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Vectorial model for guided-mode resonance gratings
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We propose a self-consistent vectorial method, based on a Green’s function technique, to describe the resonances
that appear in guided-mode resonance gratings. The model provides intuitive expressions of the reflectivity and
transmittivity matrices of the structure, involving coupling integrals between the modes of a planar reference
structure and radiative modes. When one mode is excited, the diffracted field for a suitable polarization can be
written as the sum of a resonant and a nonresonant term, thus extending the intuitive approach used to explain the
Fano shape of the resonance in scalar configurations. When two modes are excited, we derive a physical analysis
in a configuration which requires a vectorial approach. We provide numerical validations of our model. From a
technical point of view, we show how the Green’s tensor of our planar reference structure can be expressed as
two scalar Green’s functions, and how to deal with the singularity of the Green’s tensor.
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I. INTRODUCTION

In photonics, resonant systems have stirred a growing inter-
est for applications in filtering, chemical and biological sens-
ing, light handling, harvesting, and absorption [1,2]. Among
them, all-dielectric lossless guided-mode resonance gratings,
made of a planar waveguide that is periodically structured, are
particularly attractive for filtering applications [3,4]. Indeed,
their resonance can be very narrow and, remarkably, the
reflectivity and transmittivity can reach 100% provided that
the structure satisfies appropriate symmetry conditions [5].

Depicting the spectrum of this structure with a simple model
is of great interest, as an intuitive understanding facilitates the
control of its properties (bandwidth, position, and amplitude).
In this respect, the quasinormal-mode approach developed re-
cently [6—-10] brings a useful physical insight into the properties
of resonant structures. In particular, these properties can be
expressed in terms of coupling integrals involving the modes.
Additional physical insight can be brought by perturbation the-
ories, where the studied structure is seen as areference structure
whose eigenmodes are modified by a perturbation, leading
to simple expressions of the modification of its properties
[11]. This approach is particularly suitable for guided-mode
resonance gratings, the reference structure being the planar
waveguide (with normal modes) and the perturbation being
the grating. Approximate models have been developed, based
either on the coupled-mode method [12,13], very popular in the
field of integrated optics, or on the Green’s function formalism
[14-16]. They have been helpful in the design of complex
structures, such as the “biatomic grating,” a solution to enhance
the angular tolerance of the resonance [17,18].

Yet, most of them are restricted to the scalar problem
[typically, a one-dimensional (1D) grating illuminated along
a direction of periodicity], except Ref. [16] which solves the
vectorial homogeneous problem. Now, the vectorial diffraction
problem [1D grating illuminated under conical incidence,
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and two-dimensional (2D) grating] attracts strong interest,
especially when polarization-independent configurations are
sought [19-23]. The complexity of the behavior of resonant
structures with respect to the incident polarization is then a
strong incentive for developing a model giving a physical
insight of the vectorial resonance phenomenon [24,25].

As demonstrated in Ref. [26], an efficient tool to study
the behavior with respect to the incident polarization of any
specularly diffracting structure is the set of eigenvalues of
the reflectivity and transmittivity matrices in energy: they
are the bounds of the reflectivity and transmittivity when the
incident polarization takes any elliptical state. The associated
eigenvectors correspond to the polarizations for which these
bounds are reached. This approach is particularly powerful
when the involved modes have nontrivial polarizations
[24,25]. Yet, because the involved matrices contain both the
resonant and the nonresonant parts of the diffracted field,
the relation between the excited mode and the resonance of
the eigenvalues is not intuitive. In this paper, we develop
a vectorial approached model for guided-mode resonance
gratings to provide this physical insight.

In Sec. II, we present the Green’s tensor formalism to obtain
a rigorous integral equation of the diffraction problem. Then,
in Sec. I1I, we introduce the guided modes of a reference planar
structure by expanding the Green’s tensor on its eigenmodes.
Making suitable assumptions, we obtain simplified expres-
sions for the reflectivity and transmittivity matrices of the
guided-mode resonance grating, involving coupling integrals
between the guided modes and the radiative modes. In Sec. IV,
we derive physical interpretations from these formulas, and
provide numerical validations of our model. Our conclusion
are presented in Sec. V. In the Appendices, we detail the
calculation of the expansion of the Green’s tensor, and provide
additional numerical validations.

II. RIGOROUS INTEGRAL EQUATION

A. Geometry of the problem and notations

A Cartesian coordinate system (x,y,z) is used, with the
unit vectors X, ¥, and Z. As shown in Fig. 1(a), the structure
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FIG. 1. (a) Studied configuration and notations. (b) Reference
planar structure.

is composed of a stack of homogeneous layers of dielectric
materials, which are supposed to be lossless and infinite along
the x and y directions. A grating is engraved on top of the
stack. The grating can be either periodic along the x direction
only (1D grating) or along both the x and y directions (2D
grating). The period along x and potentially y is denoted d,
and d,, respectively. The grating pattern is composed of holes,
the shape of which is invariant along the z direction between the
planes defined by z = —h and z = 0. The relative permittivity
of the studied structure is noted €(p,z) with p = xX + y§y. Itis
equal to €“ in the superstrate (z > 0) and €° in the substrate (z <
—e), where e is the total thickness of the stack, including the
engraved layer and without the substrate and the superstrate,
which are semi-infinite.

Throughout the paper, we consider harmonic fields with
pulsation w and wavelength in vacuum denoted A, with
temporal dependency exp (—iwt). The structure is illuminated
with an incident plane wave coming from the superstrate. 6
is the polar angle of incidence with respect to Z, and ¢ is the
azimuthal angle of incidence with respect to X [see Fig. 1(a)].
The projection of the incident wave vector k on the (x, y) plane
is denoted k(. The projection, on the (x,y) plane, of the wave
vector of the mth-order diffracted wave is

Ky =KO+Km7 (1)

where K,, is the vector of the reciprocal space of the grating
associated with the mth diffraction order. More precisely, for a
grating periodic along the x direction only, K,,, = m fi—”f( Fora
grating periodic along both the x and y directions, the integer
m is associated with the two relative integers labelling the
(my,my) diffraction order and K,, = mxz—’ff( + myfi—’fy. The
zero-diffraction order corresponds to m = 0. Throughout the
paper, we will consider configurations where the zero order is
the only propagative order in the substrate and the superstrate.

For the sake of clarity, we consider structures containing
a single grating, on top of the stack, and isotropic materials
only. But the method can be easily extended to structures
containing several gratings, whatever their location inside
the stack, provided that the whole structure is still periodic,
and also containing homogeneous anisotropic layers, with z
symmetry axis.

B. Set of differential coupled equations
The electric field E is the solution of the equation

VxVxE-klE=0, )

where kg = 2w /A is the wave number in vacuum. Since the
structure is periodic along x and possibly y, the electric
field is pseudoperiodic and can be written as a Floquet-Bloch
expansion with coefficients E,,(z),

E(p.2) =Y En(2)exp(ikm - p). 3)

We also expand the relative permittivity of the studied structure
as a Fourier series, with coefficients €,,(z),

€(p,2) =Y en(2)exp (iKm - p). “)
Inserting Eqgs. (3) and (4) into Eq. (2) leads to a set of
differential equations coupling the diffraction orders,

@ (En(2) = k3 Y em-n(RE(z) =0, )

where the operator Q, is given by
2, [En(2)] = ikm X (ikem X Ep) +2 x (2 x 0°E,,)
+ (K - 0, En)Z + (3K, - Dik,y. (6)

In the following paragraph, we derive an integral formulation
from this equation, introducing the Green’s tensor for a
reference planar structure.

