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Scalable approach to generation of large symmetric Dicke states

Sachin Kasture*

AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands

(Received 29 October 2017; published 27 April 2018)

Symmetric Dicke states represent a class of genuinely entangled multipartite states with superior resistance to
loss and entanglement characteristics, even for low fidelity. A scalable and resource-intensive method is proposed
using hybrid spatiotemporal encoding using only linear optics for generation of all symmetric Dicke states for
both atomic and photonic qubits. Compared to purely spatial encoding, this method shows orders-of-magnitude
improvement in success probability while also reducing the hardware complexity by a factor N for N qubits.
This scheme will allow scalable entanglement generation of distant qubits.
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I. INTRODUCTION

In his seminal paper on cooperative spontaneous emission
by two-level systems [1], Dicke first described how a large
number of dipole emitters could be made to behave in a
correlated and coherent way via coupling to a common light
field. These cooperative quantum states of emitters are now
known as Dicke states. These states thus represent a possibility
where distant emitters may show cooperative behavior even
though they are not directly interacting with each other. In a
spin-1/2 system, Dicke states are defined as the simultaneous
eigenstates of both the total spin operator Ŝ2 and its z compo-
nent Ŝz [1].

Besides showing interesting properties, such as superra-
diance [2] and spin squeezing [3], a certain class of Dicke
states known as symmetric Dicke states have shown to have
interesting properties for quantum-information-like multipar-
tite entanglement, which is a valuable resource for several
quantum information protocols and quantum computation
algorithms. In particular, some symmetric Dicke states, which
also include W states, have been shown to display properties
of genuine entangled multipartite states [4]. Additionally,
their entanglement is robust under particle loss compared to
Greenberger-Horne-Zeilinger (GHZ) states. For example, it
has been shown that for a three-qubit system, the W state
retains maximal bipartite entanglement when any one of the
three qubits is traced out [5], unlike for the GHZ state. It has
also been shown that the required fidelity to detect genuine
multipartite entanglement for large symmetric Dicke states is
around 1/2 [4], unlike for W states.

Several entanglement generation schemes have been sug-
gested in the past for entangling two atoms [6–9], as well as
for entangling large macroscopic ensembles [10,11]. These
schemes rely on applying a feedback to the systems for certain
measurement outcomes and are probabilistic. In particular,
several proposals to generate Dicke states have been discussed
in literature. Reference [12], for example, uses realization of
trapped ions using an adiabatic process, while [13] discusses
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creating Dicke states using detection of single photons from
a cavity and can be used to create Dicke states of multiple
atoms inside a cavity. Reference [14] discusses a way to create
Dicke states in the circuit QED framework in the ultrastrong
coupling regime. References [15] and [16] are particularly
interesting as they discuss a theoretical proposal for creating
all the symmetric Dicke states using only linear optics. This
work relies on using far-field detection of photons emitted by
a group of emitters by placing detectors in a certain way and
eliminating the Welcher-Weg information to project the emit-
ters into symmetric Dicke states. Reference [17] also discusses
a scheme based on linear optics and classical interference on
a detector to remove which-path information and use it to
create a two-qubit entangled state. Reference [18] discusses an
interesting scheme to entangle two qubits using redundancy
and measurements on a mutually unbiased basis. Even if an
entanglement generation using a two-qubit gate fails, the qubits
are not destroyed because of redundancy and the gate operation
can be implemented until it succeeds. Although this scheme has
the potential for deterministic entanglement, it still relies on
sequential implementation of several probabilistic two-qubit
gates, which means decoherence of qubits could be an issue.
The scheme discussed in this work, though probabilistic, can be
used to create multipartite entanglement in a single coincidence
measurement.

