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Polarization dependence of the propagation constant of leaky guided modes
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We show that transverse-magnetic (TM) leaky modes can propagate further than transverse electric (TE) modes
in real-index dielectric waveguides. We compute the density of states and find that while the TE spectrum contains
only overlapping resonances, the TM spectrum typically contains several isolated peaks. By transforming the TM
equation into a Schrödinger-type equation, we show that these isolated peaks arise due to δ-function barriers at
the core-cladding interface. Our theory is useful for a range of applications, including filtering TM modes from
initially unpolarized light and transferring information between distant waveguides.
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I. INTRODUCTION

The analogy between Maxwell’s equations for light prop-
agation in lossy waveguides and non-Hermitian quantum
mechanics [1–4] has lead to the discovery of many intrigu-
ing phenomena, such as loss-induced transparency [5], gain-
induced suppression of lasing [6], unidirectional invisibility
[7], adiabatic optical switches [8,9], and sensors with sublinear
sensitivity [10]. In this work, we report yet another intriguing
property of non-Hermitian waveguides, which stems from the
analogy to quantum mechanics: transverse-magnetic (TM)
leaky modes can propagate further than transverse-electric
(TE) modes along real-index thin waveguides, and are more
suitable for applications which require isolated resonances.

In the most simple picture, an optical fiber consists of a
high-index material (core) coated by a lower-index material
(cladding) [11]. In the absence of loss or gain, light at certain
frequencies and wavelengths is confined to propagate inside
the core due to total internal reflection at the core-cladding
interface [12]. These are the so-called confined guided modes,
which propagate along the fiber while accumulating an overall
phase of eiβnz with a real propagation constant βn. However, in
the presence of material absorption, radiation loss, or gain,
light can be attenuated or amplified upon propagation. In
such cases, the propagation constant βn is complex [13], and
the modes are called leaky guided modes [14]. When the
light intensity is attenuated along the propagation direction,
it grows unboundedly in the transverse direction [as follows
from the dispersion relation, Eq. (10)]. This divergence poses
many theoretical challenges, such as finding a proper way to
normalize the modes [15–17] and revisiting various expres-
sions from “Hermitian optics” [18,19]. While most previous
work on complex-propagation constants typically involves
gain or loss in the waveguide [20–23], we explore in this
work the less familiar case, where βn is complex solely due
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to radiation losses in the transverse direction [24]. In the latter
type of modes, βn strongly depends on the polarization and,
consequently, the polarization can be used as a knob to control
the propagation.

Despite the long-standing debate on the interpretation,
completeness, and normalization of leaky modes [15,16],
there is no question about their usefulness when it comes
to describing light at nearly resonant wave vectors and in
close proximity to the waveguides. Most importantly, the
complex propagation constants βn determine the location of
peaks in the density states. This is similar to non-Hermitian
quantum mechanics, where resonant complex eigenenergies,
En = εn − i�n, represent peaks in the density of continuum
states, centered around real energies εn with width �n [25].
In this work, we use the term isolated resonances when the
peaks do not overlap (or, more formally, when |εn+1 − εn| >

�n,�n+1).
Figure 1 summarizes the main result of this paper: the

existence of narrow TM resonances in real-index dielectric
waveguides. We analyze the rectangular waveguide shown in
Fig. 1(a). Since the system has mirror-plane symmetry around
z = 0, the waveguide can support either TE or TM modes,
in which the electric or magnetic fields are transverse to the
direction of propagation. In Sec. II, we review the scalar
Maxwell equations for TE and TM polarizations [Eq. (4)
and Eq. (8), respectively] and in Sec. III, we present their
solution, which demonstrates the polarization dependence of
the propagation constants. Figure 1(b) shows contour plots
of the solutions of the transcendental equations from Sec. III
[Eqs. (12)–(15)], whose zeros are the TE and TM resonant
propagation constants (also known as the poles of the scattering
matrix [26]). Clearly, the TM resonances are situated closer
to the real axis and are, therefore, more strongly confined to
the waveguide. We explain this result in Sec. IV, by using
the analogy between Maxwell’s equations and the Schrödinger
equation. In Sec. V, we explore an important consequence of
narrow TM resonances: appearance of isolated peaks in the
TM density of states [as shown in Fig. 1(c)]. In Sec. VI, we
describe two possible applications of our theory for filtering
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FIG. 1. (a) Dielectric waveguide with a thin rectangular cross section (Lx � Ly and Lx = 1 μm) and index n1 = √
2 surrounded by air

