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Spectral method for the static electric potential of a charge density in a composite medium
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A spectral representation for the static electric potential field in a two-constituent composite medium is
presented. A theory is developed for calculating the quasistatic eigenstates of Maxwell’s equations for such a
composite. The local physical potential field produced in the system by a given source charge density is expanded
in this set of orthogonal eigenstates for any position r. The source charges can be located anywhere, i.e., inside
any of the constituents. This is shown to work even if the eigenfunctions are normalized in an infinite volume.
If the microstructure consists of a cluster of separate inclusions in a uniform host medium, then the quasistatic
eigenstates of all the separate isolated inclusions can be used to calculate the eigenstates of the total structure
as well as the local potential field. Once the eigenstates are known for a given host and a given microstructure,
then calculation of the local field only involves calculating three-dimensional integrals of known functions and
solving sets of linear algebraic equations.
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I. INTRODUCTION

A spectral approach is developed for calculating the local
quasistatic electric potential φ(r) produced in a two-constituent
composite by a given charge density ρ(r) which can be
nonzero in either or both of the constituents. This is done
by expanding φ(r) in the set of quasistatic eigenfunctions
φn(r) of that structure. Those eigenfunctions depend upon
the local microstructure but are independent of the actual
physical parameters of the constituents, i.e., the constituent
electric permittivities ε1 and ε2. The eigenvalues are special
nonphysical values of the ratio ε1/ε2. Once the eigenstates are
known, the calculation of φ(r) only requires summing a series
of those eigenfunctions with coefficients which are obtained
by volume integrals of the products φ∗

n(r)ρ(r).
Several spectral approaches were developed in the past.

In Ref. [1] such an approach was used to calculate the
macroscopic electric permittivity of a collection of spherical
inclusions. In Ref. [2] a spectral approach was put forward
for calculating the local monochromatic electric field E(r)
produced in a two-constituent composite by a given incident
field. In that case the discussion was not limited to the
quasistatic regime; the field E(r) was a solution of the full
Maxwell equations. The eigenvalues are still special nonphys-
ical values of ε1/ε2. A different spectral approach developed
more recently was introduced in Ref. [3]. In that approach
a set of quasinormal modes is used to expand E(r). The
eigenvalues are then special nonphysical values of the angular
frequency.

The approach presented here is capable of handling any
kind of given charge density in any kind of two-constituent
microstructure as long as the characteristic local size scale
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of that microstructure is much smaller than any of the
relevant physical lengths, e.g., electromagnetic (EM) wave-
length or skin depth. Several preliminary versions of this
approach were recently used in the context of a parallel slab
type of inclusion [4,5] and in the context of a spherical
inclusion [6].

The results could be useful for calculating the field produced
by the emission or scattering or fluorescence of EM radiation
by atoms or molecules or nanoparticles, including nonlinear
processes like Raman scattering. It will work even in difficult
situations like when the emitter or scatterer is in a very small
gap between two metallic particles [7] or inside a nanosized
particle [8,9]. Nevertheless, it should be remembered that
this emission or scattering by a nanoparticle depends upon
the environment. Therefore, calculating it will often be quite
difficult.

Our approach works irrespective of where ρ(r) is nonzero.
This is in contrast with previous approaches where the charges
had to be either outside an inclusion [4–6] or inside an inclusion
[3]. Moreover, in contrast with some previous discussions
[1,2,6], our approach works even if the eigenfunction normal-
ization involves integration over an infinite volume.

The rest of this article is organized as follows. In Sec. II the
basic theory of the quasistatic eigenstates is developed and
it is shown how these eigenstates can be used to calculate
φ(r) irrespective of where the charge density is nonzero. In
Sec. III we develop the application of the basic theory to a
microstructure composed of many ε1 inclusions in an otherwise
uniform ε2 host. In Sec. IV we apply the basic theory to the
simple example of a point charge located anywhere inside or
outside a single spherical inclusion in an otherwise uniform
medium. In this simple microstructure most of the results
are obtained in closed form. This serves to demonstrate how
simple the calculations are when based upon the spectral
approach developed here. Section V summarizes our results
and indicates possible future developments.

2469-9926/2018/97(4)/043855(8) 043855-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.043855&domain=pdf&date_stamp=2018-04-24
https://doi.org/10.1103/PhysRevA.97.043855


DAVID J. BERGMAN AND ASAF FARHI PHYSICAL REVIEW A 97, 043855 (2018)

II. BASIC THEORY OF QUASISTATIC EIGENSTATES

In the quasistatic regime, a charge density ρ(r) produces an
electric potential φ(r) in all space as the solution of

∇ · [ε(r)∇φ(r)] = −4πρ(r), (1)

where ε(r) is the local electric permittivity. If the medium is a
two-constituent composite then ε(r) can be represented as

ε(r) = θ1(r)ε1 + θ2(r)ε2 = ε2 + θ1(ε1 − ε2)

= ε2(1 − θ1u), u ≡ 1 − ε1

ε2
≡ 1

s
.

