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Analytic few-photon scattering in waveguide QED
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We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated
via Dyson series. For optical states containing more than single photons, terms in this series become increasingly
complex, and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results.
Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement
generation protocols. We use our expressions to study two-photon scattering from a �-system and find that the pole
structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.
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I. INTRODUCTION

Proposals for devices such as a measurement-based quan-
tum computer [1] or a quantum internet [2] require large
entangled states with many stationary qubit nodes. Optical
photons, with their long coherence times and large velocities,
form the ideal carriers of quantum information between these
nodes [3], and this means that understanding the light-matter
interaction is necessary for the purposes of practical device
design [4]. A possible route towards engineering this light-
matter interaction involves coupling quantum emitters to the
modes of a nanophotonic waveguide. Recently, there has been
a great deal of theoretical interest [5,6] and experimental
progress in this field [7–10].

Photon scattering from a waveguide-embedded emitter is
a well-studied problem, with recent developments including
the single- and multiphoton scattering matrix [11,12] and
generalizations of the input-output formalism and master
equation [13] to waveguide systems. There has also been a
substantial body of work focused on applying techniques from
relativistic quantum field theory to the problem, notably the
Lehmann-Symanzik-Zimmermann (LSZ) reduction formula
[14], cluster decomposition principle [15], and diagrammatic
evaluation of Green’s functions [16]. Interest in this simple
system remains high today [17,18], with many authors noting
also the possibility of engineering strong on-chip photon-
photon interaction [19].

Schemes for engineering entanglement between matter
qubits [20,21] require the stationary qubit state conditional
on that of the optical field. This is not a universal feature of
previously reported techniques, although it is rendered possible
by some very recent works [22,23]. We develop a formalism
that fully specifies the combined emitter-optical state following
photon scattering from a waveguide-embedded emitter. It is
interesting to note that despite the apparent simplicity of the
system, many of the previous approaches involve extremely
advanced mathematical techniques and tend not to encourage
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an intuitive understanding of the global dynamics. This is
something that the method we develop here avoids, with terms
in each expression corresponding very naturally to physical
processes. We can use this to visualize the processes not
allowed by our initial choice of system Hamiltonian.

In this paper, we consider multiphoton scattering from a
waveguide-embedded emitter and derive a method to deter-
mine analytic expressions for the transition amplitude between
arbitrary combined emitter-optical input and output states. In
Sec. II we describe the system under analysis and outline
a general procedure for specifying the global dynamics. In
Sec. III we perform this procedure explicitly for the case of
a single two-level-system (TLS) with one and two-photon
optical inputs. In Sec. IV we demonstrate how to extend the
developed diagrammatic approach for the scenario where the
TLS is replaced with a �-system. This allows us, in Sec. V,
to study the pole structure of the transition amplitude for both
cases. Sec. VI is reserved for a summary, conclusions, and
some suggestions for future work.

II. WAVEGUIDE QED SYSTEM

The system analyzed in this work is shown schematically in
Fig. 1 and consists of some general local system chirally cou-
pled to the right-propagating modes aω of an optical waveguide
[8–10]. The system is in general complex and composed of
multiple subsystems; therefore the coupling is characterized
by the set of numbers {γi}. At some time ti → −∞ the system
state is given by |φin; ψin〉, where ψin represents the optical
wave function and |φin〉 is the state in which the emitter is
prepared. A scattering event then occurs, and the global system
dynamics are in general complicated to describe until a time
tf → +∞, when the emitter has relaxed to some ground or
metastable level and the optical state |ψout〉 is coupled out of
the waveguide. Working in the interaction picture, the input and
output states are eigenstates of the free Hamiltonian (H0) that
describes the dynamics of an uncoupled waveguide-emitter
system [24]. This allows us to construct input and output optical
states from the usual creation and annihilation operators for
photons. The transition amplitude A ≡ 〈φout; ψout|U |φin; ψin〉
gives the overlap between an output state |φout; ψout〉 and
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FIG. 1. Some unspecified local system interacting with the con-
tinuum of optical bosonic modes aω. The system may be composed of
several subsystems, and thus the coupling is characterized in general
by the set of rates {γi}.