C. The reference problem

We consider a structure, called “reference structure,” com-
posed of the same homogeneous layers as the studied structure
[see Fig. 1(b)]. In the grating region, to form the reference
structure, the grating is replaced with a homogeneous layer
with the same thickness, made of a material which can be
anisotropic with symmetry axis z. This anisotropy yields a
supplementary degree of freedom in the model without making
the calculations too complex. The relative permittivity of
the reference structure is denoted €. We note €’ as the
permittivity in the (x,y) plane and €¢ along the z axis,

&°l(2) = “()RK + §§) + €°(2)22. Q)

Outside the grating region, €°(z) = €°(z) = €(z), as the homo-
geneous materials of the studied structure are supposed to be
isotropic. We will specify the expression of €', depending on
the relative permittivity of the grating, in Sec. II F.

We consider that the reference structure is illuminated with
the same plane wave as the studied structure, with in-plane
wave vector k¢ and wavelength A. Hence, the field solution of
the diffraction problem is E{)ef(z) exp (ikg.p), where E{)ef(z) is
the solution of the following equation for m = 0:

Q,[EX (2)] — K& (2)EX (2) = 0. (8)

m

On the other hand, a guided mode of the reference structure is
expressed as A,,(z)exp (ik,, - p), where A,,(z) is solution of
the homogeneous Eq. (8) for m # 0 since the zero-diffraction
order is propagating in the substrate and superstrate, while the
guided modes must be evanescent in those media.

We now introduce the Green’s tensor G,,(z,z’), associated
to the reference structure, as the solution of

@,[G, (2, )] — e ()G (z.2) = k25(z — L, (9)
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and satisfying the outgoing wave condition. I is the identity
tensor and &(z — z’) is the Dirac distribution. The index m
indicates that the considered in-plane wave vector is k,,.

As the reference structure is anisotropic with symmetry axis
z, Eqgs. (8) and (9) can be expressed as two scalar problems for
the two fundamental polarizations, i.e., transverse electric (TE)
field and transverse magnetic (TM) field, with respect to the
direction of propagation, as shown in Appendices A and B.

D. Rigorous integral equation

Once the Green’s tensor solution of Eq. (9) is known, the
differential equation (5) can be transformed into an integral
equation. Equation (5) can be written as

@ (Ey) — K&, = k3 > en—nk — 8, IE,,  (10)
where §,, , is the Kronecker symbol. By subtracting Eq. (8) to
Eq. (10), we obtain

S;lm (Eperl) _ kéérengfrt — k(2) Z [6"17,j _ am,néref]Env

m
n

(11)
where we introduced the field E5" defined by
EX" = E, — E*". (12)

It has to be noted that since E,, and E™*" are generated by the

same incident field, Eb, " satisfies the outgoing wave condition.
From Eq. (11), we deduce, using Eq. (9), that

0 _ =
E,(2) = E}'(2) + / d7'G(2,2) ) [emn(2)I
—h n

— 8 n € (Z)IE,(2), (13)

where we used that the reference structure and the studied
structure have the same permittivity outside the grating region
(the grating region is for z € [—h,0]). The calculation of the
Green’s tensor detailed in Appendix B shows that it presents
a singularity on its ZZ component (the same singularity as for
layered isotropic materials [27]) and can be written as

= , =NS | 1 nn
Gu(z,2)=6G,, (z,2) — e—eé(z — 722, (14)

= NS =
where G, is the nonsingular part of G,,. We show in the
following paragraph how we can deal with this singularity.

E. Treatment of the singularity of the Green’s tensor

The calculation of the integral over z of the singularity in
Eq. (13) leads to the term

2z 3 =ref
== 2 lenn @I = 8 n& @B (2). (15)

By transferring this term to the left-hand side of Eq. (13), we
can write

0 _ns =
F.(2) = E}l(2) + f dz'G,, (2,2) ) [em-a()1
—h n

— 8. € (2)IE,(2), (16)

where

F.() =) [am,n(ﬁfc +99) +

n

€m—n(2) .4

<@ zzi|En(z). (17)

From Eq. (17), we can express E,, as a function of F,,,,

1
E,(2)=)_ {sm,n(fcﬁ +99) + GE(Z)[@L,,,%}F’”(Z)’

m

(18)
where [%]p is the pth coefficient of the Fourier expansion of
the function 1/€(z). Last, by replacing E,, with this expression
into Eq. (16), we obtain

0 - -
F,(2) =E}'(2) + / d2G, (2,2) D E LR,
—h n

(19)
where £,,_,(z) is defined by

Em,n(Z) = [em—n(2) — E()(Z)am,n]()’b’k + yy)

+ee<z>{8m,n —e%z)[%} }(22), 20)

taking into account that Zp [e]m,p[é]p_n = O . It is useful
to note that F,, is equal to E, outside the grating region.
In the grating region, they differ only for the Z component.
Equation (19) represents the coupling between the mth order
and the nth order, through the coefficient €, _,, representing the
perturbation induced by the grating on the reference structure.

F. Choice of the reference structure

We choose the planar reference structure such that it gives
a diffracted field as close as possible to the field diffracted
by the considered structure. In other words, the perturbation,
represented by the coefficients & - must not allow the direct
coupling from one order to itself. This condition mathemat-
ically translates into &, = 0. From the expression of &, _,
[Eq. (20)], we deduce that

~1
€’ =¢,0p,0 and €° = I:L] 8m.0- 21
: @], ™

Hence, the ordinary permittivity €’ must be equal to the geo-
metric average of the grating permittivity, and the extraordinary
permittivity € must be equal to its harmonic average. First of
all, note that this result directly follows from our hypothesis for
the reference structure to be anisotropic with the z axis. It also
comes from the fact that we first performed a Fourier transform
in the (x,y) plane, leading to a perturbative model with respect
to the grating depth £ [see Eq. (19)], and to a homogenization
of the grating in the limit of small depths. As a matter of
fact, the singularity of our Green’s tensor is the same as the
singularity calculated by Yaghjian [28] when integrating the
Green’s tensor of a homogeneous medium in the source region
over a thin “pillar box” in the (x,y) plane. Moreover, our result
is consistent with the well-known rules for the homogenization
of a periodic assembly of thin plates [29]: the effective
permittivity is the geometric average of the permittivities for
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the directions where the electric field is continuous through
the plates’ interfaces (i.e., directions parallel to the plane of
the plates), while it is the harmonic average for the direction
where the electric displacement is continuous (i.e., direction
perpendicular to the plane of the plates). Usually, the plates are
parallel to each others [29], e.g., the direction of periodicity is
perpendicular to the plane of the plates. Our case differs since
our plates are juxtaposed in the (x,y) plane, e.g., the directions
of periodicity are contained in the plane of the plates. Yet, the
same rules apply: the direction of the plates imposes the form of
the permittivity tensor, while the directions of periodicity give
the directions along which the average is performed. The rule
of the geometric average in the plane for a small-depth 1D or
2D grating was already mentioned in Ref. [30]. Last, one could
expect that the z-axis anisotropic reference structure is more
suitable to model 2D gratings (with 7 /2 rotation invariance
around z) than 1D gratings, as the latter creates a strong-form
anisotropy in the (x,y) plane. Yet, it is important to note that
the excited guided modes propagate in directions close to the
directions of periodicity of the grating (due to the coupling
condition). As a consequence, the fact that the 1D grating has
a translation invariance along its ridges has a minor impact on
the propagation of the guided mode. Hence, the model has the
same accuracy for 1D and 2D gratings, as will be shown by
the numerical calculations.

