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Huygens-Fresnel principle: Analyzing consistency at the photon level
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Typically the use of the Rayleigh-Sommerfeld diffraction formula as a photon propagator is widely accepted due
to the abundant experimental evidence that suggests that it works. However, a direct link between the propagation
of the electromagnetic field in classical optics and the propagation of photons where the square of the probability
amplitude describes the transverse probability of the photon detection is still an issue to be clarified. We develop
a mathematical formulation for the photon propagation using the formalism of electromagnetic field quantization
and the path-integral method, whose main feature is its similarity with a fractional Fourier transform (FRFT).
Here we show that because of the close relation existing between the FRFT and the Fresnel diffraction integral,
this propagator can be written as a Fresnel diffraction, which brings forward a discussion of the fundamental
character of it at the photon level compared to the Huygens-Fresnel principle. Finally, we carry out an experiment
of photon counting by a rectangular slit supporting the result that the diffraction phenomenon in the Fresnel
approximation behaves as the actual classical limit.
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I. INTRODUCTION

In the scalar diffraction theory, the propagation of the
electromagnetic field is formulated as a solution of the
Rayleigh-Sommerfeld diffraction formula [1,2], representing
the Huygens-Fresnel principle, which can be simplified into
the Fresnel diffraction approximation.

Generally, in quantum mechanics and quantum field theory,
a K(xt ; x ′t ′) propagator is a Green’s function representing the
probability amplitude for a system to be in the position and
time (x ′,t ′) and, at a later time, to be in a position and time
(x,t). The evolution of the system is expressed as

�(x,t) =
∫

K(xt,x ′t ′)�(x ′,t ′)d3x ′, (1)

and these propagators can be studied within the framework
of Feynman’s path-integral formulation of the nonrelativistic
quantum mechanics [3,4]. The concept of path integrals can be
extended heuristically to the case of quantum electrodynamics,
where the Feynman’s propagator is now interpreted as the
transition amplitude that a particle is created and destroyed
by interaction.

The interest lies in finding a propagator suitable for quantum
optics, which allows us to formulate the propagation of a
photon from one point to another. In his theory of photode-
tection [5], Glauber defines the detection of a photon by an
absorption process, where the function �(�r,t) associated to the
state |�〉 may be regarded as an “electric-field wave function,”
sometimes called effective wave function, representing the
probability amplitude of having a photodetection event at
space-time point (�r,t).

Notwithstanding experimental evidence that shows single-
photon interference patterns [6] such as in classical optics,
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a clear quantum formalism where the quantum propaga-
tor, for a large number of quanta, leads to the classical
electromagnetic formalism is yet to be exposed and, ac-
cording to experiments, the propagation of photons is dealt
with through the scalar diffraction theory of classical optics
[7,8]. Furthermore, since a proper wave function for photons
is still a highly arguable topic [9–12], there is no way to
use the Born’s interpretation of the wave function [13] to
directly relate the probability density of detection with the
diffraction pattern obtained when the electromagnetic field is
propagated classically.

Using a nonrelativistic approach, our development is based
on each mode of the radiation field being treated as in-
dependent quantum oscillators, Ĥ = 1

2 (p̂2 + ω2q̂2) [14–16].
By calculating the transition amplitude associated with such
Hamiltonian, the Feynman propagator of the canonical position
q is constructed. Here, the observable q will be thought of,
using the proper scale factors, as a position coordinate perpen-
dicular to the direction of propagation of the field. Also, given
the close relation between the fractional Fourier transform
(FRFT) with harmonic systems [17,18], and especially with
the propagation of the electromagnetic field [19–22], we show
that the propagation of photons takes the form of the classic
Fresnel diffraction integral instead of the Huygens-Fresnel
principle, in which the spherical wave fronts are replaced
by paraboloidal wave fronts that cannot be generated by
point sources.

Some experiments in classical optics (see Refs. [23–25])
have shown that the Fresnel approximation is surprisingly
accurate, even in regions very close to the diffraction aperture
where the corresponding approximation should no longer be
valid (see discussion in [26]). Then, using an approach where
sources have finite dimension instead of point sources, we show
that the Helmholtz-Kirchhoff equation can also be solved sat-
isfying either the Dirichlet or Neumann boundary conditions,
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and using a suitable distribution function the Fresnel diffraction
integral can be obtained directly.