with index n0 = 1. The wavelength of light is λ = 2πc

ω
= 3 μm. (b) TE and TM complex propagation constants for the structure from (a). The

plots depict contours of the functions 	TE(β2) (top) and 	TM(β2) (bottom) (defined in text), whose poles are the resonant wave vectors (also
known as the poles of the scattering matrix [26]). (c) Density of states, evaluated using Eq. (20), for TE (top) and TM (bottom) polarizations.
The dots mark the real parts of propagation constants from (b).

TM modes from initially unpolarized light and for transferring
information between distant waveguides.

II. SCALAR MAXWELL EQUATIONS

Our starting point is the frequency-domain Maxwell equa-
tions for nonmagnetic media [12]: ∇ × E = iωμ0H and ∇ ×
H = −iωε0εE. Here, E and H are the electric and magnetic
vector fields, ε0 and μ0 are the vacuum permittivity and
permeability, and ε is the relative permittivity of the medium
(the relative permeability in non-magnetic media is 1). From
Maxwell’s equations, one can obtain two decoupled wave
equations for the electric and magnetic fields [12]:

∇ × ∇ × E =
(

ω

c

)2

ε E, (1)

∇ × 1

ε
∇ × H =

(
ω

c

)2

H, (2)

where c = 1
√

ε0μ0 is the speed of light. Due to the symmetry
of the geometry under study [Fig. 1(a)], the polarization of the
modes is either TE (with nonzero field components Ey , Hx ,
and Hz) or TM (with nonzero Hy , Ex , and Ez). This property
allows one to reduce Maxwell’s vectorial equations [Eq. (1)
and Eq. (2)] to scalar equations for the electric and magnetic
fields.

In order to study polarization dependence of the propagation
constant, we focus on ultra-thin rectangular waveguides, which
are known to have record-low losses [27,28]. In this limit
[i.e., when Lx � Ly using the definitions of Fig. 1(a)] the
y dependence of the field can be neglected. The electric and
magnetic modes have the form

ψ(x,z) = eiβzψ(x), (3)

and the propagation constant β is generally complex. Focusing
first on TE polarization, we substitute Ey = eiβzey(x)ŷ into

Eq. (1), introduce the index of refraction n2 = ε, and obtain

[
d2

dx2
+

(
ω

c

)2

n2(x)

]
ey(x) = β2ey(x). (4)

This equation is formally equivalent to the time-independent
Schrödinger equation of a one-dimensional particle:

[
− h̄2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x), (5)

with m = 0.5, h̄ = 1, E = −β2, and potential field

VTE(x) = −
(

ω

c

)2

n2(x). (6)

The situation is quite different for TM polarization. Substitut-
ing Hy = eiβzhy(x)ŷ into Eq. (2), one finds that the magnetic
field satisfies the scalar equation

− d

dx

1

ε

d

dx
hy + β2 1

ε
hy =

(
ω

c

)2

hy, (7)

or alternatively [11]

[
d2

dx2
+

(
ω

c

)2

n2(x) − d ln n2(x)

dx

d

dx

]
hy(x) = β2hy(x).

(8)

(For details on how to obtain this result, see [29].) The last
term in square brackets contains a spatial derivative and, there-
fore, cannot be interpreted as the potential of a conservative
force. In Sec. IV, we transform Eq. (8) into an equivalent
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Schrödinger-type equation with an effective conservative po-
tential and show that this term is responsible for the narrow TM
resonances.