It must be noted that Eq. (19) is rigorous. We will now
make approximations in order to obtain an expression of the
diffracted field.

III. APPROACHED EXPRESSION OF THE
DIFFRACTED FIELD

We consider that the angles of incidence are fixed, and we
are interested in deriving an expression of the diffracted field
with respect to the wavelength. We suppose that the reference
structure supports guided modes in the range of the considered
wavelengths and that these eigenmodes can be excited through
diffraction orders of the grating (except the zero order). The
coupling condition can be satisfied when the in-plane wave
vector of a diffraction order (k) has its modulus close to the
propagation constant of a guided mode. We note Q as the set
of integers g corresponding to the resonant diffraction orders.
Depending on the configuration, Q can contain only one or
several integers. In the following, we treat the general case
where Q contains several integers, the case of a single resonant
order being easily deduced from this general case.

A. Eigenmodes of the Green’s tensor

As detailed in Appendix D, based on results demonstrated
in Appendix C, the regular part of the Green’s tensor for our
planar reference structure can be expanded on the basis of its
eigenmodes. As a first simplifying hypothesis, we suppose that
in the vicinity of the resonance wavelength of one mode, the
term corresponding to this mode prevails over the other terms
of the sum. Hence, for a resonant order ¢ € Q, we write, in the
vicinity of the resonance wavelength A, of the excited mode,

= NS AR ®AE)

G, (z,7) =~ , (22)
! [(£) - 1]

where ® denotes the tensor product between two vectors, A,
is the electric field of the excited guided mode of the reference
structure, and A_q is its complex conjugated. This mode is the
solution of the homogeneous problem associated with Eq. (8)
for m = q. In the following, we will consider that A is always
different from any A,. Hence, the only non-null component of
the reference field in Eq. (19) is Ef)ef(z).

B. Approached integral equations

The Green’s tensor (_}55 appears as a common factor in the
sum contained in the expression of the diffraction order F,
given by Eq. (19). Injecting Eq. (22) into Eq. (19) form = g €
Q, we obtain

A, 2) o :
F :q—/ d7A (7)) - L /Fn ’
(@) Bt AL ggjsq (@ F(2)
+ Y &, GFE) | (23)
q'€eQ

where we have considered that ¢ # 0 and separated the sums
of the resonant and the nonresonant terms. Note that the tensor
product ® is no longer necessary in this equation since the
quantity under the integral is scalar [scalar product between the
vector A_q(z/) and the vector in the brackets]. We can expect that
in the vicinity of A,4, the resonant orders F, are predominant
over the nonresonant orders. Hence, in the sum contained in
the expression of a nonresonant order F,, for n ¢ Q, we retain
only the resonant orders, as a second simplifying hypothesis:

0 - -
F@ B @bt [ 6 @)Y b @R,
—h q€Q
4)

Once the F, are calculated (see the next paragraph), Eq. (24)
will be used to express the field diffracted in the nonresonant
orders, and especially the zero order.

C. Coupling integrals

The third simplifying hypothesis is to consider that the field
in a resonant order ¢ is proportional to the field of the guided
mode A, (as in [14]),

F, =o0,A,. (25)

with o, as proportionality coefficient. This hypothesis is
suggested by the form of Eq. (23), where A,(z) appears as
a factor. One could be tempted to write that F, is proportional
A,(@)
[(52—1,]'
of the studied structure is different from that of the planar
reference structure, and hence A, cannot be a pole of F,. In
particular, the modes of the structure perturbed by the grating
are leaky modes. This means that their eigenwavelengths are
complex numbers [31].
Injecting Eq. (25) into Eq. (24) leads to

to Yet, note that the eigenwavelength of the modes

F,(z) ~ E{f'f(z)tsn,o + Z Oy rn,q(z)a (26)
q€Q
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where I';, ,(2) is a vector corresponding to the outcoupling out
of the mode ¢ through the nth-diffraction order,

0 = NS -
T, = / hdz/Gn (2,2)E,_,(2)AL (). (27

In order to calculate the o, coefficients, we report the
expression of F, given by Eq. (24) into Eq. (23), and use the
proportionality relation [Eq. (25)]. We obtain

A,(2) q0+zgq<cqq+chnq> :

F,(z)  ————
’ [(%)2_ ] q'eQ n¢Q

(28)

where we introduced the following:
(1) the coupling integral between the reference field and the
mode (excitation of the mode),

0 -
Cpo= / 42 Ay (E,(DES (D), (29)
—h

(ii) the direct coupling integral between the mode g and the
mode ¢/,

0 —_
Coq = / dz/Ay(2)E, ()AL (), (30)
—h

(iii) the second-order coupling integral between the mode
g and the mode ¢’ through the nth order,

0 A (. N\E ’ 0 //=NS ro_n
Coma = / RELC Y / RELNCED
- —h

x &, (AL 31)

Last, from Eq. (28), we find that the coefficients o, are the
solutions of the system of linear equations,

5\ 2
Uq[(r) — 1= Eq,qi| -
q q'eQ

Z 04(Cqq + Zg.q9) = Cy0,

(32)

where we introduced the notation Xy, = 3, .0 Cg.nq'- This
system of equations shows how the coefficients o, are modified
by the direct coupling between the modes and also by the
second-order coupling, which appears in Eq. (32) as the sum of
the integrals Cy ,, ,-. Numerically, we will calculate this sum for
n from —N to N, and consider N as a convergence parameter.

We represented in Fig. 2 a sketch illustrating the couplings,
through the coupling integrals [Eqs. (27) and (29)—(31)], in the
case of one resonant order only [Fig. 2(a)] and two resonant
orders [Fig. 2(b)].

D. Reflection and transmission matrices

To express the reflection and transmission matrices of the
structure (for the zero-diffraction order only), we introduce the
basis related to the s and p polarizations. To each diffraction
order m, we associate the vector §,, = £,, X Z. Moreover, for
the incident, reflected, and transmitted plane waves with wave
vectors ki, k", and k', respectively, we introduce the vectors
p' =% xk’ P’ =8 x k”, and p’ = §, x k' (see Fig. 3).

(a) (b)

N N A
superstrate ix\ / superstrate!
quo ) K / Cq.0 q’K

) Fa'

wavegui q,0,q  waveguid® Cq ,q’

FIG. 2. Sketch of the coupling integrals. (a) One resonant order
q: excitation of the mode (C, o), outcoupling (I'¢ ,), and second-order
self-coupling through the zero order (C, o 4). (b) Two resonant orders
g and ¢’: direct coupling between the two modes (C, /) and second-
order coupling through the zero order (Cy ¢,4/)-

The reflection and transmission coefficients can be deduced
from Eq. (26) for n = 0. Indeed, since the field F,, is equal to
E, outside the grating region, Eq. (26) writes, for z > 0 and
< _h7

Eo(2) > EfT(2)8,0 + ) 0yT04(2). (33)
q€Q

For z > 0, the reference field E{ff(z) is the sum of the incident
field with amplitude E§*° and the field reflected by the reference
structure, with amplitude Eg’f”',

ES'(2) = Efexp (—iva) + B explivaz),  (34)

where y, = e“k&—/cg. For z >0, the Green’s ten-

= NS =NS
sor G, (z,z') can be written as G, (0,z')exp(iy,z), and
hence

0 - _
FO,q(z):exp(i)/az)/ dz’(_}gs(O,z/)E_q(z’)Aq(z’). (35)
—h

Taking into account these remarks, we obtain the field Ef(z)
(for z > 0) reflected by the studied structure in the zero order,

Ej(2) > | EF™ + ) 0,T0,4(0) | exp(ivaz).  (36)
qeQ
A1l A~ superstrate
P’ 24 P
! AT
. x P
S0 :
4

studied structure

substrate At
k[

FIG. 3. The (s, p)basis associated with the propagative diffraction
orders.
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The vector I'g ,(0) represents the electric field of the mode
in the diffraction order ¢ coupled out by the grating through
the zero order. Its components in the (s, p) basis are denoted
Co.y = To0,4(0) -8 and C(iq =Ty,0)-p".