Here θi , i = 1,2, are step functions that characterize the two
constituents; θi(r) = 1 for r inside the subvolume Vi of the εi

constituent and vanishes elsewhere. Equation (1) can now be
rewritten as

∇2φ − u∇ · (θ1∇φ) = −4πρ/ε2. (2)

We would like to expand the solution of this equation in a
complete set of states. To that end we consider the eigenstates
of the homogeneous left-hand side of Eq. (2) which satisfy

∇2φn = u(1)
n ∇ · (θ1∇φn), (3)

φn(r) = C/|r| when |r| → ∞. (4)

The orthogonality properties of these eigenfunctions were
derived previously. This was done by using a Hermitian
integro-differential operator [1,6] and assuming that V1 is a
finite subvolume. That operator includes a strong singularity in
its integrand, which casts some doubt regarding the possibility
of changing the order of integration and differentiation [10]
required to prove its Hermiticity. In the current discussion,
if one of the subvolumes V1 or V2 is finite, then in the
complementary infinite subvolume Eq. (4) is always satisfied.

Therefore, we proceed differently in deriving those proper-
ties. To that end we consider the following integral:∫

dV θ1(∇φ∗
n · ∇φm)

=
∫

dV [∇ · (θ1φ
∗
n∇φm) − φ∗

n∇ · (θ1∇φm)].

The first term on the right-hand side transforms to a surface
integral over the system envelope∮

dS θ1φ
∗
n

∂φm

∂n
.

When r ≡ |r| → ∞, the last integrand either vanishes if V1

is finite or else behaves as O(1/r3) when V1 is the infinite
subvolume; therefore that surface integral vanishes. Using
Eq. (3), the remaining term becomes

−s(1)
m

∫
dV φ∗

n∇2φm

= s(1)
m

∫
dV [−∇ · (φ∗

n∇φm) + (∇φ∗
n · ∇φm)],

where s(1)
n ≡ 1/u(1)

n . Again, the first term on the right-hand side
transforms to a vanishing surface integral at ∞. We are thus
left with∫

dV θ1(∇φ∗
n · ∇φm) = s(1)

m

∫
dV (∇φ∗

n · ∇φm). (5)

We now switch the roles of φn and φm and write∫
dV θ1(∇φ∗

m · ∇φn)

=
∫

dV [∇ · (θ1φ
∗
m∇φn) − φ∗

m∇ · (θ1∇φn)]

= −s(1)
n

∫
dV φ∗

m∇2φn = s(1)
n

∫
dV (∇φ∗

m · ∇φn).

It follows that[
s(1)
n − (

s(1)
m

)∗] ∫
dV (∇φ∗

m · ∇φn) = 0.

From these results we arrive at the following conclusions. (i)
(s(1)

n )∗ = s(1)
n is real. (ii) If s(1)

m �= s(1)
n then∫

dV (∇φ∗
m · ∇φn)

= 1

s
(1)
n

∫
dV θ1(∇φ∗

m · ∇φn)

= 1

1 − s
(1)
n

∫
dV θ2(∇φ∗

m · ∇φn) = 0.

(iii) 0 � s(1)
n � 1 since

0 �
∫

dV θ1|∇φn|2

= s(1)
n

∫
dV |∇φn|2 �

∫
dV |∇φn|2.

A Vi scalar product is now defined as

〈φ|ψ〉i ≡
∫

dV θi(∇φ∗ · ∇ψ).

Note that all the above integrals converge, even if the inte-
gration is over all space, due to the large-r behavior of the
eigenfunctions [see Eq. (4)].

The entire development up to this point can be repeated with
Eqs. (2) and (3) replaced by

∇2φ − u(2)∇ · (θ2∇φ) = −4πρ/ε1, (6)

∇2φn = u(2)
n ∇ · (θ2∇φn), (7)

where

u(2) = 1 − ε2

ε1
≡ u

u − 1
≡ 1

s(2)
, s(2) = 1 − s, (8)

u(2)
n = u(1)

n

u
(1)
n − 1

, s(2)
n ≡ 1

u
(2)
n

= 1 − s(1)
n . (9)

This also means that θ1, V1, ε2, s, and s(1)
n are replaced by θ2,

V2, ε1, s(2), and s(2)
n . We note that the V1 and V2 eigenfunctions

are the same up to a multiplicative factor. That is due to the
fact that the V1 and V2 normalizations differ; from Eq. (5) and
its V2 analog it follows that

〈φn|φn〉1 = s(1)
n

∫
dV |∇φn|2, (10)

〈φn|φn〉2 = s(2)
n

∫
dV |∇φn|2 = (

1 − s(1)
n

) ∫
dV |∇φn|2.

