0 eikz,i,2di 0 0
0 0 eikz,i,3di 0
0 0 0 eikz,i,4di

⎤
⎥⎥⎦, (4)

where the kz,i’s are the eigenvalues of �i and di = zi+1 − zi

is the thickness of the slab.
The transfer matrix of a whole stack of slabs is obtained by

multiplying the individual transfer matrices. For example, the
transfer matrix of a slab of material 2 sandwiched between two
semi-infinite media 1 and 3 is

M = M2,3�2M1,2. (5)

C. Scattering matrices (reflection and transmission)

The mode amplitudes on both sides of a stack of n − 2 slabs
are related by the transfer matrix of the system such that

An = M A1. (6)

However, in practice, it is rare that all the amplitudes on either
side are known. More often, the incoming waves are known,
while the outgoing waves need to be determined. The previous
equation can be expressed as⎡

⎢⎣
An,1

An,2

An,3

An,4

⎤
⎥⎦ = M

⎡
⎢⎣

A1,1

A1,2

A1,3

A1,4

⎤
⎥⎦.

According to the convention established in the previous sec-
tion, the applied waves A1,1, A1,3, An,2, and An,4 are known
while the outgoing waves A1,2, A1,4, An,1, and An,3 are not.
By reorganizing the system of equations, it is straightforward
to demonstrate that ⎡

⎢⎣
A1,2

A1,4

An,1

An,3

⎤
⎥⎦ = S

⎡
⎢⎣

A1,1

A1,3

An,2

An,4

⎤
⎥⎦, (7)

where

S = −

⎡
⎢⎣

M12 M14 −1 0
M22 M24 0 0
M32 M34 0 −1
M42 M44 0 0

⎤
⎥⎦

−1⎡
⎢⎣

M11 M13 0 0
M21 M23 −1 0
M31 M33 0 0
M41 M43 0 −1

⎤
⎥⎦ (8)

is the scattering matrix.
The elements of the scattering matrix can be seen

as reflection and transmission coefficients. For general
bi-anisotropic material, it is impossible to get a single value
for the transmission and the reflection since both of them can
occur in two modes.

Note that the scattering matrix (8) relates the amplitudes
of modes defined by their tangential components. This is
different from the amplitudes determined by many simulation
software or experimentally, which usually include out-of-plane
components as well. The full modes can be calculated using
Eq. (A6) and the scattering matrix renormalized accordingly.

We now have all the tools to calculate the fields at every
position in the system. First, the modes and propagation
constants are determined for all layers and the transfer matrix
of the whole system is calculated, followed by the scattering
matrix. Then, the outgoing waves are calculated, giving A in
both the input and output media. Finally, A is calculated in
every layer by recursive application of transfer matrices from
either the input or the output media. We use these values in the
next section to calculate the nonlinear effects.

III. NONLINEAR TRANSFER MATRIX APPROACH

In the previous section, we established how to calculate
the fields inside a stack of bianisotropic linear materials.
In this section, we extend the analysis to nonlinear effects.
Our approach generalizes that of Bethune [16,17], who only
considered the case of a simply anisotropic material with
electric nonlinearity.

As is customary, we assume that the material nonlinearity
can be described using a power series expansion. For sim-
plicity, let us consider a second-order process, sum frequency
generation (SFG). In SFG, the interaction of two applied waves
at ω1 and ω2 produces a wave at ω3 = ω1 + ω2. This case
can easily be generalized to difference frequency generation
by changing the signs of the frequency and the propagation
vectors at either ω1 or ω2, and to second harmonic generation
(SHG) by considering ω1 = ω2.

In homogeneous materials, only electric nonlinearities are
typically present. However, in metamaterials, magnetic and
magnetoelectric nonlinearities are often present, and dominate
in many geometries. It is even quite frequent to have multiple
nonlinearities present in the same metamaterial and they must
therefore all be considered at once.