Now, we consider successively a s- and a p-polarized
incident field, and denote a; and oqp the solutions calculated
from Eq. (32) by considering, respectively, a s and a p incident
fieldin C, o [Eq. (29)]. We deduce from Eq. (36) an approached
expression of the reflectivity matrix R (zero-diffraction order
only) of the structure in the (s, p) basis,

~ pref ert
R~ R™ + ) R (37)
qeQ

The 2 x 2 matrices R and R™ contain the reflectivity co-
efficients for the studied structure and reference structure,
respectively, expressed in the (s, p) basis, and the Rsen matrices
are given by

RPT — [05 €0, © (38)

07 C5 ,(0)
" i, |

97 Co.4(0

Following the same steps for z < —e, we obtain an ap-
proached expression of the transmittivity matrix T (zero-
diffraction order only) of the structure

_ rpref ert
T=T+) T, (39)
qeQ

where T and T™ are 2 x 2 matrices containing the transmittiv-
ity coefficients for the studied structure and reference structure,
respectively, expressed in the (s, p) basis, and

T {G‘%Ci‘q(_e) G{Ci’q(_e)}- (40)
o, Co,q(—e) Lo C07q(—e)

Equations (37) and (39) are intuitive expressions of the
reflectivity and transmittivity matrices of a guided-mode reso-
nance grating, where the coupling in and out of a mode appears
as an additional term to the reflectivity and transmittivity
matrices of a reference structure. In other words, the field
reflected and transmitted by the structure is described by
the interference of a resonant term (R)™" and T)™") and a
nonresonant term (R™ and T'f). These expressions are the
vectorial counterparts of the scalar expressions for the reflec-
tivity and transmittivity coefficients that are used to explain
the Fano resonance appearance of the guided-mode resonances
in configurations where the polarization of the field reflected
and transmitted is the same as that of the incident field [32].
The vectorial expressions must be used in the more complex
and general case of configurations where the polarization of
the resonant field is not the same as the polarization of the
nonresonant field. This result is represented by a sketch in
Fig. 4. The addition is expressed in terms of coupling integrals
involving the excited modes and radiative modes. The present
formulation takes into account the effect of the polarization
(of the incident field and of the field diffracted by the studied
structure, as well as that of the mode). We believe in the
usefulness of the vectorial formulation since the behavior of
guided-mode resonance gratings with respect to the incident
polarization may in some configurations be surprising [24,25].

e\
0 RPertgine
q 0

In the wavefront of
the reflected wave

B 4

FIG. 4. At resonance, the reflected and transmitted fields are
the sum of a nonresonant term, coming from the planar reference
structure, and a resonant term, which is due to the grating. The
vectorial sum of the field in the wavefront of the reflected wave is
represented on the right bottom sketch.

IV. PHYSICAL ANALYSIS AND NUMERICAL
VERIFICATIONS

We will consider successively the two situations where first
only one order is resonant and then two orders are resonant.
The former situation corresponds to the general case of oblique
incidence. The latter situation will be reduced to the particular
case where the plane of incidence is a plane of symmetry of
the structure (full conical incidence). Particular attention will
be paid to the influence of the incident polarization. For the
validation of the model, we compare the results to the reflection
and transmission coefficients calculated with a homemade
code based on the rigorous Fourier modal method [33], which
has been thoroughly validated by comparison with other codes
[34] and experiments [23]. We tested the convergence with
respect to the number N of coefficients taken in the sum on the
nonresonant orders of Eq. (32) (¥, 4 = Z,IZ\/(¢Q):7N Cyong)-

A. Situation with one resonant order only

In the situation where only one order is resonant, the system
[Eq. (32)] reduces to the single equation

Cy0
2
[G5) =1 -2

) (41)

Uq:
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from which the eigenwavelength )™ of the mode of the

studied structure can be deduced (thls is the pole of o),

At = A, T+ 2y, (42)

and appears as a modification of the eigenwavelength of the
excited eigenmode caused by the second-order self-coupling
of the mode through the diffraction orders. Let us note that the
imaginary part of this pole gives the half width of the resonance
peak. As A, is real, the width of the peak depends on the second-
order coupling coefficients C,; , 4, and depicts the leakage in
the substrate and the superstrate of the excited mode. As we
consider that the zero-diffraction order is the only propagative
one, we can expect that the width of the resonance peak is
mainly given by C, o 4, and that C, ,, , for n # 0 plays a minor
role. Cy 0,4 includes the gth harmonic of the permittivity of the
grating, as was already underlined in the literature concerning
guided-mode resonance gratings [12,14,15,17].

Further, an important property can be easily derived from
the expression of RP™" [see Eq. (38)], which is valid even when
several orders are resonant. The determinant of R)™ is null,
and hence one eigenvalue of Rgert

g, is equal to the trace of Rgen,
g = O';CS,q(O) 4 UfC&q(O). (43)

The eigenvector associated with 1, is V = [Cj q(O); Cg_ q(O)].
The eigenvector associated with the null eigenvalue is Vo =
[o]; —o,]. Similar properties can be derived for the transmis-
sion matrix.

Now, in the particular case where only one order g
is resonant, the non-null eigenvalue of Rgert takes the

form

is null and the other, called

PG NUREEYE X0 RN

[(E) - 1= Zq.q]

where C, ; and C . are obtained by considering, respectively,
asandap 1n01dent field in C, o [Eq. (29)].

Note that the incident polarization corresponding to the
eigenvector V associated with 1, may not be the one giving
the maximum reflectivity, since the reflectivity of the refer-
ence structure must also be taken into account [see Eq. (37)
and the right bottom sketch in Fig. 4]. For further physical
analysis, it is useful to calculate the reflected field when the
incident wave is colinear to V (eigenvector associated with
the resonant eigenvalue). We obtain, for the reflected field
along V,

rSC; 0C3.,0) +7,CPCL,(0)

OCoq(O) +CPoCl (0

Mg + , (45)
where ry and r, are the reflection coefficients of the reference
structure for s and p polarization, respectively. The reflected
field along V (eigenvector associated with the null eigenvalue)
is
(ry = r)C5,(0)CY (0)

Iq '
Firstof all, it appears that the component along V is resonant for
a wavelength close to A, [see Eq. (43)], while the component

(40)

along V, vanishes for the same wavelength. Thus, when the
mode is excited with the suitable polarization, the field is
reflected without polarization change. Second, the component
along V is the sum of a resonant term and a nonresonant term.
Taking A close to A,4, the resonant denominator of g can be
simplified as (%)2 —1-%,,> 2[( ) — 11— %, , to bring
out the Fano-shape appearance of the resonance with centering
wavelength A, and width equal to the imaginary part of X, ,.
In particular, in the classical configuration where the grating is
illuminated along one direction of periodicity and a TE mode is
excited with s incident polarization, C; ,Cg,(0) vanishes and
one retrieves the simple intuitive formula used to describe the
Fano resonance in the scalar case [32], with the reflectivity of
the planar structure as the nonresonant term. Similar comments
hold for a TM mode excited with p polarization. In the general
case of conical incidence, both the coupling in and out of the
mode and the nonresonant reflectivity are a mixture of the s
and p components. Last, it is possible to show that the term
(%)2 —1— X, , is not present in the expression of the field
reflected when the incident wave is colinear to the eigenvector
V. The resonance does not appear for this polarization.