(11)
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From these results it follows that if s(1)
n = 0 then∇φn(r) = 0

for all r ∈ V1. Because φn(r) is continuous at the V1-V2

interface, it must have a constant value over that interface. From
Eq. (7) it then follows that, apart from this boundary condition,
that function can have an arbitrary form inside V2. There is
thus much freedom in choosing the s(1)

n = 0 eigenfunctions
inside V2. In particular, these functions do not have to be
harmonic there, and most of them are probably nonharmonic.
A noteworthy exception is the l = 0 eigenfunction of an
isolated sphere, which is harmonic in V2 [see Eq. (33) below].
Similar properties hold for the s(1)

n = 1 eigenfunctions: They
must have a constant value in V2 and at the V1-V2 interface,
and there is much freedom in choosing their form in V1.
Again, these eigenfunctions are usually not harmonic there.
When s(1)

n is neither 0 nor 1, it follows from Eqs. (3) and
(7) that ∇2φn = 0 inside V1 and V2, but not at the V1-V2

interface.
We would like to use the eigenfunctions φn(r) to expand

the solution φ(r) of Eq. (2). To this end we first assume that
ρ(r) is nonzero only in V2. In that case φ(r) is harmonic in
V1. Therefore, we can expand it using only the eigenfunctions
that are harmonic there. In fact, it is easy to show that if V1

has a finite spatial extent, then any field ψ(r) that is harmonic
there will always be V1 orthogonal to any eigenfunction φn(r)
that has u(1)

n = 1 as its V1 eigenvalue and has a constant value
φn,const outside V1,

〈φn|ψ〉1 =
∫

V1

dV (∇φ∗
n · ∇ψ)

=
∫

V1

dV [∇ · (φ∗
n∇ψ) − φ∗

n∇2ψ]

= φn,const

∮
∂V1

dS
∂ψ

∂n
= φn,const

∫
V1

dV ∇2ψ = 0,

where ∂V1 denotes the V1-V2 interface and we used the fact
that φn(r) = φn,const on that interface in order to take it outside
the interface integral.

To determine the expansion of φ(r) when ρ(r) is nonzero
only outside V1 we write

φ = φ0 + φsc, (12)

where φ0(r), to be called the incident field, is the solution of
Eq. (2) in the uniform medium ε2:

∇2φ0 = −4πρ

ε2
. (13)

We will assume that the total charge
∫

d3rρ(r) is finite;
therefore φ0(r) will decrease as 1/r at large distances. The
scattered field φsc(r) satisfies

∇2φsc = u∇ · [θ1∇(φ0 + φsc)]. (14)

Inside V1 both φ0(r) and φsc(r) are harmonic functions;
therefore they can both be expanded there, using only the
harmonic eigenfunctions, as

θ1φ0 = θ1

∑
n

Anφn, θ1φsc = θ1

∑
n

Bnφn. (15)

In order to calculate An we consider the scalar product
〈φn|φ0〉1 = An〈φn|φn〉1:

〈φn|φ0〉1 ≡
∫

dV θ1(∇φ∗
n · ∇φ0)

=
∫

dV [∇ · (φ0θ1∇φ∗
n) − φ0∇ · (θ1∇φ∗

n)]

= −s(1)
n

∫
dV φ0∇2φ∗

n = s(1)
n

∫
dV (∇φ0 · ∇φ∗

n)

= −s(1)
n

∫
dV φ∗

n∇2φ0 = 4πs(1)
n

ε2

∫
dV φ∗

n(r)ρ(r)

(16)

⇒ An = 4πs(1)
n

ε2

∫
dV φ∗

nρ

〈φn|φn〉1
. (17)

Because we have assumed that ρ(r) �= 0 only outside V1, in
practice the integration in the last expression is only over the
complementary subvolume V2.

Inside V1 the incident field can be represented as

θ1φ0(r) = θ1
4π

ε2

∑
n

s(1)
n

∫
dV φ∗

nρ

〈φn|φn〉1
φn(r).

Note that, although each term in this expansion depends
on the microstructure via s(1)

n , φn, and 〈φn|φn〉1, the final
result for φ0(r) should be independent of that. Therefore, we
can use a simplified artificial microstructure (e.g., a single
spherical inclusion) to calculate φ0 in the artificial V1. This can
sometimes be easier than computing φ0 by numerical solution
of Eq. (13). However, in order to use φ0 of Eq. (13), or φ0 of
Eq. (22) below, in Eq. (12) we will need to know it also outside
V1 or outside V2, respectively.