Experimentally, an eight-qubit W state has been prepared
with trapped ions inside a single cavity [19]. Experimental gen-
eration of six-photon Dicke states has been shown in Refs. [20]
and [21] with fidelities of 65% and 56%, respectively, where
spontaneous parametric down-conversion (SPDC) crystal in
a cavity was used and pumped with femtosecond pulses. A
three-qubit W state with a high fidelity of 91% was obtained
using trapped ions in Ref. [22], where quantum Zeno dynamics
was used to engineer the evolution of the system. This method
might eventually lead to deterministic generation of entangled
Dicke states, although it relies on trapping of several atoms or
ions in a single cavity with the ability to perturb every emitter
individually, which is experimentally very challenging. Also,
this method relies on direct interaction of all the ions, while the
methods discussed in the manuscript allow the entanglement
of distant emitters with no direct interaction. In this article we
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FIG. 1. (a) Nonscalable implementation of matrix in Eq. (7). (b) Scalable implementation of a N × N nonunitary matrix using using a
2N × 2N unitary matrix which can be implemented using beam splitters and phase shifters. Polarizers at the end can be used to select a
particular symmetric Dicke state, as discussed in the text.

propose an approach where we can create all the symmetric N -
qubit Dicke states using gates based on linear optics elements
using a spatial and hybrid spatiotemporal encoding approach.
Besides just relying on linear optics elements, such as beam
splitters and phase shifters, this approach can be implemented
using an integrated optics platform using waveguides or optical
fibers, unlike for the approach used in Ref. [15]. This allows
for dedicated cavities being used for individual emitters which
can be used to efficiently collect and direct photons towards
individual dedicated fibers. Approaches using multiports like
in Ref. [23] have been proposed in the past to create W

states. However, these methods fail for certain values of N .
For example for N = 6 and N = 12, W -state generation is
not permitted due to destructive quantum interference. The
proposed method does not suffer from this limitation and
may be used to generate all the symmetric Dicke states and
not just the W states. Moreover, the possibility of using this
approach in an integrated optics platform opens the prospect of
producing multipartite entangled states for quantum emitters
of different kinds (such as different quantum dots which are not
usually identical or different species of ions) using intermediate
quantum frequency conversion processes in waveguide-based
devices [24–29]. In the next sections we first discuss a scheme
to generate Dicke states based on multiports and spatial
encoding. We then propose and demonstrate an approach based
on hybrid spatiotemporal encoding, which greatly increases the
success rate for entanglement generation while significantly
reducing the resource and the hardware complexity overhead,
instead relying on fast switches. In the end we discuss how
all the discussed approaches may be used to generate photonic
symmetric Dicke states using single-photon sources.

II. THEORY

A general symmetric Dicke state is usually written as∣∣∣∣N2 ,m

〉
=

(
N

N
2 + m

)−1/2 ∑
k

Pk(|11,12,...,1N/2+m,01,02,

...,0N/2−m〉), (1)

where N is the number of qubits and mh̄ is the eigenvalue of Ŝz

for this state. We first look at the case of a four-qubit system.

We model our qubit as a lambda system as shown in Fig. 1(a).
Every transition corresponds to a different polarization for an
emitted photon. For example, we could consider the transition
to state |g1〉 corresponding to a |H 〉 for the emitted photon and
|g2〉 to the |V 〉 photon. Also, |g1〉 corresponds to |0〉 and |g2〉
corresponds to |1〉 in the above equation. A typical multiport
approach to create a four-qubit system would be to use a 4 × 4
unitary matrix with four input and four output ports. In front
of every output port one would have a polarizer to select the
polarization of the output photon. One would then look at
various coincidences to project the four qubits into different
states. A 4 × 4 symmetric unitary matrix in the spatial basis is
given by ⎡⎢⎢⎣

1/2 1/2 1/2 1/2
1/2 i/2 −1/2 −i/2
1/2 −1/2 1/2 −1/2
1/2 −i/2 −1/2 i/2

⎤⎥⎥⎦. (2)

Now suppose a
†
Hn and a

†
V n are the input operators and b

†
Hn

and b
†
V n are the output operators, where n is the port number,

and we look at the situation where we detect an H photon in
ports 1,2 and a V photon in ports 3,4. Therefore we look at the
output state

b
†
H1b

†
H2b

†
V 3b

†
V 4|0〉. (3)

By converting these operators into the input operators we
obtain the following terms considering only those terms with
one photon in each port:

a
†
H1a

†
H2a

†
V 3a

†
V 4(1 + i)(1 + i) + a

†
H1a

†
H4a

†
V 2a

†
V 3(1 − i)(1 − i)

+ a
†
V 1a

†
V 4a

†
H2a

†
H3(i − 1)(i − 1)

+ a
†
V 1a

†
V 2a

†
H3a

†
H4(1 + i)(1 + i). (4)