To validate our model and our conclusions in the case where
only one order is resonant, we consider the configuration 1
involving a TM mode, a 1D grating, and conical incidence.
The structure of this configuration 1 is composed of a substrate
with a dielectric permittivity of 2.097, a first layer with a 301.2
nm thickness and a 4.285 permittivity, a second layer with a
140.4 nm thickness and a 2.161 permittivity, a grating with
depth 70 nm, period 838 nm, grooves width 300 nm engraved
ina2.161 permittivity material and filled with air (permittivity
1). The superstrate is also air. The angles of incidence are
0 = 15° and ¢ = 50.5° (see Fig. 1 for the definition of 6
and ¢). In this configuration, a TM guided mode is excited
around 1.459 pum, and under conical incidence through the
—1 diffraction order. The resonance is observable for both s
(incident electric field perpendicular to the plane of incidence)
and p (incident magnetic field perpendicular to the plane of
incidence) polarizations.

We compare in Fig. 5(a), for s incident polarization, and
Fig. 5(b), for p polarization, the reflectivity and transmittivity
calculated with the approached method for N = 10 (dashed
lines, R and T) and with the rigorous method (solid lines, Rrig
and Trig). We also plot the reflectivity and transmittivity for
the reference planar structure (dotted lines, Rref and Tref) and
the sum of the reflectivity and transmittivity calculated with
the approached method (dashed green line, R+T).

First, we observe that the resonance is well depicted, with
a resonance wavelength, as well as a width and maxima close
to the rigorous ones, both for s and p polarizations, for the
transmission and the reflection. We also observe that R+T is
close to 1, i.e., the energy conservation is satisfied. Last, we
observe that the reflectivity and transmittivity of the studied
structure tend to that of the unperturbed structure far from the
resonance.

In Fig. 5(c), we plot the reflectivity at resonance for any
linear polarization with respect to the angle between the electric
incident field and the s polarization, both for the rigorous and
the approached calculation. As expected from the analysis
of the previous paragraph in the case of one resonant order
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0.8 —Trig
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1.458 1.4585 1.459 1.4595 1.46
wavelength (um)
(0) 1
— Rrig
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FIG. 5. Configuration 1—Reflectivity and transmittivity spectra
calculated rigorously (straight lines, Rrig and Trig), with the ap-
proached method for N = 10 (dashed lines, R and T, and sum R+T)
and for the reference structure (dotted lines, Rref and Tref): (a) for the
s incident polarization and (b) for the p polarization. (c) Reflectivity at
resonance for any linear polarization with respect to the angle between
the electric field and the s polarization, calculated with the approached
method for N = 10 (dotted cyan line) and rigorously (black straight
line).

only, we have a polarization (quasilinear polarization with an
angle 31.7° with the s polarization) for which the mode is
fully excited, and not at all for the orthogonal polarization
(quasilinear polarization with an angle 121.7°).

To study the impact of the number of orders taken when
summing the coefficients C, , ,» for n from —N to N, we
plot in Fig. 6(a) the resonance wavelength calculated with the
approached model for various values of N, and the resonance
wavelength calculated rigorously, for comparison. The spectra
for some values of N are plotted in Fig. 6(b). We observe that the
peak calculated with the approached method is positioned at a
shorter wavelength than the peak calculated rigorously when
N =0, and it moves to higher wavelengths when N grows.
The final difference is no more than a quarter of the bandwidth
of the peak. As expected, the width of the peak is not much
modified with respect to that obtained for N = 0.

=z

wavelength (um)

(b) 0.87
—N=0
06| N=2
N=3
 04p |~ N=10
N= 20
0.2F [~ "rig
0 — ‘ ‘
1.4585 1.459 1.4595

wavelength (um)

FIG. 6. Configuration 1—Convergence of the position of the res-
onance peak with respect to N. (a) Resonance wavelength calculated
with the approached model with respect to N (solid line with stars) and
calculated rigorously (dashed line). (b) Spectrum calculated with the
approached model for various values of N (solid lines; the peak shifts
towards upper wavelengths as N increases: blue for N = 10, cyan for
N =2, yellow for N = 3, red for N = 10, green for N = 20) and
rigorously (dashed line).

We also considered a case where a TE mode is excited under
conical incidence. We found that the resonance wavelength
difference between the approached and rigorous calculations
converges to one bandwidth over 6 (not shown).

B. Situation with two resonant orders

In the situation where two diffraction orders ¢ and ¢’ are
resonant, the system given by Eq. (32) reduces to two coupled
equations,

2-(4)’

T 0 —(Cqq + Xg.q) <O'q _ (Cyo
ey | o) =)
—(Cyqg+Zg.49) —a
47

where 2™ and AP, are given by Eq. (42) and correspond to
the eigenwavelengths of the modes g and ¢’ when their mutual
coupling is not taken into account. The eigenwavelengths
of the studied structure are the wavelengths for which the
determinant of the system of Eq. (47) is null. They are split on
each side of the wavelength given by \/ [()»Ecn)2 + ()»S?rt)z] /2,
the splitting being governed by the coupling between the
modes [antidiagonal terms in Eq. (47)], as already shown in
[12,14,15,17].

In the particular case where the plane of incidence is a plane
of symmetry of the structure (see Fig. 7), the two diffraction
orders g and ¢’ excite one guided mode of the reference
structure, along two directions. Thus, the following relations
are valid (both for TE modes and TM modes): A, = A,
Cog =Cqq,2qqg =2y 4 and X, , = Xy . Moreover, in
the case of a TE mode, we have C; , = C, ;and C(f,o = _C;)/,o
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K0 incidence
plane

FIG. 7. Configuration where the plane of incidence is a plane of
symmetry of the structure.

because §, and §, are symmetrical with respect to the plane
(80,2), and antisymmetrical with respect to the plane (£,Z) (see
Fig. 7). In the same manner, for a TM mode, C;;,o = —C;,,O

and C) ;= C/ .
The eigenwavelengths )\Szr,ﬁ 4 of the two modes of the

studied structure are given by ()\Szr,t’ jE)2 = (kq)z[l + 3,4
(Cy.q + Z4.4)]. Note that in the particular case of normal
incidence, we have ¥, , = —%, , fora TE mode and X, ;, =
%¥,.q for a TM mode, so that one of the eigenwavelengths
is real, which corresponds to the antisymmetric mode which
cannot be excited by a symmetric normal incident plane wave.
Then, the coefficients o, and a‘; are deduced from Eq. (47),