To represent all possible quadratic nonlinear effects, we
use the notation χ

(2)
abc,αβγ where a, b, and c can each take the

values e or m while α, β, and γ can each take the values
x, y, or z. The first pair of indices, a and α, represent the
nature (electric or magnetic) and orientation of the field at the
sum frequency ω3, while the two other pairs indicate the same
properties for the two applied waves at ω1 and ω2. For example,
χ (2)

emm,xyy indicates how the y component of the magnetic fields
at ω1 and ω2 interact to create a nonlinear polarization in
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the x axis. Considering the electric or magnetic nature of the
phenomenon at all three frequencies involved, and the three
space dimensions, there are a total of 2333 = 216 terms in the
second-order susceptibility tensors.

We assume that the nonlinear process is weak enough that it
does not significantly affect the amplitude of the applied waves.
This is known as the nondepleted pump approximation, and is
valid in many practical applications of nonlinear materials.
In the particular case of retrieval, which is our main interest
here, it is always possible to control the amplitude of the
applied waves such that the approximation is respected. With
this approximation, the nonlinear wave can be calculated by
following a series of simple steps: (1) determine the amplitude
of the electric and magnetic fields at ω1 and ω2 at all positions
inside the stack using the linear transfer matrix approach
described in previous sections; (2) calculate the nonlinear
polarization and magnetization, and bound waves at ω3; and
(3) couple bound waves to propagating waves at ω3. We now
show how to perform steps 2 and 3.

A. Nonlinear polarization and magnetization, and bound waves

The interaction between waves at ω1 and ω2 propagating
with k(ω1) and k(ω2) creates nonlinear polarization and mag-
netization at kNL = k(ω1) + k(ω2). This must be distinguished
from normal waves propagating at ω3 which preserve the
in-plane components of the propagation vector according to
kx,y(ω3) = kx,y(ω1) + kx,y(ω2), but where the z component
must be determined according to the properties of the material
with Eq. (1).

Since there are four propagation modes at every frequency,
the propagation constants k(ω1) and k(ω2) can both take four
different values, and kNL can take 16 (possibly degenerate)
values. In the nondepleted pump approximation, the different
components do not interact. Therefore, they can be calculated
separately and then simply summed. At any position in the
system, the nonlinear polarization and magnetization for one
of those components are

P NL
kNL

p,q ,α
= ε0

∑
βγ

χ
(2)
eee,αβγ (ω3; ω1,ω2)

×Ekp(ω1),β(ω1)Ekq (ω2),γ (ω2)

+χ
(2)
eem,αβγ (ω3; ω1,ω2)Ekp(ω1),β(ω1)Hkq (ω2),γ (ω2)

+χ
(2)
eme,αβγ (ω3; ω1,ω2)Hkp(ω1),β(ω1)Ekq (ω2),γ (ω2)

+χ
(2)
emm,αβγ (ω3; ω1,ω2)Hkp(ω1),β(ω1)Hkq (ω2),γ (ω2),

(9a)

MNL
kNL

p,q ,α
= μ0

∑
βγ

χ
(2)
mee,αβγ (ω3; ω1,ω2)

×Ekp(ω1),β(ω1)Ekq (ω2),γ (ω2)

+χ
(2)
mem,αβγ (ω3; ω1,ω2)Ekp(ω1),β(ω1)Hkq (ω2),γ (ω2)

+χ
(2)
mme,αβγ (ω3; ω1,ω2)Hkp(ω1),β(ω1)Ekq (ω2),γ (ω2)

+χ
(2)
mmm,αβγ (ω3; ω1,ω2)Hkp(ω1),β(ω1)Hkq (ω2),γ (ω2).

(9b)

The indices α, β, and γ take values x, y, and z and indicate
the orientation of the fields at ω3, ω1, and ω2, respectively.
The indices p and q take values 1–4 and indicate the mode
considered at ω1 and ω2, respectively.