II. PHOTON PROPAGATOR

Consider the Hamiltonian of the quantized electromagnetic
field, Ĥ = 1

2 (p̂2 + ω2q̂2), which is formally equivalent to a
mechanic harmonic oscillator, where q(t) and p(t) play the
roles of canonical position and momentum, having dimensions
of [m

√
Kg] and [m

s

√
Kg], respectively. The corresponding

transition amplitude for this Hamiltonian computed via the
path-integral method [4] is

〈qF |e−iĤ /h̄|qI 〉 =
(

ω

2π ih̄ sin ωt

) 1
2

exp

{
i

2h̄
ω

×
[(

q2
I + q2

F

)
cot ωt − 2qI qF

sin ωt

]}
. (2)

Then, the temporal evolution of a system in the state |ψ〉 in the
q representation is written

ψ(qF ,t) =
(

ω

2π ih̄ sin ωt

) 1
2
∫
R

ψ(qI ,0)

× exp

{
i

2h̄
ω

[(
q2

I + q2
F

)
cot ωt − 2qIqF

sin ωt

]}
dqI .

(3)

This equation describes how the “wave function” evolves in
time as light propagates, whose kernel is written as a Fourier
transform and a quadratic phase just like the Fresnel diffrac-
tion integral in the classic electromagnetic field propagation
[1,2,26]. This similarity allows us to establish a connection
where the Fresnel diffraction integral plays a major role in the
photon propagation.

III. CLASSICAL ELECTROMAGNETIC FIELD
PROPAGATOR

The one-dimensional (1D) Fresnel diffraction integral to
distance z, in the framework of the Bonnet metaxial optics, is
written

U (x,z) =
(

i

λz

) 1
2

eikz exp

[
− ik

2

(
1

z
+ 1

RB

)
x2

]

×
∫

�

exp

[
− ik

2

(
1

z
− 1

RA

)
x ′2

]
exp

[
ik

z
xx ′

]
× U (x ′,0)dx ′, (4)

where the spherical waves are approximated into parabolic
ones and the radius of the curvature for U (see Fig. 1) from
its vertex to the center is defined as the algebraic quantity
RA = V C, and it is considered positive if it goes in the
direction of propagation of light.

Pellat-Finet [19,20] established a relationship between the
Fresnel diffraction and the fractional Fourier transformation
[17]. So, defining

cot α = ε
1 − μ

μ
with μ = z

RA

, (5)

FIG. 1. Fresnel diffraction between the spherical surface A to
spherical surface B.

then

sin2 α = μ2

μ2 + ε2(1 − μ)2
, (6)

where ε is the real-number nonzero solution of

1

RB

+ 1

z
= ε2(1 − μ)

μRA[μ2 + ε2(1 − μ)2]
. (7)

Thus, with the following choice of reduced variables:

ρ = 1√
λεRA

x ′, σ = 1√
λεRA

(cos α + ε sin α)x, (8)

and reduced amplitudes,

VA(ρ) = UA(
√

λεRAρ), VB(σ ) = UB

( √
λεRAσ

cos α + ε sin α

)
,

(9)

Eq. (4) is written in the form

VB(σ ) = i

sin α
(cos α + ε sin α)

∫
R

VA(ρ)

× exp

[
iπ (ρ2 + σ 2) cot α − 2iπσρ

sin α

]
dρ.

(10)

Now the relationship between the photon propagator (3) and
the Fresnel diffraction integral written in the form of Eq. (10) is
clearer. We just need to find the scale factor for the appropriate
reduced variables for qI and qF .

IV. PROPAGATION AS A FRESNEL INTEGRAL

We establish a relation between our propagator (3) and the
fractional Fourier transform [17,27] by taken the following
change of variables:

ρ2 = ω

2πh̄
q2

I , σ 2 = ω

2πh̄
q2

F . (11)

Using α = ωt , k = 2π
λ

, and ct = εRA > 0, we arrive at

ρ2 = cα

λεRAh̄k
q2

I , σ 2 = cα

λεRAh̄k
q2

F . (12)

We define the “mass” term mλ = h̄k
c

, which is related to the
Hamiltonian, that is, the quantized electromagnetic field can
be understood as a quantum mechanical harmonic oscillator
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with “mass” mλ = h̄k
c

, so

ρ2 = 1

λεRA

α

mλ

q2
I , σ 2 = 1

λεRA

α

mλ

q2
F . (13)

Then, by using the expressions in (8), we find the scaling
between the observable q and a real position x to be

x2
I = α

mλ

q2
I , x2

F = α

mλ

q2
F , (14)

where

cos α + ε sin α = 1. (15)

Then we can write (3) in the form

�(xF ,t) =
(

ω

2π ih̄ sin ωt

) 1
2
(

mλ

α

) 1
2
∫
R

�(xI ,0)

× exp

{
iπ

λεRA

[(
x2

I + x2
F

)
cot α − 2xI xF

sin α

]}
dxI ,

(16)

where �(xI ,0) = ψ(
√

mλ

α
xI ,0) and �(xF ,t) = ψ(

√
mλ

α
xF ,t).