_ RP=0§1C0H(Cyy +24.)Cy 0

T P20 PN -0 )2

for o, obtained by exchanging ¢ and ¢'. From the relation

between Cy o and Cy o, we deduce that foraTE mode, o, = o,

, with a similar expression

q
ando, = —qu,, and fora TM mode, o; = —o;, and o) = qu,.
Now, using the expression of Rgm [Eq. (38)], we obtain
205C¢ 0
pert pert __ q -0,
R = |0 | e

both for a TE mode and a TM mode. This means that the
coupling between the two excited guided modes generates two
hybrid modes, one of which is excited with a s polarization,
while the other is excited with a p polarization, thus confirming
the observations reported in the literature [19-22]. A full
vectorial analysis was necessary to depict this phenomenon.
To validate our model in this case, we consider the config-
uration 2 involving a TE mode, a 2D grating, and oblique inci-
dence. This second example is a 2D square grating illuminated
under oblique incidence along one direction of periodicity (see
Fig. 7). The structure is composed of a substrate with dielectric
relative permittivity 2.25, a layer with thickness 400 nm and
relative permittivity 4.0, and a 2D square grating with period
870 nm both along x and y axes, made with square holes with
300 nm width, 250 nm depth engraved in a material with rela-
tive permittivity 4.0. The angles of incidence are & = 13° and
¢ = 0°.Inthis configuration, a TE mode can be excited through
the (0, — 1) and (0, + 1) diffraction orders around 1.53 pm.
The simultaneous excitation of a guided mode in the two
symmetrical directions generates two modes, one with a field
symmetric and the other antisymmetric with respect to the (x,z)

4 ,
0.8f - ﬁ Rrig
N — Trig
0.6} : ------ Rref
] Tref
0.4r L:\ ---Rn=10
0.2t n -==Tn=10
Y R+T n=10
O 1 1 1 ]
1.534 1.535 1.536 1.537 1.538
wavelength (um)
(b) 1 -
____ | —— Rrig
08 — Trig
oer WL | Rref
e Tref
0.4 ---RN=10
0.2 - ==-TN=10
______ R+T N=10
10.52 1.525 1.53 1.535 1.54

wavelength (um)

FIG. 8. Configuration 2—Reflectivity and transmittivity spectra
calculated rigorously (straight lines, Rrig and Trig), with the ap-
proached method (dashed lines, R and T, and sum R+-T) for N = 10,
and for the reference structure (dotted lines, Rref and Tref). (a) For
the s incident polarization, (b) for the p polarization.

plane. As shown with the theoretical considerations at the be-
ginning of this section, the symmetric mode can be excited with
a p incident polarization, while the antisymmetric mode can be
excited with a s polarization. The spectra calculated with the
approached model for N = 10 (dashed lines, R and T), with the
rigorous numerical method (solid lines, Rrig and Trig), and for
the reference structure (dotted lines, Rref and Tref) are plotted
inFig. 8 for (a) as incident polarization and (b) a p polarization.
Again, the two peaks are well represented by the approached
model, for the bandwidth, maximum, and minimum. They are
shifted a little toward greater wavelengths with respect to the
rigorous peak. The energy conservation is fulfilled.

Other examples of interest (see Appendix E) confirm the
appropriateness and accuracy of the model.

V. CONCLUSION

A full vectorial approached model has been proposed
to describe the reflectivity and transmittivity properties of
guided-mode resonance gratings. We showed how the reflec-
tivity (transmittivity) matrix can be expressed as the sum of
a resonant and a nonresonant term. The nonresonant term is
the reflectivity (transmittivity) matrix of a planar reference
structure. The resonant term is a sum of matrices (one for each
excited mode), with each matrix being expressed by coupling
integrals involving the modes of the planar reference structure
and the radiative modes. Our model is, of course, valid for
the scalar configuration (typically a 1D grating illuminated
along its direction of periodicity) and able to depict the
physical behaviors already mentioned in the literature in this
configuration.
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Moreover, we demonstrated additional properties in the vec-
torial configuration (typically a 1D grating illuminated under
conical incidence, or a 2D grating). A fundamental property of
our resonant matrix is that one of its eigenvalues is null, with the
other eigenvalue being resonant. The eigenvector associated
with the non-null eigenvalue corresponds to the polarization
for which the eigenmode is fully excited. Furthermore, writing
the reflectivity (or transmittivity) matrix as the sum of a
nonresonant and a resonant matrix allows the identification,
in the polarization of the reflected (or transmitted) field, of
the influence of the nonresonant field and that of the resonant
field. We believe that this model provides a physical insight
especially for configurations where the polarization of the
modes is not trivial (not s or p polarization), and where the
addition of the nonresonant and the resonant terms leads to a
polarization that differs from the polarization expected from
the excited mode alone.

We validated our model in various configurations (with TE
or TM modes, one resonant or two resonant orders, 1D or 2D
gratings) and showed a good robustness with respect to the
grating depth (see the appendices).

Our model can be easily extended to configurations where
several gratings are included inside the stack, and where the
materials are anisotropic with z-axis symmetry. For bian-
isotropic materials, there is no technique to express the Green’s
tensor as two independent scalar Green’s functions. One
interesting further development of our method would be to
consider configurations that are not periodic, as, for example,
a coupling grating or a cavity resonator integrated grating
filter (CRIGF, guided-mode resonance grating surrounded by
Bragg reflectors) [35]. In this case, as the spatial frequencies
in the Fourier space are no longer discrete but continuous, the
problem cannot be expressed as a set of coupled equations,
which requires further investigations.

APPENDIX A: THE VECTORIAL PROBLEM FOR
A PLANAR STRUCTURE EXPRESSED AS TWO
SCALAR PROBLEMS

The planar reference structure has a relative permittivity
which is anisotropic with symmetry axis z. Thus, the diffrac-
tion or homogeneous vectorial problems associated with the
reference problem can be divided into two scalar problems cor-
responding to the transverse electric and transverse magnetic
cases (transverse with respect to the direction of propagation
of the mode for the homogeneous problem and to the plane of
incidence for the diffraction problem).

The equation satisfied by the electric field E'(z) for the
planar reference structure is [see Eq. (8)]

2. (B} (2) — k& E (2) = (A1)
where the expression of the operator €,, is given by Eq. (6).

To each diffraction order m with in-plane wave vector «,,
itis possible to associate an orthonormal basis (8,,,&,2) (even
for evanescent orders), where §,, = &, x 2. The operator ,,
can then be written as

= 2 2\A A 2 A 2 An
Q, = (k;, — 37)8,8n — Rk + k22

+ ik 0y (B + Rm). (A2)

In the following, for a given vector V, the scalar quantities
Vs, Vi, and V, will refer to the components on §,,, &£,,, and Z
(respectively) of the vector V.

Projecting Eq. (A1) on §,, gives

[02 + (V)| EXT =0 with (%) =kje’ —kp, (A3)

which corresponds to the transverse electric case.
The projections of Eq. (A1) on &,, and Z couple E!. and

Ey.
(— 02 — kge®)Ep', + ikm0 Ep'. =0, (A4)
(ky — kg€ )Ep’. + ik dEl'. = 0. (A5)

Using the Maxwell equation V x E = iwB, we can express
the transverse magnetic field component B“’f with respect to

ref ref .
E.;, and E7

ia)B;ifS =ik, Eref _ a Eref (A6)

m,z

Combining Egs. (A4)—-(A6), we obtain

(ye)Z ref . eN2 _ 12 e 2
8—8 +——|B,, s =0 with (y)" = kje® —«,,,

(AT)

which corresponds to the transverse magnetic case.