The nonlinear polarization and magnetization drive bound
waves Es and H s. Their amplitude can be determined by
solving the wave equation in the presence of a driving term[

[0] −[∇×]
[∇×] [0]

]
kNL

p,q

[
Es

H s

]
kNL

p,q

= iω3

([
[ε(ω3)] [ξ (ω3)]
[ζ (ω3)] [μ(ω3)]

][
Es

H s

]
kNL

p,q

+
[

PNL

MNL

]
kNL

p,q

)
,

(10)

where the curl matrix includes the propagation constants used
when calculating the nonlinear polarization and magnetization,
while the material matrix is calculated at ω3. Therefore, the
bound waves are[

Es

H s

]
kNL

p,q

=
(

−i

ω3

[
[0] −[∇×]

[∇×] [0]

]
kNL

p,q

−
[

[ε(ω3)] [ξ (ω3)]
[ζ (ω3)] [μ(ω3)]

])−1[
PNL

MNL

]
kNL

p,q

. (11)

If the material properties are the same at all frequencies
involved (or more precisely if the propagation constants at
ω3 are the sum of the propagation constants at ω1 and ω2),
the above system of equations is singular. This corresponds to
perfect phase matching. This singularity can be removed when
the bound waves are included in Eq. (14) below. In a numerical
implementation, one can simply impose a small difference in
material properties to avoid this issue.

B. Coupling to propagating waves

Now that we have determined the bound waves created by
the nonlinear process, we must determine how they couple to
propagating waves. In the nondepleted pump approximation,
the nonlinearity of each layer can be treated separately and sim-
ply summed. As in the linear case, the in-plane components of
the waves, now including bound waves, must be continuous at
the interface between layers. Therefore, if layer i is nonlinear,
at its two interfaces,

�i−1Ai−1(zi) = �iAi(zi) + �s

∑
p,q

[
Es(zi)
H s(zi)

]
kNL

p,q

, (12a)

�iAi(zi+1) + �s

∑
p,q

[
Es(zi+1)
H s(zi+1)

]
kNL

p,q

= �i+1Ai+1(zi+1),

(12b)

where all the transfer matrices are implicitly calculated at ω3

and

�s =

⎡
⎢⎣

1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 −1 0 0

⎤
⎥⎦
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is a matrix that selects the in-plane components of the bound
waves. The sum over all p and q accounts for the 16 values of
kNL

p,q described above.
Using Ai(zi+1) = �iAi(zi) and[

Es(zi+1)
H s(zi+1)

]
kNL

p,q

= exp
(
ikNL

p,q,zdi

)[ Es(zi)
H s(zi)

]
kNL

p,q

,

which relate the propagating and bound waves at both ends of
the layer, respectively, Eqs. (12) can be combined into

Ai+1 = Mi,i+1�i(Mi−1,i�i−1 Ai−1 + Si), (13)

where all the amplitudes vectors are evaluated at the bottom of
their respective layers,

Si=�−1
i Ms,i

∑
p,q

exp
(
ikNL

p,q,zd
)[ Es

H s

]
kNL

p,q

−Ms,i

∑
p,q

[
Es

H s

]
kNL

p,q

(14)

is the source term representing the nonlinear effect, and Ms,i =
�−1

i �s . Isolating Si yields

Si = �−1
i M−1

i,i+1 Ai+1 − Mi−1,i�i−1 Ai−1. (15)

The amplitude vectors Ai+1 and Ai−1 can be connected to the
amplitude vectors in the semi-infinite media on either sides of
the stack such that

R−1 An − LA1 = Si , (16)

where

L = Mi−1,i . . . �2M1,2, (17)

R = Mn−1,n�n . . . Mi,i+1�i (18)

are the transfer matrices on the left and right of layer i.
Finally, since there is no applied wave at ω3, only the

outgoing waves need to be determined and Eq. (16) simpli-
fies to⎡

⎢⎣
A1,2

A1,4

An,1

An,3

⎤
⎥⎦ =

⎛
⎜⎝−L

⎡
⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎦ − R−1

⎡
⎢⎣

1 0
0 0
0 1
0 0

⎤
⎥⎦

⎞
⎟⎠

−1

Si . (19)

In the particular case of a single layer, which is the one
appropriate for retrieval, L = M1,2 and R = M2,3�2.