In addition, by using (5) and (15), we arrive at

sin α = μ

ε
. (17)

So, equating (17) and (6), we have

μ2 + ε2(1 − μ)2 = ε2, (18)

with ε2 = μ

2−μ
. Then (7) takes the form

1

RB

+ 1

z
= 1 − μ

μRA

. (19)

Finally, using (5), we have RB = −RA and the expression (16)
can then be written explicitly in terms of the position and the
propagation distance z as

�(xF ,z) =
(

i

λz

) 1
2

exp

[
− ik

2

(
1

z
+ 1

RB

)
x2

]

×
∫

�

exp

[
− ik

2

(
1

z
− 1

RA

)
x2

F

]

× exp

[
ik

z
xI xF

]
�(xI ,0)dxI , (20)

which is exactly the classical Fresnel diffraction formula
dropping the phase factor eikz.

Also, it can be written in terms of the reduced variables ρ

and σ as the fractional Fourier transform,

φ(σ ) =
(

1

i sin α

) 1
2
∫
R

exp

{
iπ

[
(ρ2 + σ 2) cot α − 2ρσ

sin α

]}
× φ(ρ) dρ. (21)

Thus, the FRFT mathematically expresses the photon prop-
agation in the same way it is used to propagate the classical
field in the Fresnel regime. Note that when α = π/2, the
propagation becomes the standard Fourier transform (Fraun-
hofer regime). What is remarkable here is that now we have
a well-known tool to study the propagation of photons, and

we can apply all the properties of Fourier analysis to quantum
optics.

As we can see, the wave function �(x,t) behaves as an
electric-field wave function that is closely related by some
scale factors to the wave function in the q representation
ψ(q,t) and can be propagated in the same way as the classical
Fresnel diffraction integral. Since in both cases—quantum and
classic—the probability amplitude and the electric-field ampli-
tude evolve in the same way, this means that the observable q

can be considered as a position in the transverse direction to the
field propagation and parallel to the direction of electric-field
polarization.

Thus, Eq. (3) would represent the evolution of the trans-
verse probability amplitude, ψ(q,t), of detecting a photon,
remaining delocalized longitudinally. This means that the q̂

observable is far from what can be regarded as the position
of the photon [28–30]. It is worth mentioning that there is
no position operator for photons [31,32] and there is not a
satisfactory quantum mechanical description for the photon in
the usual sense.

V. CORRESPONDENCE TO THE SCALAR
DIFFRACTION THEORY

Is it possible that the Fresnel diffraction is not a mere
approximation of the Rayleigh-Sommerfeld formula but de-
scribes the propagation of the radiation field in a fundamental
way? Let us see how the scalar diffraction theory can be ad-
justed in order to obtain a different expression of a propagated
field.

We propose that the electromagnetic field cannot be con-
fined into a point region but in a small volume. It is not very
instinctive to think of a point source for an electromagnetic
wave or photons since the spatial energy density would be
infinite. For instance, in Ref. [33], the authors demonstrate that
Huygen’s secondary sources have finite dimension and energy
density; also, it has been shown [30] that photons cannot be
sharply localized, although the possibility of having zero-area
single-photon pulses has been studied [34]. Therefore, we
consider that any source of electromagnetic waves U (�r,t)
with wavelength λ must have a constant amplitude in a
neighborhood of at least the order of the wavelength.