III. CONFINED AND LEAKY MODES

Our example system from Fig. 1(a) can be solved semian-
alytically using standard techniques from quantum mechanics
[30]. The eigenmodes of a piecewise homogeneous potential
are outgoing plane-wave solutions, whose coefficients are
determined by matching the field and its derivatives at the
boundaries. Since our example problem is symmetric under
reflection around x = 0, it is convenient to use the ansatz

ψ(x) =

⎧⎪⎨
⎪⎩

e−iqx, for x < −L
2 ,

A cos(kxx) + B sin(kxx), for |x| < L
2 ,

eiqx, for x > L
2 ,

(9)

where even and odd solutions have B = 0 and A = 0, respec-
tively. Here, ψ is either Ey (for TE modes) or Hy (for TM
modes) and the x components of the wave vectors in the core
and cladding, kx and q, are related to the propagation constant,
β, via the dispersion relations

k2
x + β2 =

(
ω

c

)2

ε1, (10)

q2 + β2 =
(

ω

c

)2

ε0. (11)

Since the TE equation [Eq. (4)] is equivalent to a one-
dimensional particle in a box, the boundary conditions are
continuity of the field (ψ) and its derivative (dψ/dx) at the
core-cladding interface (x = ±L/2). By demanding continu-
ity of ψ and dψ/dx for the ansatz solution [Eq. (9)] and using
the dispersion relations [Eq. (10) and Eq. (11)] to express q

in terms of kx , one obtains the well-known transcendental
equations [11]:

Even TE modes : tan

(
kxL

2

)
= −i

√
1 − ω2(ε1 − ε0)

(ckx)2
,

(12)

Odd TE modes : − cot

(
kxL

2

)
= −i

√
1 − ω2(ε1 − ε0)

(ckx)2
.

(13)

In contrast, the TM equation [Eq. (8)] contains an additional
derivative term which changes the boundary conditions. In or-
der to derive the correct boundary conditions, one can integrate
Eq. (7) over an infinitesimal region around the boundary (at
x = L

2 ). The first term on the left-hand side gives

lim
δ→0

∫ L
2 +δ

L
2 −δ

dx
d

dx

1

ε

dhy

dx
= h′

y(L/2)out

ε(L/2)out
− h′

y(L/2)in

ε(L/2)in
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FIG. 2. (a) Right- and left-hand sides of the transcendental
Eqs. (12)–(15) for the structure from Fig. 1(a) (with n0 = 1, n1 = √

2,
and ωL

2πc
). The intersections of the blue-solid (red-dashed) curves with

the black curve define the transverse wave vectors [kcon
x ]n of TE

(TM) confined guided modes. Panels (b) and (c) show contours of
the functions 	TE(kx) and 	TM(kx), respectively (defined in the text),
whose complex poles are the transverse wave vectors of confined and
leaky TE or TM modes.

and the remaining terms vanish. Therefore, the TM transcen-
dental equations are [11]

Even TM modes :
ε0

ε1
tan

(
kxL

2

)
= −i

√
1 − ω2(ε1 − ε0)

(ckx)2
,

(14)

Odd TM modes :
ε0

ε1
− cot

(
kxL

2

)
= −i

√
1 − ω2(ε1 − ε0)

(ckx)2
.

(15)

Figure 2(a) shows the TE and TM confined guided modes
for the structure from Fig. 1(a), which correspond to real-kx

solutions of Eqs. (12)–(15). Graphically, real-kx solutions are
found by intersecting the blue (TE) and red (TM) curves
[the left-hand sides of Eqs. (12)–(13) and Eqs. (14)–(15),
respectively] with the black curve [the right-hand side of
Eqs. (12)–(15)]. Since the TE and TM equations only differ
in the factor ε0