This is equivalent to projecting the four qubits into the state

1
2 (|g11g12g23g24〉 − |g11g22g23g14〉 − |g21g12g13g24〉
+ |g21g22g13g14〉). (5)

The terms

a
†
H1a

†
H3a

†
V 2a

†
V 4, a

†
V 1a

†
V 3a

†
H2a

†
H4 (6)
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cancel out due to destructive interference. Hence the projected
state in Eq. (5) is not the symmetric Dicke state. We thus see that
with the symmetric unitary multiport approach it is not possible
to obtain all the symmetric Dicke states. We can see that to
obtain all the symmetric Dicke states, the ideal transformation
matrix would be for the two-qubit case:

1√
2

[
1√
2

1√
2

1√
2

1√
2

]
, (7)

and for the four-qubit case,

1

2

⎡⎢⎢⎢⎣
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

⎤⎥⎥⎥⎦. (8)

However, these are not unitary matrices and it is not straightfor-
ward to implement them using standard unitary multiports. The
ideal way to implement this matrix would be to use an approach
as shown in Fig. 1(a). Of course it would be necessary that the
path lengths from every source to every detector are all equal
so that there are no phase differences. However, we see that
this requires N inputs and N2 outputs and quickly becomes
impractical to implement and is not scalable.

We instead use another approach and embed these nonuni-
tary matrices of size N × N into a unitary matrix of size
2N × 2N . This can be done using the following theorem.
Suppose we want to implement the nonunitary square matrix
A of order N × N ; then the unitary matrix of order 2N × 2N

is given by [30][
A (In − AA†)1/2

(In − A†A)1/2 −A†

]
, (9)

where the spectral norm of A � 1. Using this theorem, we
construct unitary matrices of size 2N with a required embedded
nonunitary matrix of size N and use the fact that all the sources
and the detectors are in the first N input ports. The matrices
for N = 4 are given by

1

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 3 −1 −1 −1
1 1 1 1 −1 3 −1 −1
1 1 1 1 −1 −1 3 −1
1 1 1 1 −1 −1 −1 3
3 −1 −1 −1 −1 −1 −1 −1

−1 3 −1 −1 −1 −1 −1 −1
−1 −1 3 −1 −1 −1 −1 −1
−1 −1 −1 3 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Using the approach in Ref. [31], we can construct a linear
optical circuit as shown in Fig. 1(b). We now see why with
this method we can generate all the symmetric Dicke states
using the transformation matrix as in Eq. (10). On detecting k

photons in state |H 〉 and N − k photons in state |V 〉, the input
state is projected into the state,

1

C
(a†

H1+a
†
H2 + · · · + a

†
HN )k

× (a†
V 1 + a

†
V 2 + · · · + a

†
V N )(N−k)|0〉, (11)

FIG. 2. Schematic for hybrid spatiotemporal approach. A lens can
be used to focus light from various channels into a single spatial mode
on each detector.

where C is a suitable normalization factor. We can see why the
above term gives symmetric Dicke states. We only consider
terms where there is only one photon in each port and use the
theorem for multinomial expansion,

(x1 + x2 + · · · + xm)n =
∑

k1+···+km=n

n!

k1!k2!..km!
x

k1
1 x

k2
2 . . . xkm

m .

(12)

In our case where we want to detect one photon in each channel,
each of k1,k2 . . . km can be 0 or 1, since each channel will have a
photon with either H or V polarizations. Hence the coefficient
after the summation sign in the above equation will be the same
for all terms, which will be k! for H polarizations and (N − k)!
for V polarizations. From this we see that each term with N

photons has the same amplitude coefficients. Also, the total
number of terms is basically just the number of ways in which
k photons in |H 〉 can be chosen from N .

The current approach uses O((2N )2) beam splitters, where
N is the number of qubits in the Dicke state. While using
this method the production of Dicke states is now scalable,
so it would be desirable to improve the probability of N -fold
coincidences at the output, which is currently (N !)2 1

N2N for N

identical input photons, where 1/N is the maximum amplitude
for a single photon in the input to reach a particular detector,
which is limited by the spectral norm as required by the theorem
in Eq. (9).