Multiplying Eq. (14) by φ∗
n and integrating over all space,

we get∫
dV φ∗

n∇2φsc = u

∫
dV φ∗

n∇ · [θ1∇(φ0 + φsc)]

= u

∫
dV ∇ · [φ∗

nθ1∇(φ0 + φsc)]

− u

∫
dV θ1[∇φ∗

n · ∇(φ0 + φsc)]

= −u(An + Bn)〈φn|φn〉1, (18)

but also∫
dV φ∗

n∇2φsc

=
∫

dV [∇ · (φ∗
n∇φsc) − (∇φ∗

n · ∇φsc)]

=
∫

dV [−∇ · (φsc∇φ∗
n) + (φsc∇2φ∗

n)]

= u(1)
n

∫
dV φsc∇ · (θ1∇φ∗

n)

= u(1)
n

∫
dV [∇ · (φscθ1∇φ∗

n) − θ1(∇φsc · ∇φ∗
n)]

= −u(1)
n 〈φn|φsc〉1 = −u(1)

n Bn〈φn|φn〉1. (19)
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Comparing the last results of Eqs. (18) and (19), we now get

Bn = s(1)
n

s − s
(1)
n

An = 4π

ε2

(
s(1)
n

)2

s − s
(1)
n

∫
dV φ∗

n(r)ρ(r)

〈φn|φn〉1
. (20)

In order to extend the V1 expansion of φsc(r) also to r ∈ V2 we
write

∇2φsc = u
∑

n

(An + Bn)∇ · (θ1∇φn)

=
∑

n

u

u
(1)
n

(An + Bn)∇2φn

⇒ ∇2

[
φsc − 4π

ε2

∑
n

(
s(1)
n

)2

s − s
(1)
n

∫
dV φ∗

n(r)ρ(r)

〈φn|φn〉1
φn(r)

]

= 0.

Because φsc(r) and φn(r) behave as 1/|r| when r → ∞
the expression in the square brackets must vanish. Thus
we get

φsc = 4π

ε2

∑
n

(
s(1)
n

)2

s − s
(1)
n

∫
dV φ∗

n(r)ρ(r)

〈φn|φn〉1
φn(r)

=
∑

n

Bnφn(r), (21)

which must hold in all space. This looks just like the expansion
of φsc(r) inside V1 in Eq. (15). However, we have now
shown that this expansion is valid both inside and outside
V1. The last expansion was already obtained previously [6].
However, we will now show how it can be recast so as to
apply to situations where ρ(r) is not limited to being nonzero
only outside V1. This will work even in cases where V2 is
infinite.

We would like to point out that the extension of the
expansion of θ1φsc for r ∈ V1 in Eq. (15) to the expan-
sion of φsc for all r in Eq. (21) could also have been
obtained by noting that Eq. (15) determines the values of
φsc(r) also at the V1-V2 interface, where that function is
continuous. Therefore, the expression θ2

∑
n Bnφn(r), which

is a sum of states that are harmonic in V2 and decrease
to 0 when r → ∞, satisfies the correct boundary condi-
tions on φsc(r) in V2. Therefore, it must represent φsc(r)
there.

It is also worth pointing out that, since φsc is harmonic
inside both V1 and V2, though not at the V1-V2 interface, it
can be expanded there using eigenstates that are also harmonic
inside both V1 and V2. Thus we do not need any nonharmonic
eigenstates for these expansions.

If ρ(r) is nonzero only inside V1 then φ(r) and φ0(r) are not
harmonic functions there. We might consider expanding these
fields there by using, besides the harmonic eigenfunctions,
also the u(1)

n = 1 nonharmonic eigenfunctions. However, in
this case φ(r) and φ0(r) are often so singular in V1 (e.g., 1/r)
that their gradients are not square integrable there. In that case
they usually cannot be expanded in this way. We therefore
proceed in a different fashion by switching the roles of the two
constituents: We repeat all of the above discussion with V1, s,
s(1)
n , and 〈φn|φn〉1 replaced by V2, s(2), s(2)

n , and 〈φn|φn〉2 = (1 −
s(1)
n )〈φn|φn〉1/s

(1)
n [see Eqs. (10) and (11)]. In that case Eqs. (3),

(13)–(15), (17), (20), and (21) will be replaced, respectively,
by Eq. (7) and

∇2φ0 = −4πρ

ε1
, (22)