IV. RETRIEVAL APPROACH

In the previous section, we showed how to calculate the
fields generated by a stack of nonlinear materials. In this sec-
tion, we present an approach to perform the inverse operation:
determine the unknown nonlinear susceptibilities of a slab of
material. This approach applies to any nonlinear material, but
it is of particular interest for metamaterials, which often are
bianisotropic and have more than one nonlinear susceptibility.
Our approach generalizes that of Larouche, Rose, and Smith
[9], who treated the simpler case of materials with separable
nonlinear properties for each axis and polarization.

Looking at Eq. (III A), it is obvious that, while the nonlinear
polarization and magnetization depend nonlinearly on the
fields, they depend linearly on the nonlinear susceptibilities.
This suggests that it is possible to build a linear system of
equations to determine the unknown nonlinear susceptibilities.
In the case of SFG, there are a total of 216 complex nonlinear
susceptibilities. To determine all of them, it is necessary to
build a system of 216 complex equations.

This system of equations must be built using nonredun-
dant illumination conditions. Such conditions are obtained by
changing the angle of incidence of the applied waves, their
polarization, and whether they come from medium 1, medium
n, or both. To probe all nonlinearities, it is essential to use
applied waves at ω1 and ω2 with all possible combinations of
polarizations as well as oblique incidence.

Each illumination condition generates four measurements:
the amplitude of the two outgoing wave modes in media 1 and
n. Therefore, it is necessary to find 54 independent illumination
conditions. With these 54 illumination conditions, we build a
linear system of equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1,2|ill. cond. 1
χ

(2)
eee,xxx=1

A1,2|ill. cond. 1
χ

(2)
eee,xxy=1

· · ·
A1,4|ill. cond. 1

χ
(2)
eee,xxx=1

A1,2|ill. cond. 1
χ

(2)
eee,xxy=1

· · ·
An,1|ill. cond. 1

χ
(2)
eee,xxx=1

A1,2|ill. cond. 1
χ

(2)
eee,xxy=1

· · ·
An,3|ill. cond. 1

χ
(2)
eee,xxx=1

A1,2|ill. cond. 1
χ

(2)
eee,xxy=1

· · ·
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣χ (2)

eee,xxx

χ (2)
eee,xxy

...

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

A1,2|ill. cond. 1
expt.

A1,4|ill. cond. 1
expt.

An,1|ill. cond. 1
expt.

An,3|ill. cond. 1
expt.

...

⎤
⎥⎥⎥⎥⎥⎥⎦

, (20)

where the matrix contains the outgoing waves at ω3 calculated
using the known linear properties and supposing that each of
the 216 nonlinear susceptibilities is separately equal to 1. Each
set of four rows corresponds to the four outgoing waves for
one illumination condition. Each column corresponds to one
nonlinear susceptibility. The vector on the left side contains
the unknown nonlinear susceptibilities while the vector on the
right contains the amplitude of the outgoing modes measured
experimentally or simulated for the same 54 illumination
conditions.

To verify that a set of illumination conditions are inde-
pendent, one can calculate the matrix and verify that it is
not singular. To ensure stability of the numerical solution of
the linear system of equations, the matrix should also have
the smallest possible condition number. In our tests, we have
found that using random illumination conditions provides a
good condition number. However, such illumination conditions
are extremely impractical for experiments, and difficult to
implement even for simulations. To simplify the setup of the
experiment or simulations, it is possible to limit ourselves to
a few angles of incidence, and to TE and TM applied waves.
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TABLE I. A set of 54 independent illumination conditions are
obtained by taking all combinations of applied modes (top) and of
angles of incidence (bottom).