We now consider an approach using time bins and switching
where we significantly enhance the probability of success
while also reducing the hardware complexity significantly.
This approach uses only delay lines, a switch and time-bin
encoding to efficiently generate all symmetric Dicke states.
This scheme is based on the schematic shown in Fig. 2. The
input switch is used to guide emitted photons from N different
emitters sequentially into N different channels. Each channel
consists of a single delay line splitter whose splitting ratio is a
function of time given by U (t) [32]. The delay line introduces
a delay of time δt . The switch changes state in time less than
δt . For example, for the case of N emitters, the state of a single
photon in any given channel will be given by

|ψi〉 =
(

1√
N

) N−1∑
j=0

|1〉jδt , (13)
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where jδt correspond to different time bins. To get a symmetric
superposition in the time bins for say the case of N = 4, the
splitters in each spatial port should have the following unitary
transformations:[

1
2

√
3

2√
3

2
−1
2

]
,

⎡⎣√
2
3 −

√
1
3√

1
3

√
2
3

⎤⎦,

⎡⎣√
1
2 −

√
1
2√

1
2

√
1
2

⎤⎦,

[
0 1
1 0

]
(14)

at intervals of time less than δt . However, at this stage it is
still possible to identify which photon is in which time bin
if we place a detector at the end of every spatial channel. To
get rid of this information, we now collect photons from each
channel and direct them all to a single detector, either by means
of an optical fiber or by using a lens, while making sure the
optical path length from each channel to the detector is the
same. This is similar to the approach suggested in Ref. [15],
where the authors have proposed a scheme of connecting N

sources to N single-photon detectors using N2 optical fibers to
get rid of the information of the source of a single photon for
every detector. In our scheme, on the other hand, we use only
two detectors and 2N optical fibers which connect N spatial
channels to the two detectors corresponding to two different
polarizations. Thus now, if the detector detects a photon, it
cannot identify the source of the photon. We now look for
events where one photon is detected in every time bin. Since a
photon from each source has an equal amplitude to be in every
time bin, the emitters are projected into a symmetric Dicke
state. Suppose now we have a � system where each transition
also corresponds to different polarizations. The detection of
a photon in the ith time bin corresponds to the following un-
normalized projection operator:

P̂i�t =
N∑

j=0

|g〉〈ej |, (15)

where |g〉 can correspond to |g1〉 or |g2〉 depending on detection
of a |H 〉 or |V 〉 photon. After N such detections, the N atoms
with initial state |e1e2 . . . eN 〉 are projected into the various
symmetric Dicke states [15].

We can implement the detection setup as shown in Fig. 2,
where we split the final output into two channels using a
polarizing beam splitter and direct them into two different
single-photon detectors. Similar to the cases discussed above,
by choosing k detections for H polarization and N − k de-
tections for V polarization, we can project the emitters into
various symmetric Dicke states. To characterize the N -fold
coincidence probability, we look at the situation where the
input is a state with one photon of the same polarization in
each of the N ports. For N input photons and N time bins the
probability of detecting a photon in every time bin is given by
N!
NN . To see this the state after the time-bin stage is given by

|ψ〉n,tn
=

(
1√
N

)N (̂
a
†
1,t1

+ â
†
1,t2

+ · · · + â
†
1,tN

)
· · · (̂a†

N,t1
+ â

†
N,t2

+ · · · + â
†
N,tN

)
, (16)

where the creation operator â
†
n,tn creates a photon in port n

and time bin tn, and there are N product terms in the right
side of the equation. By focusing all the spatial channels on a

FIG. 3. Coincidence rates for different schemes using expressions
given in text. The y axis plots the log-base 10 of the calculated rate
in Hz.

single spatial mode on a single detector, we effectively get rid
of the spatial index in the above equation and the output state
becomes

|ψ〉out =
(

1√
N

)N (̂
a
†
t1 + â

†
t2 + · · · + â

†
tN

) · · ·

× (̂
a
†
t1 + â

†
t2 + · · · + â

†
tN

)
. (17)

If we expand the right-hand side of the equation and look at
terms corresponding to exactly one photon in each temporal
channel, it can be seen that the probability of one photon
being detected at each time bin is N!