∇2φsc = u(2)∇ · [θ2∇(φ0 + φsc)],

θ2φ0 = θ2

∑
n

A(2)
n φn, θ2φsc = θ2

∑
n

B(2)
n φn,

A(2)
n = 4πs(2)

n

ε1

∫
dV φ∗

nρ

〈φn|φn〉2
,

B(2)
n = s(2)

n

s(2) − s
(2)
n

A(2)
n = 4π

ε1

(
s(2)
n

)2

s(2) − s
(2)
n

∫
dV φ∗

n(r)ρ(r)

〈φn|φn〉2
,

φsc = 4π

ε1

∑
n

(
s(2)
n

)2

s(2) − s
(2)
n

∫
dV φ∗

nρ

〈φn|φn〉2
φn(r) (23)

= 4π

ε1

∑
n

s(1)
n

(
1 − s(1)

n

)
s

(1)
n − s

∫
dV φ∗

nρ

〈φn|φn〉1
φn(r). (24)

Note that in the last form of the expansion for φsc we have used
Eqs. (8), (9), and (11) to substitute for s(2), s(2)

n , and 〈φn|φn〉2.
Thus, if one of the constituents has an infinite volume and
the other has a finite volume, we can expand the field created
by a charge located in the finite volume constituent using the
normalization over this constituent.

If ρ(r) is nonzero in both V1 and V2 then we can separate
it into a sum ρ = ρ1 + ρ2 where ρi is nonzero only in Vi .
Equations (2) and (6) are then solved for φ1(r) and φ2(r),
produced, respectively, by ρ1(r) and ρ2(r). The total potential
field is then φ(r) = φ1(r) + φ2(r).

If ρ(r) represents a surface charge density at the V1-V2

interface then it must be proportional to a one-dimensional
Dirac δ function at that surface. That two-dimensional or
one-dimensional charge density can be assigned either to V1

or to V2. A particular example of this is described in Sec. IV
below, after Eqs. (40) and (41).

III. CLUSTERS OF NONOVERLAPPING INCLUSIONS

When the microstructure is an array of finite inclusions we
can start by calculating the eigenstates φaα and saα of the
isolated inclusions, where a denotes the inclusion and α its
eigenstate. For r ∈ V1 an eigenfunction φn of the total array
can be expanded in the φaα as

θ1φn =
∑
aα

A(n)
aαθaφaα, (25)

where θa(r) is the analog of θ1(r) for the inclusion a, i.e.,
θa(r) = 1 for r inside that inclusion but vanishes elsewhere. In
order to calculate the expansion coefficients A(n)

aα we calculate
the integral∫

dV φ∗
aα∇2φn

=
∫

dV [∇ · (φ∗
aα∇φn) − (∇φ∗

aα · ∇φn)]

=
∫

dV [−∇ · (φn∇φ∗
aα) + φn∇2φ∗

aα]
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= uaα

∫
dV φn∇ · (θa∇φ∗

aα)

= uaα

∫
dV [∇ · (φnθa∇φ∗

aα) − θa(∇φ∗
aα · ∇φn)]

= −uaα〈φaα|φn〉a = −uaαA(n)
aα 〈φaα|φaα〉a, (26)

where the isolated inclusion scalar product is defined by

〈φ|ψ〉a ≡
∫

dV θa(∇φ∗ · ∇ψ).

To get the final result in Eq. (26) we have used the fact that
〈φaα|φaβ〉a = 0 for α �= β.

We can also write∫
dV φ∗

aα∇2φn = u(1)
n

∫
dV φ∗

aα∇ · (θ1∇φn)

= −u(1)
n

∫
dV θ1(∇φ∗

aα · ∇φn) = −u(1)
n 〈φaα|φn〉1

= −u(1)
n

∑
bβ

A
(n)
bβ 〈φaα|φbβ〉b. (27)

Comparing the results of Eqs. (26) and (27) we get

uaαA(n)
aα 〈φaα|φaα〉a = u(1)

n

∑
bβ

A
(n)
bβ 〈φaα|φbβ〉b.

Note that 〈φaα|φbβ〉b is a scalar product of eigenfunctions of
inclusions a and b that are different in general, but taken over
the volume of just one of them, namely, b. Therefore, even if
the inclusions have the same shape and volume, and therefore
have the same isolated inclusion eigenstates, this scalar product
is usually nonzero even if α = β.

The preceding equation can be rewritten as

s(1)
n A(n)

aα =
∑
bβ

Maα,bβA
(n)
bβ , (28)

Maα,bβ ≡ saα

〈φaα|φbβ〉b
〈φaα|φaα〉a , Mbβ,aα = sbβ

〈φbβ |φaα〉a
〈φbβ |φbβ〉b .