ε1
, which determines the slope of the tangent and

cotangent functions but not the location of the branch cuts, the
number of TE and TM confined modes is the same for any
given index contrast, but TM modes are shifted to larger kx

values.
Panels (b) and (c) in Fig. 2 show, in addition to the confined

modes, the TE and TM leaky guided modes, which correspond
to complex-kx solutions of Eqs. (12)–(15). It is evident from
the figure that the TM resonances are closer to the real axis in
comparison to the TE resonances, which implies that a larger
fraction of the TM-modal intensity is confined to the core of the
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FIG. 3. (a) Dispersion relation (ω vs Re[βn]) of TE modes, obtained by computing confined (blue) and leaky (black) propagation constants,
βn, at a range of frequencies, 0.01 < ωL

2πc
< 1, for the structure from Fig. 1. Confined modes propagate in the core and decay in the cladding and

satisfy ωε0 < βnc < ωε1. The gray shaded area marks the light line of the cladding (βnc > ωn0). (b) Confined (blue solid) and leaky (black
dashed) TE modes and the TE potential (black solid) [Eq. (6) with n(x) given by Eq. (17)], with ωL

2πc
= 2. (c) Smoothed TE (blue solid) and

TM (red dotted) potentials, obtained by evaluating Eq. (6) and Eq. (16), respectively, using the smoothed index profile Eq. (18)]. (d) TE and
TM confined and leaky mode profiles (blue solid and red dotted lines, respectively).

waveguide. Formally, the resonant wave vectors are the zeros
of the functions F (e/o)

TE and F (e/o)
TM , which are defined as the

difference between the left- and right-hand sides of Eqs. (12)–
(15). The superscript (e/o) denotes even or odd symmetry
and the subscript denotes TE or TM polarization. Figure 2
shows the poles of 	TE ≡ |F (e)

TE|−2 + |F (o)
TE |−2 and 	TM ≡

|F (e)
TM|−2 + |F (o)

TM|−2. These poles are precisely the well-known
scattering matrix poles, which can be derived directly from
Maxwell’s equations using electromagnetic scattering theory
[26]. The location of the poles in the complex plane determines
many physical properties, such as the scattering, absorption,
and extinction cross sections. Note that despite the fact that
we expect, based on Fig. 2(a), to find three real-kx solutions
both in the TE and TM polarizations, panels (b) and (c) show
spurious real-kx solutions [e.g., the pole on the real axis in
(b) at kx ≈ 2]. These additional poles are an artifact of our
numerical procedure, since we plot contours of the inverse
squared modulus of the boundary-condition equations and not
the equations themselves.

We conclude this section by discussing the dispersion
relation of the guided modes, presented in Fig. 3(a). Confined
guided modes propagate inside the core and decay in the
cladding. Since these modes have real kx and imaginary q,
the (real) propagation constant, βn, must be above the light
line of the core (βnc < ωn1) and below the light line of the
cladding (βnc > ωn0) [12] [see Eq. (10) and Eq. (11)]. In
contrast, leaky guided modes decay also inside the core, i.e.,
they have complex q and kx . The propagation constants of
the lowest-order leaky modes still sit above the light line of
the core, but at higher orders or smaller frequencies, we find
modes below the light line, as demonstrated in Fig. 3(a) when
the red curves penetrate the line Re[βn]c = ωn1.

IV. SCALAR MAXWELL EQUATIONS AS
SCHRÖDINGER-TYPE EQUATIONS

Apart from a very limited number of analytically solvable
geometries, such as the piecewise continuous geometry of our
example system, it is generally impossible to construct simple
transcendental equations and one must solve Eq. (4) and Eq. (8)
directly. Since the TE Maxwell equation is a Schrödinger-type
equation, it can be solved using standard approaches from
quantum mechanics. Although the TM equation contains a
nonconservative force term [see discussion following Eq. (8)],
we can recast it as a Schrödinger-type equation by introducing
the transformation: hy(x) = n(x)ψ(x). We find that the new
field ψ satisfies Eq. (5) with the effective potential

VTM(x) = −
(ω

c

)2
n2(x) − 1

n

d2n

dx2
+ 2

(
1

n

dn

dx

)2

. (16)

More generally, one can apply similar tricks to transform
the full-vector Maxwell equation into a Schrödinger-type
equation, even in the absence of mirror-plane symmetry (for
details, see lecture 3 in [31]).