Now, let us recall that in the scalar theory of diffraction,
the Green’s theorem is used to calculate the propagation of the
electromagnetic field [1,2,26]. It is desired to solve, for U , the
expression∫

V

U (∇2 + k2)Gdv =
∫

S

(
U

∂G

∂n
− G

∂U

∂n

)
ds, (22)

where G is an auxiliary function, called the Green’s function,

(∇2 + k2)′G±(�r,�r ′) = −4π [δ(�r − �r ′) ± δ(�r − �̃r ′)], (23)

which represents a point source in �r ′ ∈ V and �̃r ′ /∈ V . This
allows the calculation of the field U in the region V of space
at the right of the plane � [Fig. 2(a)]. One solution for G, in
the sense of distributions, corresponds to the spherical wave,

G±(�r,�r ′) = eik|�r−�r ′|

|�r − �r ′| ± eik|�r−�̃r ′|

|�r − �̃r ′| . (24)
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Spherical waves

(a)

Paraboloidal waves

(b)

FIG. 2. (a) Green’s problem using a Dirac δ distribution.
(b) Proposed problem for an arbitrary distribution.

Accordingly, the expression (22) is reduced to

U (r) = 1

4π

∫
�

U
∂G−
∂n

ds, (25)

which gives rise to the Rayleigh-Sommerfeld formula of the
Huygens-Fresnel principle.

Now, since our premise is that an electromagnetic wave
cannot be defined at a single point, but distributed in a
neighborhood v(�r) ⊆ V of a point defined by �r , the Dirac
distribution should be replaced by another distribution that
allows us to consider the field in the neighborhood v(�r) as
a constant, U (v(�r)) = U (�r) [Fig. 2(b)].

Thus, it is proposed, instead of Green’s condition [Eq. (23)],
a new condition

(∇2 + k2)′G±(�r,�r ′) = ρ(�r − �r ′) ± ρ(�r − �̃r ′), (26)

where the expression∫
V

U (�r ′) (∇2 + k2)′G±︸ ︷︷ ︸
ρ(�r−�r ′)

dv′ = U (v(�r)) = U (�r) (27)

still holds. Recall that the integral is computed in the region
V [right-hand side of scheme (2)], where the auxiliary mirror
source does not affect the result.

Let us note that if we place point sources in pairs (one
in the region where the field is measured and another in
the mirror image), one pair after the other until a cluster
is formed [Fig. 2(b)], then ρ can be written in a basis of
Dirac’s distributions, and either the functionG± or its derivative

can be chosen to be zero in the plane � fulfilling either the
conditions of Dirichlet or Neumann [1,2,26]. That is,G(�) = 0
or dG

dn
(�) = 0 can be chosen, and then the field can be solved for

a volume neighborhood v(�r) (of the order of the wavelength).
The function G±(�r,�r ′), which is solution of Eq. (26), is no

longer a spherical wave and can be written in the form

G(�r,�r ′) =
∫

v

ρ(�r ′′ − �r)G±(�r ′′, �r ′)d�r ′′. (28)

Dropping the constant −4π , we have

(∇2 + k2)′G(�r,�r ′) =
∫

v

ρ(�r ′′ − �r) (29)

× (∇2 + k2)′G±(�r ′′, �r ′)d�r ′′. (30)

Using Eq. (23), we have

(∇2 + k2)′G(�r,�r ′) =
∫

v

ρ(�r ′′ − �r) (31)

× [δ(�r ′′ − �r ′) ± δ(�r ′′ − �̃r ′)]d�r ′′, (32)

which means that G is composed of point sources along the
neighborhood v, that is, a volume of Dirac distributions.

Then the solution for the field U is given by

U (r) = 1

4π

∫
�

U
∂G−
∂n

ds, (33)

and G− may be chosen to obtain any other solution for the
diffraction integral provided that (27) is valid.

Since the propagation for photons that we obtained is
essentially the Fresnel diffraction integral formula where the
waves are not spherical but paraboloidal, they cannot be
associated with a Dirac δ distribution, but with a different type
of distribution as shown before [35]. That is, the paraboloidal
wave fronts cannot be produced by point sources, but by
sources with some dimension. Huygens’ principle is, in this
sense, a particular case of punctual sources that works fine
when, in the neighborhood v, the electromagnetic field can be
approximated in classical theory by a point source diffracting
light in all directions. In consequence, we could think of the
solution of Eq. (26) in such a way that the new distribution leads
to a new auxiliary function G±, where the Fresnel diffraction
is obtained directly.

It has been shown [36,37] that the Fresnel diffraction is
an exact solution of the paraxial wave equation and that the
paraxial equation is also equivalent to the time-dependent
Schrödinger equation [38] for a particle moving in a two-
dimensional potential, where the z coordinate plays the role
of time, and also has been used before to study the transverse
localization of light [39]. Our treatment would then justify the
use of the Fresnel diffraction as a propagator for light quanta
since it suggests that the propagator can be written as so based
on a fully quantum approach.