an input state evolved from t → −∞ to t → +∞ by the
operator U . When U is the time evolution operator evaluated
in the interaction picture, which in the long time limit is
equivalent to the scattering matrix of the system, the transition
amplitude A completely specifies the global system dynamics.
The expansion of U is known as the Dyson series [25] and
takes as an argument the global system interaction Hamiltonian
HI(t). This operator is defined by HI(t) ≡ eiH0tHinte

−iH0t ,
where H0 is the free Hamiltonian of the system, Hint the
interaction Hamiltonian in the Schrödinger picture, and h̄ = 1.
We expand the transition amplitudeA ≡ A(0) + A(1) + A(2) +
· · · in terms of the Dyson series representation of U , so that
A(n) ≡ 〈φout; ψout|U (n) |φin; ψin〉. Using

U (n) = (−i)n
∫

dt1

∫ t1

dt2 · · ·
∫ tn−1

dtnHI(t1)HI(t2) · · ·HI(tn),

(1)

we determine that the nth-order term in the transition amplitude
contains n copies of the interaction Hamiltonian. This will
be an important observation in Secs. III and IV, where the
interaction Hamiltonian is of Jaynes-Cummings form and con-
serves excitation number [26]. Here and throughout this article
we adopt the convention that unspecified upper and lower
integration limits correspond to ∞ and −∞, respectively.

III. THE TWO-LEVEL SYSTEM

In this section we explicitly calculate the transition ampli-
tude A for the scenario where the local system is a single
TLS with states {|g〉 , |e〉} that are separated by the transition
frequency � and coupled to bosonic modes of all frequencies
equally at a rate γ —see Fig. 2. In Appendix A we show that
the interaction Hamiltonian for this system is given by (h̄ = 1)

HI(t) = γ

∫
dε (e−i	ε tσ+aε + ei	εtσ−a†

ε ), (2)

where the waveguide’s central frequency (around which we
linearize the dispersion relation) is denoted by ω0, and we
define the detuning 	ε ≡ ω0 + ε − �. We assume that the
TLS is prepared in the ground state |g〉 and, as tf → ∞, it
is also true that |φout〉 = |g〉.

The form of Hamiltonian (2) and our assumption of an
initially and finally relaxed emitter means that the only nonzero
contributions to A(n) are those where n is even and the Pauli
matrices are ordered as σ−σ+ · · · σ−σ+. The general expression

|e〉

|g〉

γΩ

FIG. 2. A two-level system. The excited state |e〉 is separated from
the ground level |g〉by the energy gap�, and the two states are coupled
with strength γ .

for the nth-order term in the transition amplitude is then

A(n) = (−iγ )n
∫

dt̃ (n)
∫

dε̄(n) ei(	ε1 t1−	ε2 t2+···−	εn tn)

× 〈ψout| a†
ε1
aε2a

†
ε3

· · · aεn
|ψin〉 , (3)

where
∫

dt̃ (n) ≡ ∫
dt1

∫ t1 dt2 · · · ∫ tn−1 dtn and
∫

dε̄(n) ≡∫
dε1

∫
dε2 · · · ∫ dεn.

A. Single-photon scattering

We now demonstrate how to calculate the transition am-
plitude in Eq. (3) for the situation where a single incident
photon with energy ω0 + i scatters to an output photon of
energy ω0 + f . It is simply a matter of applying the bosonic
commutation relation to determine A(0) = δ(f − i). Consider
now the nth-order term given by

A(n) = (−iγ )n
∫

dt̃ (n)
∫

dε̄(n) ei	ε1 t1−i	ε2 t2···−i	εn tn

× 〈0| af a†
ε1
aε2 · · · aεn

a
†
i |0〉 ; (4)

we can use the vacuum expectation value in Eq. (4) to eliminate
the first, final, and half of the remaining frequency integrals:

A(n) = (−iγ )n
∫

dt̃ (n)
∫

dε3dε5 · · · dεn−1

× ei(	f t1−	ε3 t2+	ε3 t3+···	itn). (5)