The analogy to quantum mechanics offers a simple inter-
pretation for the nature of the TE and TM solutions. The index
profile of the rectangular waveguide [Fig. 1(a)] can be written
as

n(x) = n0 + (n1 − n0)

[
H

(
L

2
+ x

)
+ H

(
L

2
− x

)
− 1

]
,

(17)

where H (x) is the Heaviside step function. The TE potential
[Eq. (6)] with n(x) given by Eq. (17) is equivalent to a
one-dimensional square well. Confined modes are analogous to
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bound states in quantum mechanics, and their real propagation
constants are in the range −ω2n2

1 < −β2
n < −ω2n2

0 (i.e., be-
tween the bottom of the well and the “ionization threshold”), as
shown in Fig. 3(b). The effective TM potential [Eq. (16)] with
n(x) given by Eq. (17) is equivalent to a square-well potential
with barriers of infinite height at the well boundaries. In order
to visualize these barriers, we introduce the smoothed index
profile:

nα(x) = n0 + n1 − n0

2

{
tanh

[
α

(
x + L

2

)]

+ tanh

[
α

(
x − L

2

)]}
, (18)

which converges to n(x) in the limit of α → ∞. The TE
and TM effective potentials, V

(α)
TE and V

(α)
TM, respectively,

with smoothing parameter α = 25 are shown in Fig. 3(c).
The barriers in the TM potential give rise to constructive
interference of the scattered light and produce a higher intensity
inside the waveguide in comparison to TE modes. This point
is demonstrated in Fig. 3(d), which shows three even confined
modes and the first three leaky modes in the TE (blue solid
lines) and TM (red dashed lines) polarizations.

V. RESONANCE STRUCTURE IN THE TE AND TM
DENSITY OF STATES

In non-Hermitian quantum mechanics, resonances are as-
sociated with peaks in the density of energy states [usually
denoted as ρ(E)]. In nondegenerate systems with weak loss or
gain, the density of states is given by a sum over δ-function
peaks at bound-state energies and Lorentzian peaks at resonant
energies. In non-Hermitian waveguides, the density of states
is similarly defined as

ρ(β) =
∑

n

δ
(
β2 − [

β2
n

]con) +
∑

n

Im
1[

β2
n

]res − β2
. (19)

The first sum contains confined modes and the second contains
the leaky modes. The latter sum becomes a set of Lorentzian
peaks in the limit of isolated resonances (i.e., when Re[β2

n] �
Im[β2

n]), since in this limit

Im
1

β2
n − β2

≈ − Im([βn])/2 Re[βn]

(β − Re[βn])2 + (Im[βn])2
. (20)

The density of states of TE and TM leaky modes is plotted in
Fig. 1(c) for the structure from panel (a). The modal structure
is evident in the TM case and is absent in the TE spectrum.

When the waveguide is excited at a specific location (x0,z0)
(instead of homogeneously over the entire transverse cross
section), the system’s response is determined by the local
density of states, which is defined as [32]

ρlocal(x,β) = −Im

[∑
n

1

β2 − β2
n

ψR
n (x)ψL

n (x)∫
dxψL

n (x)ψR
n (x)

]
. (21)

Equation (21) includes both leaky and confined modes in
the summation and denotes the right and left eigenvectors
of Maxwell operators [Eq. (4) and Eq. (8)] by ψR

n and ψL
n ,

respectively [25]. Since Maxwell’s equations have the form
of a symmetric generalized eigenvalue problem [33], the left
and right eigenvectors are equal. In order to evaluate the
denominator of Eq. (21), some care needs to be taken to handle
the divergence of the leaky modes at x = ±∞. It turns out that
the modes are properly normalized by omitting the outer limits
of integration:∫ ∞