(29)

If we normalize all the isolated inclusion eigenfunctions to 1,
i.e., 〈φaα|φaα〉a = 1, then the matrix M̂ , the elements of which
are Maα,bβ , is a Hermitian matrix:

〈φaα|φbβ〉b =
∫

dV θb(∇φ∗
aα · ∇φbβ)

=
∫

dV [∇ · (φ∗
aαθb∇φbβ) − φ∗

aα∇ · (θb∇φbβ)]

= −sbβ

∫
dV φ∗

aα∇2φbβ

= −sbβ

∫
dV [∇ · (φ∗

aα∇φbβ) − (∇φ∗
aα · ∇φbβ)]

= sbβ

∫
dV [∇ · (φbβ∇φ∗

aα) − φbβ∇2φ∗
aα]

= − sbβ

saα

∫
dV φbβ∇ · (θa∇φ∗

aα) = sbβ

saα

〈φaα|φbβ〉a.

From this it follows that Mbβ,aα = (Maα,bβ )∗.

Here s(1)
n and A(n)

aα are the eigenvalues and eigenvectors
of the Hermitian matrix M̂ . They can be found by solving
numerically the matrix eigenvalue problem of Eq. (28). From
Eq. (29) it follows that the nonzero off-diagonal elements of
that matrix are proportional to overlap integrals of pairs of
eigenfunctions from different inclusions. When a and b denote
the same inclusion the elements of M̂ are

Maα,aβ ≡ saα〈φaα|φaβ〉a = saαδαβ.

In order to extend Eq. (25) to a representation of φn

everywhere we consider the following equation:

∇2φn = u(1)
n ∇ · (θ1∇φn) = u(1)

n ∇ ·
(∑

aα

θaA
(n)
aα∇φaα

)

=
∑
aα

u(1)
n

uaα

A(n)
aα∇2φaα

⇒ ∇2

(
φn −

∑
aα

saα

s
(1)
n

A(n)
aαφaα

)
= 0.

From this it follows that the last term in large parentheses must
vanish. Thus we get

s(1)
n φn(r) =

∑
aα

saαA(n)
aαφaα(r), (30)

which is valid for all r. We note that the form of this expansion
differs from that of Eq. (25). We also note that each of the
isolated inclusion eigenfunctions φaα(r) is used everywhere,
i.e., not only inside its inclusion a. This is in contrast with
Eq. (25), where each eigenfunction is used only inside its own
inclusion. The importance of Eq. (30) is that it provides an
expression for φn(r) which is valid also outside V1. This can
be used to expand the physical field φ(r) using Eqs. (12), (13),
and (21)–(24). In this way we will get expansions for φ(r)
in both V1 and V2, irrespective of where ρ(r) is nonzero. We
note that if all the isolated inclusion eigenfunctions φaα are
normalized to 1, namely, 〈φaα|φaα〉a = 1 for all a and α, and
if all the eigenvectors A(n)

aα are also normalized to 1, namely,∑
aα |A(n)

aα |2 = 1, then φn(r) is also normalized to 1 in V1,
namely, 〈φn|φn〉1 = 1.

An alternative procedure for calculating the scattered po-
tential φsc when ρ(r) is nonzero only outside the inclusions is
as follows. We first expand φ0 and φsc in the φaα eigenfunctions
inside V1:

θ1φ0 =
∑
aα

Aaαθaφaα, θ1φsc =
∑
aα

Baαθaφaα. (31)

In order to determine the coefficients Aaα we calculate the
following integral in two ways:∫

dV φ∗
aα∇2φ0 =

∫
dV φ0∇2φ∗

aα

= uaα

∫
dV φ0∇ · (θa∇φ∗

aα)

= −uaα

∫
dV θa(∇φ∗

aα · ∇φ0)

= −uaα〈φaα|φ0〉a = −uaαAaα〈φaα|φaα〉a,
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but also ∫
dV φ∗

aα∇2φ0 = −4π

ε2

∫
dV φ∗

aαρ.

From these results it follows that

Aaα = 4πsaα

ε2

∫
dV φ∗

aαρ

〈φaα|φaα〉a .

In order to determine the coefficients Baα we now calculate
the following integral in two ways:∫

dV φ∗
aα∇2φsc =

∫
dV φsc∇2φ∗

aα

= uaα

∫
dV φsc∇ · (θa∇φ∗

aα)

= −uaα

∫
dV θa(∇φsc · ∇φ∗

aα)

= −uaα〈φaα|φsc〉a = −uaαBaα〈φaα|φaα〉a,
but also∫

dV φ∗
aα∇2φsc = u

∫
dV φ∗

aα∇ · [θ1∇(φ0 + φsc)]

= −u

∫
dV θ1[∇φ∗

aα · ∇(φ0 + φsc)]

= −u〈φaα|(φ0 + φsc)〉1

= −u
∑
bβ

(Abβ + Bbβ)〈φaα|φbβ〉b.