APPENDIX B: THE GREEN’S TENSOR EXPRESSED
AS TWO SCALAR GREEN’S FUNCTIONS

The Green’s tensor for the planar reference structure with a
relative permittivity anisotropic with symmetry axis z can be
expressed as two scalar Green’s functions, also corresponding
to the transverse electric and transverse magnetic cases. The
Green’s tensor is the solution of

€,,(Gn(2,2) — e (2)Gn(z.2)) = k28(z — HI. (BI)

We note G*-¥, the XY component of the Green’s tensor (with
X and Y being equal to §,,, £, and Z successively). Using
the expression of flm in the (§,,,k,,,Z) basis leads to several
results.

First, it is possible to show that G3;° is the solution of

(02 4+ [P} GEf = —k3s(z — 2), (B2)

which is the scalar equation for the transverse electric case.
Second, we find that G},*, G, G%°, and G’ are equal
to zero. Third, Gi* and G;* are coupled by the following
equations:

[— 07 — ke’ ()]G  + iknd.G5* = kgd(z — 2), (B3)

(k2 — ki€ (D]GE* + iknd, GLF =0, (B4)

while G%;* and G.* are coupled by

[ — 07 — ke’ @] GLF + ik d.G5F =0, (BS)

Z
m

[K2 Ee(z)]GZ ik, 0,GF

m

=k35(z—7). (B6)
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Using Eqgs. (B3) and (B4) and introducing
Gl =ik, G5 — 9.G))", B7)

m

it is obtained that G5 is the solution of

1 e 2 k2

{8z az + [V (Z)] }GP’K = 0
€°(2)

a
€4(z)
From Eq. (B3), we express G with respect to G5,

B= 0S8 — ) BY)

3.Gh" —I28(z— 7))

B9
k3eo(z) 9

Kk __
G, =

And from Eq. (B4), we express G%* with respect to G1,*,

—i mGr’;t’K
Gy = —IL’Z‘GE(Z) . (B10)
0

Following the same steps, using Egs. (B5) and (B6) and
introducing

GP?* = G¥F — 8ZG2Z ,

m l Km

(B11)

it is obtained that G%* is the solution of

[ye(znz} Gre = _ K

<@ 66(2)5(1 —7). (B12)

1
a d
{ )
From Eq. (B5), we express G* with respect to G,

a,Gh*
kieo(z)

(B13)

K2 _ 5
G,* =iky

And from Eq. (B6), we express G%° with respect to Gp,°,

QGLT — k25(z — 7))

GZ,Z —
" kie(z)

(B14)

The left side of Eqs. (B8) and (B12) is the operator involved
in the equation for the transverse magnetic field problem [see
Eq. (A7)]. Therefore, G* and GJ;* are two Green’s functions,
associated with the transverse magnetic field problem but with
different sources [see the right side of Eqgs. (B8) and (B12)].
In the following section, we deduce the link between G5 and
GJ.* from the reciprocity principle.

Note on the singularity of the Green’s functions. From
Eq. (B8), it appears that 3,G}"(z,z") presents a singularity
equal to ké(S(z — 7'), from which we deduce, using Eq. (B9),
that G* does not have any singularity at the interface z = z'. It
also appears that G, is nonsingular, and from Eq. (B10) that
G%* is also nonsingular. From Eq. (B12), it appears that G,
and 8,G};*(z,z’) are nonsingular. From Eq. (B13), we deduce
that G;;* is nonsingular, while from Eq. (B14), G%* presents
a singularity equal to —8§(z — z')/€¢(z). To sum up, we can
write the Green’s tensor G,,(z,z’) separating the nonsingular

part G,, (z,z’) and the singularity,

~ n_ &NS ’ 1 INAA
G,(z,2)=G,, (z,7)— Z5(z — 7). (B15)

APPENDIX C: PROPERTIES OF THE
GREEN’S FUNCTIONS RELATED TO THE
RECIPROCITY PRINCIPLE

We consider a Hilbert function space with an Euclidian
scalar product defined by (f|g) = ffooo dzf(2)g(z). The oper-

ators L, = 322 +[y°(2)]* and £, = 826,%(7)82 + [J;((”Z))]Z on the
left-hand side of Egs. (B2), (BS), and (B”12) are self-adjoint.
Writing (£,G$°|G*) = (G)°|L£;G3;°) and using Eq. (B2), we
deduce that

G, (z,7) = G);(Z,2). (CI)
Writing (£,G5°|Gh°) = (G *|L£,Gh°) and using Eq. (B12),
we also deduce that
Gn'(z,7)  Gu'(Z.2)
€@ e
Last, writing (£,G°|Gy") = (G°|L,G") and using
Egs. (B8) and (B12), we deduce that

(C2)

P ¢ ,
Gy = S D5 6 ), (C3)
€(2')
which, in combination with Eq. (C2), leads to
n_ €@y oy
G (z,7) = ( )3z/G,’ﬂ’Z(z,z’). (C4)
GO(Z/)

These four relations are mathematical expressions for the
consequences of the reciprocity principle on the Green’s tensor,
and they can be used to express G,,(z,z’) with respect to G*;*
and G5;© only.

APPENDIX D: EXPANSION OF THE GREEN’S TENSOR
ON ITS EIGENMODES

Transverse electric Green’s function. The equation satisfied
for the Green’s function G3,;° (transverse electric case) is

2 2 20 2 5,8 27 ? /
o7 + (T) () —«,, |G, = _<T) 8(z—2z). (DI

The homogeneous equation [Eq. (A3)] for a mode with an
electric field £"(z)S,, and an eigenwavelength A,, can be written
as

1, 5 | (27N =
ﬁ(az Km)ﬁ(ﬁe )= (An ) (Ve’E™. (D2)
For the sake of simplicity, we do not specify the dependence of
the wavelength X, and the field £”(z) of the eigenmode on the
subscript m related to the in-plane wave vector k,, considered
in Eq. (D1).

As ﬁ(ag - K,i)ﬁ is a self-adjoint operator, its eigen-
modes form a basis and satisfy an orthogonality condition,

z=400
/ dze°()E"(2)E" (2) = Sy - (D3)

=—00

We now want to expand GJ;° on the basis formed by its
eigenmodes,

Gy (2d) =) f@)E"@). (D4)
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Inserting this expression into Eq. (D1) and using Eq. (D2), we

obtain
/ 27[ 2 277: 2 o n
anmz )[(7) - <7) } @)E"(2)

_ (¥ 25 : D5

from which we deduce, using the orthogonality condition
[Eq. (D3)],

27\ 2m\? 21\* o
fn'(Z)|:<T) — (E) :| =_<T) E" (). (D6)

Hence, G3;* is expanded on the basis of its eigenmodes,
Z E")E" (D)
) -1]
Transverse magnetic Green'’s function. The Green’s func-
tion Gl;* (transverse magnetic case) is the solution of

1 1| /272
{az—az + —[(—”) € - K,%,] }G{’,;Z
€ €’ A

- LY D8
__;(A)(_Z) (D8)

G (z,7) = (D7)

The homogeneous equation for a mode with a magnetic field
B"(z)8,, and an eigenwavelength 1, can be written as