−∞
ε(x)ψ2

n (x)dx =
∫ −L/2

ε0ψ
2
n (x)dx +

∫ L/2

−L/2
ε(x)ψ2

n (x)dx

+
∫

L/2
ε0ψn(x)dx. (22)

(A rigorous proof of this normalization approach can be found
in [25] and [17].) Substituting Eq. (9) into Eq. (22), we obtain
in our case∫ ∞

−∞
dxψ(x)2 = e−iqL

iq
+

(
A2 kxL + sin kxL

2kx

+B2 kxL − sin kxL

2kx

)
. (23)

Figure 4 shows the normalized local density of states
ρlocal(x,β) [Eq. (21)] for TE and TM modes [panels (a) and (b),
respectively] of the structure from Fig. 1. The local density of
states vanishes at nodes of the field (black regions) and peaks
at field maxima (yellow regions). In the TM case, strong peaks
are seen near resonant wave vectors.

VI. DISCUSSION

In this paper, we explored the polarization dependence
of the propagation distance in perfectly straight real-index
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FIG. 4. Normalized local density of states [Eq. (21)] for TE and TM modes [panels (a) and (b), respectively], for the structure from Fig. 1.
The local density of states vanishes (black regions) at nodes of the modes and peaks at field maxima (yellow regions). In the TM case, strong
peaks are seen near resonant wave vectors. The color scale is shown on the right.
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waveguides. We focused on a special kind of modes, in which
the imaginary part of the propagation constant is solely due
to leakage of radiation in the transverse direction. Complex
propagation constants are typically encountered in systems
with a complex index of refraction, such as PT -symmetric
waveguides [5] with commensurate amounts of loss and gain,
and in semiconductor lasers with nonlinear gain [34]. They
also arise in waveguides with surface roughness or waveguides
with small variation of the cross section along the waveguide
axis [24]. In bent planar waveguides, the bend losses can be
described by assigning an imaginary part to the propagation
constant [35]. In this context, recent work by Bauters et al.
showed that the TM modes in rectangular waveguides with
a high aspect ratio are associated with ultralow bend losses
[27,28]. This property of TM modes in bent waveguides is
similar to our findings in straight waveguides.

Since straight real-index waveguides are much easier to
fabricate than the other mentioned examples, they can be
used to design simple experiments to test the predictions and
applications of non-Hermitian optics. For example, one can use
leaky-mode propagation to design simple and compact filters
for TM-polarized light. While traditional TE or TM mode
filters typically use composite structures, such as metal-clad
and buffer layers [36], or anisotropic substrates [37], we pro-
pose using straight single-constituent waveguides. Consider a
waveguide whose width Lx varies adiabatically as a function
of z, so it consists of a wide and a narrow section. Let us choose
the width of the wide section to have N confined modes, and
the width of the narrow section to support only N -1 confined
modes. When unpolarized light enters the thin section of the
waveguide, the N ’th confined modes become leaky modes, and

TE components of the field decay much more rapidly than TM
components. Therefore, after a short propagation in the thin
section, the light becomes predominantly TM polarized. This
simple design can be easily integrated on a microscale chip,
since the thin section can be made very short assuming that
the contrast between the TE and TM propagation constants
is significant. Moreover, similar principles can be applied to
design a multimode filter.

Another intriguing application of TM leaky resonances is
communication between distant waveguides. Confined modes
can only carry information between nearby waveguides. The
separation between the waveguides cannot exceed the length of
the evanescent tails because the coupling strength depends on
the overlap between modes of the individual waveguides [38].
(See, for instance, Ref. [39], which shows Rabi oscillations
between evanescently coupled waveguides.) By observing
the leaky mode profiles in Fig. 3(d), we expect that leaky
modes could convey information over many wavelengths of
the light. TE resonances are not suitable for this task because
the modes are delocalized and only a small fraction of the light
actually propagates in the core of the waveguide. However, TM
resonances are promising candidates for this task.
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