From these results we get the following set of linear algebraic
equations for Baα:

sBaα =
∑
bβ

Maα,aβ(Abβ + Bbβ).

In order to extend the expansion of φsc(r) to values of r that
are outside V1 we proceed as follows:

∇2φsc = u∇ · [θ1∇(φ0 + φsc)]

= u∇ ·
∑
aα

(Aaα + Baα)θa∇φaα

=
∑
aα

u

uaα

(Aaα + Baα)∇2φaα

⇒ ∇2

(
φsc −

∑
aα

saα

s
(Aaα + Baα)φaα

)
= 0.

From this it follows that

φsc =
∑
aα

saα

s
(Aaα + Baα)φaα, (32)

which is valid for all r. This differs from the expansion in
Eq. (31), even for r ∈ V1. The reason for this is that, whereas
in Eq. (31) each eigenfunction φaα is used only inside its own
inclusion a, in Eq. (32) each of those eigenfunctions is used
everywhere, including the insides of all the other inclusions as
well as the complementary volume V2. This is similar to the
remarks made following Eq. (30) above.

If ρ(r) is nonzero only inside some of the inclusions then
we will need to use values of the eigenfunctions of the cluster

outside the inclusions. The eigenfunctions will still be given by
Eq. (30), but the relevant eigenvalues will be the V2 eigenvalues
s(2)
n = 1 − s(1)

n . Equation (21) will now be replaced by Eqs. (23)
and (24).

IV. APPLICATION TO A PARTICULAR
MICROSTRUCTURE

A simple example of the situation where ρ(r) is nonzero
is when there is a point charge q inside or outside a radius-R
spherical inclusion in an otherwise uniform host medium. The
inside of the sphere is V1, where ε = ε1, while its outside is V2,
where ε = ε2. The function φ0(r) is now the simple Coulomb
potential of a point charge q located at r0 in a uniform medium,
namely,

φ0(r) = q

εi |r − r0| for r0 ∈ Vi.

The eigenstates are then (l = 0,1,2, . . . , − l � m � l)

φlm(r) =
{

rlYlm(�) in V1, r < R

R2l+1 1
rl+1 Ylm(�) in V2, r > R,

(33)

(2l + 1)s(1)
lm = l, (2l + 1)s(2)

lm = (l + 1), (34)

〈φlm|φlm〉1 = lR2l+1, 〈φlm|φlm〉2 = (l + 1)R2l+1, (35)

where Ylm(�) is a normalized spherical harmonic, i.e.,∫
d�Y ∗

lmYl′m′ = δll′δmm′ .
As shown in Sec. II for the general case, these eigen-

functions are the same, irrespective of whether we choose
to normalize them in the r < R or r > R regions. Equa-
tion (35) exemplifies the general relation 〈ψn|ψn〉2 = [(1 −
s(1)
n )/s(1)

n ]〈ψn|ψn〉1, which follows from Eqs. (10) and (11),
between the normalizations in these two regions. Equation (34)
exemplifies the general relation of Eq. (9) between the s(1)

n and
s(2)
n eigenvalues. We note that the infinite sequences of these

eigenvalues have a single accumulation point, namely, s
(i)
lm →

1/2 when l → ∞. This is in agreement with a general theorem
proved in Ref. [11]. We also note that there is now an isotropic
eigenfunction, namely, φ00, which has the eigenvalues s

(1)
00 = 0,

s
(2)
00 = 1. The electric field of that eigenfunction vanishes when

r < R; this is why that eigenfunction did not appear in Ref. [1].
From Eq. (16) we can conclude that, when ρ(r) = qδ3(r −

r0) and r0 ∈ V2,

〈φn|φ0〉1 = 4πqs(1)
n

ε2
φ∗

n(r0). (36)

Similarly, when r0 ∈ V1,

〈φn|φ0〉2 = 4πqs(2)
n

ε1
φ∗

n(r0). (37)

Using Eqs. (21) and (23) we now get a series for φ(r) of a
point charge at r0 in a radius-R sphere structure. For |r0| < R,

φ(r) = q

ε1|r − r0| + 4πq

ε1

∑
lm

(
s

(2)
l

)2

s(2) − s
(2)
l

φ∗
lm(r0)φlm(r)

〈φlm|φlm〉2
, (38)
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and for |r0| > R,

φ(r) = q

ε2|r − r0| + 4πq

ε2

∑
lm

(
s

(1)
l

)2

s − s
(1)
l

φ∗
lm(r0)φlm(r)