Mode combinations

ω1 ω2

A1,1 A1,3 An,2 An,4 A1,1 A1,3 An,2 An,4

(V/m) (V/m) (V/m) (V/m) (V/m) (V/m) (V/m) (V/m)

1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
1 0 −1 0 1 0 −1 0
0 1 0 −1 0 1 0 −1

Angle of incidence combinations
ω1 ω2

θx θy θx θy

(degrees) (degrees) (degrees) (degrees)
0 0 0 0
0 0 0 30
0 0 30 0
0 30 0 0
0 −30 0 −30
0 30 −30 0
30 0 0 0
-30 0 0 30
30 0 30 0

Table I shows one possible set of illumination conditions that
was used for the example below.

In summary, to perform retrieval of the nonlinear sus-
ceptibilities of a metamaterial, one should (1) determine the
linear properties of the metamaterial at all frequencies of
interest using linear retrieval approaches [4–6]; (2) perform
a series of independent experiments or simulations (54 in the
case of SFG), and measure the nonlinearly generated waves
in both modes in media 1 and n; (3) build the matrix by
performing a series of calculations using the known linear
properties and assuming that each nonlinear susceptibility term
is independently equal to 1; and (4) solve the linear system of
equations created by the matrix of all forward calculations and
the measurements.

TABLE II. Normalization values for the various nonlinear sus-
ceptibility tensors.

Susceptibility Normalization

χ (2)
eee 1

χ (2)
eem Z−1

0

χ (2)
eme Z−1

0

χ (2)
emm Z−2

0

χ (2)
mee Z0

χ (2)
mem 1

χ (2)
mme 1

χ (2)
mmm Z−1

0

z

x

y

FIG. 2. The VLSRR considered in the example. The unit cell is
cubic with a side of 1 cm. The substrate is FR4 with a thickness
of 254 μm, covered with 17 μm of copper; the external dimension
of the ring is 9.2 mm and its linewidth is 0.5 mm. Varactor diodes
are inserted in the 1 mm gaps (see text for details). The propagation
direction is z while the metamaterial is considered infinite in the x

and y directions.

Stability and validation

For the same numerical value, different types of nonlinearity
can produce nonlinear waves whose amplitudes differ by many
orders of magnitude. This is due to the difference between the
value of the electric and magnetic fields. In vacuum, their ratio
is Z0 = √

μ0/ε0 ≈ 377 �, while it is close to this value for
most materials. This can easily make the proposed retrieval
method unstable if not accounted for. To counteract this effect,
each nonlinear susceptibility can be normalized by dividing it
by Z0 when the magnetic field is considered at ω1 or ω2 and by
multiplying it by Z0 when the magnetic field is considered
at ω3. Table II shows the normalization for all nonlinear
susceptibility tensors.

To validate the retrieval approach, we first made sure that
it gives self-consistent results when applied to nonlinear fields
calculated using the transfer matrix approach of Sec. III. Unsur-
prisingly, in that case, the retrieved nonlinear susceptibilities
are within a part in a billion of the imposed values. Then,
we applied the retrieval approach to nonlinear simulations
performed on uniform slabs of material using COMSOL [18]. In
that case, the retrieved values are within a few percent of the

0

2

4

0

4

8

μ

0.5 1.0 1.5 2.0 2.4
f (GHz)

x
y
z

FIG. 3. Linear properties of the VLSRR of Fig. 2. The real
part (continuous lines) and imaginary part (dashed lines) of the
permittivity (top) and permeability (bottom) are all diagonal.
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)
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Z−1
0 χ

(2)
eem

Z−1
0 χ

(2)
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0 χ

(2)
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Z0χ
(2)
mee

χ
(2)
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χ
(2)
mme

Z−1
0 χ

(2)
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FIG. 4. Norm of the second-order nonlinear susceptibilities of the VLSRR. To put all values on the same scale, nonlinear susceptibilities
involving magnetic terms are normalized using the impedance of vacuum Z0. For each type of nonlinearity, the results are presented in three
slices, corresponding to the orientation of the field at f3. In each slice, columns and rows correspond to the orientation of the fields at f1 and
f2, respectively. All subplots share the same axes.
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imposed values. More details about the validation are provided
in Appendix B.