NN . A scheme which uses
focusing of light from different sources on a single detector
to get rid of spatial information has been shown in Ref. [17].
However, this scheme discusses the case of two qubits and
does not use time-bin encoding with loop architecture, which
is vital to the current scheme for hardware scalability for
N qubit entanglement. For a practical situation where most
single-photon detectors can only resolve pulses separated by
a few nanoseconds, for a standard 80-MHz laser, one would
have to wait N pulse durations before the next set of single
photons arrive. This would lower the coincidence rate to N!

NN+1 .
However, with faster single-photon detectors coming up (pi-
cosecond speeds), it should be possible to reach the maximum
possible coincidence rate in the near future. The delay scheme
is easier to implement in fibers, although ultralow loss delay
lines have been demonstrated on an on-chip platform as well.
Gigahertz switching speeds have been demonstrated, which
should be fast enough to switch between pulses separated
by a few nanoseconds. In addition to providing high success
probability, this scheme has a very small hardware footprint,
requiring a N delay lines, N fast switches, and one or two
detectors. Additionally, this scheme can be used not only for
N qubits but for k qubits, where k goes from 1 to N , with
optimal success probability k!

kk+1 for each. This can be done
by choosing k spatial and time-bin channels and adjusting the
dynamic U (t) so that an equal superposition is created for k

time bins.
Figure 3 shows the coincidence probability for different

schemes for an 80-MHz pulse train. The spatiotemporal ap-
proach gives a much higher coincidence rate compared to
spatial encoding. We see that by using time bins we can
increase the coincidence rate significantly (orders of magnitude
at large N ), at the cost of including switches and delay lines.
In addition, compared to the spatial encoding approach where
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FIG. 4. (a) Generation of photon Dicke states in a postselective manner. (b) Heralded generation of photonic Dicke states using entangled
sources.

the number of points of interference is O(4N2), the number of
interference points is limited to O(N ). Also one can decide to
use fewer (say N/2) delay loops with switches while sending
photons in two sets of N/2 at a time, while at the output we
can separate these two sets using a switch to adjust the path
lengths so that all photons reach the detector at the same time.
However, this will decrease the coincidence rate to N!

2NN+1 but
will also reduce the number of active switching components
and delay lines.

We can also use this quantum circuit to generate all the
symmetric Dicke states in photons. Reference [20] uses a
linear optics approach to generate Dicke states by a specially
designed SPDC cavity. However, the scheme in Fig. 4(a)
can be used to obtain all the symmetric Dicke states using
single photons from a � system. Notice the polarizers have
now been placed in front of the individual emitters instead
of the detectors. By choosing a definite orientation for the
input polarizers, one can choose the number of |H 〉 and |V 〉
photons. However, since our gate eliminates the which-path
information, on detection of N photons the output states are
entangled. Figure 4(b) shows another approach for heralded
generation of Dicke states using an entangled source. The
setup works similar to Fig. 4(a), except that we can herald the
generation of Dicke-state photons using N photon detections
at the output. Similarly for the time-bin approach, we can
now place polarizers in each input channel and remove the
polarizing beam splitter at the output and use only one detector.
On detecting N photons in N time bins, we can project
the detected state into a symmetric Dicke state. By using
an entangled source at the input and using the setup as in

Fig 4(b), we can also herald the generation for symmetric
photon Dicke states.

III. CONCLUSION

We have shown schemes based on spatial and hybrid
spatiotemporal approaches for generation of Dicke states.
These schemes are realizable in an integrated platform using
on-chip waveguides or optical fibers and are scalable. We have
also calculated and shown the device complexity and N -photon
coincidence probability for different schemes. Additionally,
this scheme allows the possibility to use dedicated optical fibers
to efficiently collect photons from each individual emitter,
which means multiple distant emitters can be entangled. We
see that the device complexity can be significantly reduced by
using hybrid spatiotemporal approach (O(N )) beam splitters
compared to (O(4N2)) for spatial encoding and one or two
detectors compared to N for spatial approach), while greatly
increasing the success probability (several orders of magnitude
for large N ). These schemes in conjunction with single-photon
sources like trapped ions and quantum dots should efficiently
generate large, symmetric Dicke states with current available
technology. We also show how these schemes could be used
to generate large photon Dicke states in both a postselected
and heralded manner. In addition, this scheme presents a
prominent example where hybrid spatiotemporal encoding for
integrated optics offers significant advantages in both speed-up
and hardware complexity compared to the more used spatial
encoding.
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