2
[aziaz - K—”‘}B” = —<2n> B (DY)
€? €€ An

As|o, 61,, 0, — = ] is a self-adjoint operator, its eigenmodes form

a basis and satlsfy an orthogonality condition,
z=400 ,
| ddAes @ @i =5, ©10
7=—00
where the speed of light ¢ in vacuum has been introduced so as

to deal with quantities which have the unit of an electric field.
Following the same steps as for the G,* function leads to

CZBn z B Z/
G =y SO O]
1) = e
Green'’s tensor. We will use the results of Appendix C to

expand the Green’s tensor on its eigenmodes. From Eq. (C3),
one gets

(D11)

B"(z)d,B"(z)

Z [(2)" = 1]erer

Then the equations relating G%° and G to G1;* [Eqs. (B14)
and (B13)] give

7.2 ) km B (2) ([ kmB" ()
Gyi(z,7)=c Xn: L) [ koe®(z) M koe<(z") ]

x_
(D13)

GI*(2,7) = (D12)

1 NAs
— —ES(Z — 777,
€

and

G&* (zz)_czz

n

[iazB"(z)} [xmB"(z’)]
% — 1] L koe’(2) koee(z') |
(D14)

Following the same steps, the equations relating G5 and G/*
to Gb* [Eqs. (B10) and (B9)] give

7.k _ 2 KmBn(Z)}[iaz’Bn(Z/)}
G @e) = C; : —1][’%6‘"(1) koe'@) |

A_

(D15)
and
i9.B"(z)|[i9,B"(2)
G (z,7) = —¢* |: = j||: . ]
; [(%) —1] koe“(z) koe? ()
(D16)
= NS
To sum up, G,, can be written in the form
=NS A, ®A,
Gy =y DI (D17)

A \2
G -1
where ® denotes the tensor product between two vectors, A,,(z)
is defined by

—d; . ik

Km

koe®(2) koe<(z)

An(Z) = gn(z)gm - lC|: ii|Bn(Z)a

(D18)

while A, (2) is the complex con]ugate of A,(z'). From the
Maxwell equation V x H = %=, it is easy to show that A,, is
the electric field of the mode

APPENDIX E: SUPPLEMENTAL NUMERICAL
VERIFICATIONS

1. Configuration 3: TM mode, 1D grating, quasinormal
classical incidence

We now consider the quasinormal incidence case where
a guided mode can be excited along two counterpropagative
directions through two opposite diffraction orders. The grating
is 1D and the plane of incidence is perpendicular to the
grating grooves. The combination of the two modes gives
one mode with a field symmetric and another with a field
antisymmetric with respect to the plane normal to the direction
of propagation of the modes. They correspond to the edges
of a band gap in the dispersion relation of the structure.
The symmetric mode is well excited with an incident plane
wave and gives a broad peak, while the antisymmetric mode
is scarcely excited, leading to a thin peak that disappears
under normal incidence. The considered structure is the same
as in that of configuration 1, the only difference being the
incident field. The angles of incidence are set to 6 = 0.01°
and ¢ = 0°. In this configuration, a TM guided mode is excited
around 1.357 um through the (+1) and (—1) diffraction orders
of the grating, and the resonances are observable for the p
polarization.

We plot in Fig. 9(a) the spectrum calculated with the
approached model for N =2, N =20, and rigorously. As

043852-12



VECTORIAL MODEL FOR GUIDED-MODE RESONANCE ...

PHYSICAL REVIEW A 97, 043852 (2018)

(@)

0
1.3564 1.3566 1.3568 1.357 1.3572 1.3574 1.3576
wavelength (um)

1.3574 ¢
1.3572
€
3
= 1.357
iS)
C
(0]
© 1.3568 b
B rig
= - - -rig
1.3566 _/\,M
1.3564 :
0 5 10 15 20
N
c
(©) 4 7><10'4
T eeee
i e —e—pert
< ——pert
8 27 R
3 o
= rig
]
Ko} 1t
0 ‘-_-‘}&h-r - - .
0 5 10 15 20

FIG. 9. Configuration 3—Convergence of the position of the
resonance peaks with respect to N. (a) Spectrum calculated for p
incident polarization for N = 2 (blue dash-dotted line), N = 20 (pink
solid line), and rigorously (dashed line). (b) Resonance wavelength
and (c) bandwidth of the two peaks calculated with the approached
model with respect to N (solid lines) and calculated rigorously (dashed
lines).

expected, we observe a broad and a thin peak. The approached
calculation gives the right layout of the two peaks, with the
broad peak for upper wavelengths and the thin peak for smaller
wavelengths. Taking into account more C,, , coefficients
brings the approached calculation closer to the rigorous one.

We have checked that the energy conservation (R+T = 1) is
fulfilled also in this case (not shown on the curves).

The change of the resonance wavelength and bandwidth
with respect to N can be seen in Figs. 9(b) and 9(c). The
position of the two peaks is related to the coupling between
the two counterpropagative modes: the higher the coupling, the
greater the difference between the two resonance wavelengths.
Hence, we observe in Fig. 9(b) that the distance between the
two peaks increases with the number of coupling integrals,
Cy.n.q - The separation of the two peaks has an impact on the
shape and, as a consequence, on the width of the peaks [see
Fig. 9(c)].

We also considered a case where a TE mode is excited under
quasinormal incidence (not shown here). The spectra obtained
with the approached model are remarkably close to the rigorous
results (closer than for the TM mode).

2. Configuration 4: TE mode, 1D grating, classical
incidence—variation of the grating depth A

Our fourth example is a 1D grating illuminated under
oblique classical incidence. The angles of incidence are set to
0 = 30° and ¢ = 0°. The structure is composed of a substrate
with dielectric relative permittivity 2.25, a layer with thickness
250 nm and relative permittivity 4.0, and a 1D grating with
period 742.2 nm and 442.2 nm groove width, engraved in a
material with relative permittivity 4.0. We are interested in the
resonance due to the excitation of a TE mode around 1.57 um
and to its evolution when the depth of the grating is varying.

We plot in Fig. 10 the centering wavelength [Fig. 10(a)]
and the width [Fig. 10(b)] of the peak obtained with the

—
L

wavelength (um)

01 02 03 04 05 06 0.7 08
grating depth (um)

(®) 0.06¢
——pert N=0
------ pert N=2
0.04f |==-= rig

0.02

bandwidth (um)

01 02 03 04 05 06 07 08
grating depth (um)

FIG. 10. (a) Configuration 4—Resonance wavelength calculated
rigorously (dashed line) and with the approached method for N =
0 and N =2 (solid pink and dashed blue lines). (b) Bandwidth
calculated rigorously (dashed line) and with the approached method
for N = 0 and N = 2 (solid pink and dashed blue lines).
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rigorous numerical code and the approached method (for
N =0 and N = 2), with respect to the depth of the grating
(from O to 1 pm). First, we observe that the global shape
of the curves is similar for the rigorous and the approached
methods: the resonance wavelength reaches a maximum for
a grating depth around 300 nm, and the bandwidth for a
grating depth between 500 and 600 nm. Second, the resonance
wavelength is very well calculated with the approached method
up to A/15 for N =0 and A/6 for N = 2. It is all the more

impressive that the relative permittivity of the material in
which the grating is engraved is 4.0, which is not small.
This relatively good robustness of the method concerning
the resonance wavelength with respect to the grating depth
may be attributed to the evanescent behavior of the mode
in the grating layer. Last, we observe that the bandwidth is
overestimated with the approached method and that increasing
N does not improve the description of the bandwidth, as
expected.
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