V. EXAMPLE: VARACTOR-LOADED
SPLIT RING RESONATOR

Let us now apply the method we propose to the case of the
varactor-loaded split-ring resonator (VLSRR). VLSRRs are
the canonical example of a nonlinear metamaterial [19,20].
The SRR concentrates electric fields in the small volume of
its gaps. If a nonlinear material or component is present in the
gap, its nonlinear properties are amplified. We use the VLSRR
shown in Fig. 2, which has the same dimensions and material
properties as those used in Ref. [9]. Varactors are included in
both gaps and they are oriented in the same direction. When
the VLSRR is exposed to electromagnetic waves, the varactors
naturally reverse bias. They can therefore be simulated using
a simplified model consisting of a 2.35 pF capacitor in series
with a 2.5 � resistor.

The electromagnetic response of the VLSRR was simulated
using COMSOL [18]. First, a series of time-harmonic linear
simulations were performed illuminating the SRR from various
directions and with various polarizations. The standard linear
retrieval approach was used to determine the linear properties,
shown in Fig. 3. As expected, the dominant response of the
SRR is a magnetic resonance in the y axis, which occurs around
0.9 GHz. There is no magnetic response in the two other axes.
The SRR also has a nonresonant electric response for fields
polarized in the plane of the SRR.

Next, the 54 nonlinear simulations described in Table I were
performed to determine the outgoing fields at frequency f3 =
ω3/2π . In those simulations, we varied f1 = ω1/2π between
0.5 and 1.5 GHz, while f2 = ω2/2π was kept constant at
0.9 GHz. The simulations involved three time-harmonic sim-
ulations at the three frequencies involved. At each frequency,
two circuit models, one for each varactor, were connected
inside of the gaps. The nonlinear coupling between the three
frequencies occurs in the varactor, whose capacitance is non-
linear. To account for this, we assume that the potentials on the
capacitor at f1 and f2, V1 and V2, generate a potential at f3

given by V3 = a2V1V2 where a2 = 0.2667 V−1 comes from a
power series expansion of the varactor capacitance [21].

We then used MATLAB [22] to generate the retrieval matrix,
and solve the linear system of equations to retrieve all 216
nonlinear susceptibility terms shown in Fig. 4. We determined
the complex values for the nonlinear susceptibilities, but for
simplicity only show their norm. The range of simulations we
performed includes second harmonic generation (f1 = f2 =
0.9 GHz). In that case, the fields at f1 and f2 are indistin-
guishable; to avoid an underdetermined system of equations,
we assumed that χ

(2)
abc,αβγ = χ

(2)
acb,αγβ .

The main result that can be observed in Fig. 4 is that χ (2)
emm,xyy

is about one order of magnitude larger than any other term. This
is not surprising; the applied waves at f1 and f2 are both close
to the magnetic resonance frequency of the element, such that
a magnetic field in the y axis couples well in the VLSRR.
Since the two diodes are oriented in the same direction, they
generate potentials at f3 that are also in the same direction.

This symmetry corresponds to that of an electric field in the x

axis.
The term χ (2)

eee,xxx is also supported by the geometry. Electric
fields oriented along the x axis at f1 and f2 polarize the two
varactors, which generate an electric field in the x direction at
f3. However, when the VLSRR is excited by an electric field,
most of field concentrates between adjacent rings, rather than
in the gaps, such that this nonlinearity is significantly smaller
than χ (2)

emm,xyy . Similar arguments can be made for the terms
χ (2)

eem,xxy and χ (2)
eme,xyx .