〈φlm|φlm〉1
. (39)

The normalization scalar product, which appears in the de-
nominators of the above equations, allows the use of the unnor-
malized eigenfunctions φlm(r) everywhere. This may be useful
because, except for the normalization, these eigenfunctions are
the same in both cases. We note that when r0 or r lies along
the z axis, only the m = 0 terms in these series are nonzero. In
order to get a more explicit form for the series of Eqs. (38) and
(39) we use Eqs. (33)–(35), as well as the equality [see, e.g.,
Eq. (B.98) in Ref. [12]]

l∑
m=−l

Y ∗
lm(�0)Ylm(�) = 2l + 1

4π
Pl(cos α),

where α is the angle between � and �0 and Pl is the order-l
Legendre polynomial. In this way we get, for r0 < R,

φ(r) − q

ε1|r − r0| = q

ε1

∞∑
l=0

l + 1

2l + 1

rl
0Pl(cos α)

l
2l+1 − s

×
{

rl

R2l+1 , r < R

1
rl+1 , r > R.

(40)

and for r0 > R,

φ(r) − q

ε2|r − r0| = q

ε2

∞∑
l=1

l

2l + 1

Pl(cos α)

s − l
2l+1

1

rl+1
0

×
{

rl, r < R

R2l+1

rl+1 , r > R.
(41)

It is useful to note here that, although these expressions may
look like power series in r or 1/r , they are in fact series in a
set of mutually orthogonal states in a Hilbert space. Therefore,
there is no question that these series always converge to the
right answers.

When r0 = R, Eqs. (40) and (41) lead to the same values
for φ(r): In order to see this we can use the well known
expansion of 1/|r − R| in a series of Legendre polynomials—
see Eq. (B.99) of Ref. [12]. This is a special example of the
remarks in the final paragraph of Sec. II.

When the point charge is at the sphere center, it is clear that
only the isotropic eigenfunction φ00(r) has a nonzero scalar
product with the above forms of φ0(r). It is then easy to use
Eq. (40) to get that

φ(r) =
{

q

ε1r
+ q

ε1R
ε1−ε2

ε2
, r < R

q

ε2r
, r > R,

which is the well known correct result. Note that the constant
added to the 1/r potential in the first line makes no contribution
to the electric field but ensures that φ(r) is continuous at the
sphere surface r = R.

Clearly, the approach used here provides a much simpler
way to get an infinite series representation for φ(r) than

other methods, e.g., approaches based on image charges (see
Ref. [13]) or approaches based on expanding in quasinormal
modes (see, e.g., Ref. [3]).

V. SUMMARY AND DISCUSSION

A spectral approach to the calculation of a local electrostatic
or quasistatic electric field in a two-constituent composite
medium was developed which applies to cases where that field
is produced by a given charge density that can exist anywhere
in the system. This is relevant for studies where that field is
produced by the decay of an excited atom or molecule, or by the
scattering of electromagnetic radiation by an atom or molecule
or nanoparticle, when these particles are much smaller than
the relevant wavelength and are closer than that wavelength
to the V1-V2 interface. In these cases ρ(r) should usually be
calculated using quantum mechanics and will depend upon the
heterogeneous environment. In some cases a higher-frequency
field can be generated by a strong local physical field via the
nonlinear polarization, which can be produced either by the
local field induced by an incident plane wave or by a basic
radiation emitter within the system. That induced nonlinear
polarization can be used as the source term in the linear
differential equation for the higher-frequency field in the same
composite structure.

The examples treated in Sec. IV have often been solved
previously for the case where the point charge is outside
the sphere (see, e.g., Ref. [14]). However, the case where
that charge is at an arbitrary point inside the sphere is much
more complicated using traditional methods. By contrast, our
approach is equally simple in both cases. Our treatment shows
that the spectral method presented here is much simpler and
easier to use than traditional methods. Even in the case of
a general microstructure, the most computationally difficult
step is the calculation of the quasistatic eigenstates which
are harmonic in both V1 and V2. Once those are known, the
calculation of the physical field resulting from any given source
only requires calculating integrals and summing a series. While
the series is infinite in principle and each term requires the
calculation of a three-dimensional integral, in practice only
a small number of terms and integrals are important. This is
especially true if the system is close to a resonance, i.e., if the
physical value of s is close to one of the eigenvalues s(1)

n , or if
the point source is far from the V1-V2 interface (see Ref. [6]).

In the future this approach should be extended to deal with
composite structures of more than two constituents. It should
also be extended beyond the quasistatic regime, so as to apply
to the solution of the full Maxwell equations in a composite
medium, without any restrictions on the size of the inclusions
vs the electromagnetic wavelengths or skin depths.
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