VI. PHOTON-COUNTING EXPERIMENT

The results found here are verified through the implemen-
tation of a diffraction experiment by photon counting (see
Fig. 3). This was developed with the only intention of showing
the correspondence between this photon propagator and the
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Laser

Slit

Photon Counter

NDF
LSpatial filter D

FIG. 3. Experimental setup.

experiments, which justifies the use of it, for example, to study
the correlation between entangled photons [21,22].

Our results are verified in a diffraction experiment with a
laser beam (λ = 632 nm) collimated with linear polarization,
which is attenuated by means of an array of neutral density
filter (NDF) until counting a limited number of photons, and
then the beam is diffracted by a rectangular slit of 1905 μm.
The diffraction is made in propagation in the free space, at a
distance of 96.84 cm from the slit to a photon counter of the
avalanche photodiode (D), whose diameter is 50 μm. The data
is taken during a time of 10 ms by scanning the diffracted field.

The correct fit between the experimental data and the photon
propagator according to Eq. (20) (see Fig. 4) reveals that the q

representation of a state of the field can be used as a guidance
to study the photon propagation.

VII. SIMULATION OF THE PROBABILITY
DISTRIBUTION FOR SINGLE-PHOTON PROPAGATION

It is very interesting to explore how the probability density
distribution evolves as the distance of the plane of observation
increases in the double-slit experiment. Here we show a simu-
lation for several planes of observation using the propagator in
Eq. (21). As the order of the FRFT approaches to α = π/2,
the probability density distribution changes until it reaches

57

112

277

387

497

442

332

167

222

FIG. 4. The experimental data overlapped to the blue curve
which is the normalized probability density, |�(x,z)|2, obtained by
computational simulation.

FIG. 5. Simulation of several probability density distributions at
a distance z.

the characteristic Fraunhofer diffraction pattern, as shown in
Fig. 5. This is a Young interferometer using Gaussian beams
as sources with waist 1/e2 radius of 0.6 mm and peak-to-peak
separation of 4 mm. The distribution densities are plotted from
α = 0.8π/2 to α = π/2 related to the propagation distance z.

In our paper, the use of the Fresnel diffraction integral or,
equivalently, the fractional Fourier transform is now funda-
mentally justified for single-photon propagation. Our treatment
agrees with the probability density distributions experimen-
tally found by Kocsis et al. [6], in which they were able
to construct classical trajectories for single photons in the
double-slit interferometer by means of a weak measurement
of the momentum without destroying interference. That is,
the overall conclusion, where those trajectories represent the
average behavior of the ensemble of photons, is confirmed by
our result.

VIII. SUMMARY

In summary, there are several reasons that point in the di-
rection that the Fresnel diffraction has a fundamental character
and it is not only a mere approximation:

(i) The propagator of the q representation of any state of the
field can be written in the form of the classic Fresnel diffraction
integral.

(ii) Spherical wave fronts can only be produced by point
sources, contrary to the paraboloidal wave fronts that can only
be produced by sources with some dimension.

(iii) Photons are not point particles since it would imply an
infinity energy density.

(iv) Experiments show that the Fresnel diffraction integral
is more accurate than expected, even in regions where it should
no longer be valid.

These points suggest the following:
Remark. The wave front of a “wave function” for photons is

composed for secondary sources with certain dimension which
produce new parabolic waves that construct the new wave front,
allowing the probability amplitude to propagate.
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IX. CONCLUSION

We have found a propagator for photons that takes the
form of the classical Fresnel diffraction integral, by means of
the close connection between both of them and the fractional
Fourier transform. We showed that the q observable, properly
scaled, corresponds to a position observable transversal to
the propagation of the field and parallel to the electric-field
polarization.

This means that in the limit for large number of quanta,
the classical intensity of the field is then proportional to
the probability density, |U (x,z)|2 ∝ |ψ(q,t)|2, and so the
correspondence principle is satisfied, as shown in our photon-
counting experiment.

Finally, we also showed that the Green’s problem in the
scalar theory of diffraction can be adjusted by using a proper
distribution that changes the spherical waves produced by the
Dirac distribution into the characteristic paraboloidal waves
of the Fresnel diffraction to obtain the latter, not as an
approximation but as an exact result.
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