The retrieval indicates that many other nonlinearities are
present which do not seem to be supported by the geometry.
They can all be explained by spatial dispersion [10,23]. Spatial
dispersion occurs because the metamaterial elements, which
are discrete, are replaced by a homogeneous layer of finite
thickness where the nonlinearity is distributed. The magnitude
of this effect is related to the ratio between the size of the unit
cell and all the wavelengths involved. At the resonance fre-
quency, the refractive index of the VLSRR is maximum with a
value of about four. The wavelength inside of the metamaterial
is about 8 cm, less than an order of magnitude larger than the
unit cell. Therefore, spatial dispersion shows mainly at that
frequency.

It is fairly easy to understand the significant nonlinear
susceptibilities of the VLSRR because the axes of the cho-
sen system of coordinates correspond to symmetries of the
unit cell. Such a choice is often natural for the simulation
or characterization of metamaterials. However, the proposed
approach works for an arbitrary choice of coordinate system.
The effective properties in various coordinate systems are
related through standard tensor transformation laws.

VI. CONCLUSION

We have proposed a nonlinear transfer matrix appropriate
for bianisotropic materials with any combination of nonlinear-
ities and showed how this approach can be used to retrieve the
effective nonlinear susceptibilities of a metamaterial.

For simplicity, we have demonstrated the approach using
SFG, a second-order process. However, our approach general-
izes easily to a process of any order, with a rapidly increasing
number of terms. In general, for an nth-order process, there
are 2n+1 nonlinear susceptibility tensors, each containing 3n+1

terms, for a total of 6n+1 independent terms. For a third-order
process, for example, there are 1296 elements.

The proposed approach works for 3D metamaterials where
it is possible to define layers with finite thicknesses inside
which waves propagate according to the modes described
in this paper. It is not directly applicable to metasurfaces;
however, a retrieval method already exists for anisotropic
nonlinear metasurfaces [24].

We hope that the application of our method will encourage
the development of complex nonlinear metamaterials with
many nonlinear susceptibilities enabling new exciting appli-
cations.
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FIG. 5. Typical retrieval validation results for a material with
the linear properties presented in Table III and randomly selected
nonlinear susceptibility tensors. Circles represent the normalized
nonlinear susceptibilities imposed in the simulation, while crosses
represent the normalized nonlinear susceptibilities retrieved from the
simulation results. Each pair of a circle and a cross represents one of
the 216 nonlinear susceptibilities. The retrieval would be perfect if all
pairs overlapped.

APPENDIX A: PROPAGATION MODES IN
BIANISOTROPIC LINEAR MATERIALS

In this appendix, we review Berreman’s approach to find
the propagation modes in a slab of anisotropic, bianisotropic,
and/or magnetoelectric material [14]. In the absence of free
charges and currents, Maxwell’s curl equations in the fre-
quency domain (e−iωt time convention, where ω is the angular
frequency and t the time) are

∇ × E = iωB, (A1a)

−∇ × H = iωD, (A1b)

where E and H are the electric and magnetic fields, B is the
magnetic induction, and D is the electric displacement. The
material equations are

D = ε E + ξ H, (A2a)

B = ζ E + μH, (A2b)

where ε and μ are the permittivity and the permeability, while
ξ and ζ are the magnetoelectric coupling coefficients. All the
material properties are 3 × 3 rank-two tensors.

Maxwell’s equations and the material equations can be
combined in a single matrix equation[

[0] −[∇×]
[∇×] [0]

][
E
H

]
= iω

[
[ε] [ξ ]
[ζ ] [μ]

][
E
H

]
, (A3)

where [0] is a 3 × 3 null matrix and

[∇×] =

⎡
⎢⎣ 0 − ∂

∂z
∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0

⎤
⎥⎦.

Inside a uniform medium, this equation is a first-order wave
equation with solutions of the form[

E(x,y,z)
H(x,y,z)

]
= exp[i(kxx + kyy + kzz)]

[
E(0)
H(0)

]
, (A4)

where kx , ky , and kz are the components of the propagation con-
stant. Therefore, the partial derivatives ∂

∂x,y,z
can be replaced

by ikx,y,z and the curl operator by

[∇×] =
⎡
⎣ 0 −ikz iky

ikz 0 −ikx

−iky ikx 0

⎤
⎦.

The third and sixth rows of Eq. (A3) are[
0 0 0 iky −ikx 0

−iky ikx 0 0 0 0

][
E
H

]

= iω

[
εzx εzy εzz ξzx ξzy ξzz

ζzx ζzy ζzz μzx μzy μzz

][
E
H

]
. (A5)

Since kx , ky , and the material properties are known, these two
equations relate the components of the fields. They can be used
to express two field components as a function of the four others.
Since our goal is to develop an approach for multilayer stacks,
it is obviously advantageous to work with the components of
the fields that are continuous at the interface between the layers,
namely, Ex , Ey , Hx , and Hy , while Ez and Hz are eliminated.
The z components of the fields are[

Ez

Hz

]
= −

[
εzz ξzz

ζzz μzz

]−1

×
[

εzx εzy ξzx − ky

ω
ξzy + kx

ω

ζzx + ky

ω
ζzy − kx

ω
μzx μzy

]⎡
⎢⎣

Ex

Ey

Hx

Hy

⎤
⎥⎦.

(A6)

Separating the z components in the four remaining equations
yields

⎡
⎢⎣

0 0 0 ikz

0 0 −ikz 0
0 −ikz 0 0

ikz 0 0 0

⎤
⎥⎦

⎡
⎢⎣

Ex

Ey

Hx

Hy

⎤
⎥⎦ +

⎡
⎢⎣

0 −iky

0 ikx

iky 0
−ikx 0

⎤
⎥⎦[

Ez

Hz

]
= iω

⎛
⎜⎝

⎡
⎢⎣

εxx εxy ξxx ξxy

εyx εyy ξyx ξyy

ζxx ζxy μxx μxy

ζyx ζyy μyx μyy

⎤
⎥⎦

⎡
⎢⎣

Ex

Ey

Hx

Hy

⎤
⎥⎦ +

⎡
⎢⎣

εxz ξxz

εyz ξyz

ζxz μxz

ζyz μyz

⎤
⎥⎦[

Ez

Hz

]⎞
⎟⎠.
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TABLE III. Linear properties used for the validation retrieval
shown in Fig. 5.

f (GHz) εxx μxx and μzz Other properties

10 2.25 + 0.010i 1.0 1
13 2.56 + 0.012i 1.1 1
23 2.89 + 0.015i 1.2 1

Moving all z components to the right side, inserting the
solution from Eq. (A6), eliminating the matrix on the left side,
reordering the rows, and taking the inverse of Hx (to make
its value positive for forward propagation in a right-handed
material), we obtain Eq. (1).

APPENDIX B: VALIDATION

To validate the proposed nonlinear retrieval approach,
we applied it to many sum frequency generation simulation

results for uniform slabs of material with known nonlinear
susceptibilities. For each case, the 54 nonlinear simulations
described in Table I were performed using coupled time-
harmonic simulations at f1, f2, and f3 in COMSOL [18]. At
the sum frequency f3, the nonlinear effects were implemented
using weak contributions. Since the nondepleted approxima-
tion is considered, the nonlinear contributions at f1 and f2 are
assumed to be negligible.

We ran simulations for a few combinations of frequencies
and linear properties, and for many randomly selected complex
nonlinear susceptibility tensors. The known nonlinear suscep-
tibilities were selected such that their normalized values fall
inside the unit circle. Each value is normalized as described in
Sec. IV in order for the nonlinear effect produced to be on the
same scale.

Typical validation results are shown in Fig 5. The results are
obtained forf1 = 10 GHz, f2 = 13 GHz, andf3 = f1 + f2 =
23 GHz. The linear properties are shown in Table III. As can
be seen, all normalized retrieved susceptibilities are within a
circle of 0.08 m/V of the imposed values, with most of them
within 0.01 m/V.
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