The integrand in (5) can be further decomposed into its
constituent Dirac delta functions, and we have then

A(n) = (−iγ )n(2π )(
n
2 −1)

∫
dt1 ei	f t1

∫ t1

dt2

×
∫ t2

dt3 δ(t3 − t2) · · ·
∫ tn−1

dtn e−i	i tn . (6)

Successively performing time integrals using the technique
found in, e.g., Ref. [27] and reproduced here in Appendix B
we arrive upon

A(n) = 2(−iγ )nδ(f − i)[πg(	i)]
n
2 , (7)

where we defined g(	) ≡ [πδ(	) + i	−1] for brevity. Sum-
ming over even n and using the binomial theorem, we
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FIG. 3. Diagram for the nth-order single-photon scattering pro-
cess. An incident photon of energy ω0 + i is scattered to one of
frequency ω0 + f . This occurs via the emission and absorption of
n

2 − 1 “internal” photons.

find

A = 1 − γ 2πg(	i)

1 + γ 2πg(	i)
δ(f − i) ≡ t(i) δ(f − i). (8)

Equation (8) is valid under the condition |πγ 2g(	i)| < 1,
which is required for application of the binomial theorem.
However, in Appendix C we further use a Borel summation
technique [28] to demonstrate the validity of the result for
arbitrary values of |πγ 2g(	i)|. Equation (8) is the first key
result of this work and demonstrates that our method yields
analytic expressions for the single-photon transition amplitude.
In Appendix D we demonstrate its equivalence to the result of
Fan et al. [11].

Note that it is quite easy to understand the nature of the
physical process described by Eq. (5), and we have sketched it
explicitly in Fig. 3. We see that the atom absorbs the original in-
cident photon and, before emitting the outgoing photon, emits
and absorbs n

2 − 1 photons of frequencies {εn−1,εn−3, . . . ,ε3}.
The energies of these ‘internal’ photons are uncertain, and we
integrate over a continuum of possible values for each, which
has the effect of reducing their duration to zero—a “pointlike”
interaction.

B. Two-photon scattering

In this section we elaborate further on the diagrammatic
method alluded to in Sec. III A in order to evaluate the two-
photon transition amplitude. For input photons with energies
ω0 + i0 and ω0 + i1, the nth-order term in the transition
amplitude is

A(n) = (−iγ )n
∫

dt̃ (n)
∫

dε̄(n) ei(	ε1 t1−	ε2 t2···−	εn tn)

× 〈0| af0af1a
†
ε1
aε2 · · · aεn

a
†
i1
a
†
i0

|0〉 , (9)

where f0 and f1 label the scattered photon frequencies.
Evaluation of the vacuum expectation value in the integrand
of Eq. (9) produces 2

n
2 +1 terms [29], and it is not feasible

to mechanically calculate these. We instead use the physical
interpretation of each term to provide further guidance.

For example, consider one of the 16 terms contributing to
A(6):

A(6)
(1) = −γ 6

∫
dt̃ (6)

∫
dω

× ei(	f1 t1−	ω(t2−t3)−	i1 t4+	f0 t5−	i0 t6), (10)

i0 f0

i1
ω

f1

t

E1

E2

t6 t5

t4 t3 t2 t1

i0 − f0

FIG. 4. Diagram for one of the possible n = 6 processes. Incident
photons of energy ω0 + i0 and ω0 + i1 are scattered to energies ω0 +
f0 and ω0 + f1. An internal photon “loop” of energy ω occurs, and ω

is integrated over.

which, using exactly the same integration techniques as for the
single-photon case, reduces to

A(6)
(1) = −2π2γ 6δ(f0 + f1 − i0 − i1)

×g
(
	i0

)
g
(
	i0 − 	f0

)
g
(
	i0 + 	i1 − 	f0

)2
. (11)

By reassociating bosonic mode operators to their phases in
the integrand of Eq. (10) we deduce that this term describes
absorption by the atom of a photon with energy ω0 + i0,
prior to emission of a final ω0 + f0 photon. Subsequently, the
second incident photon is absorbed and emitted twice via an
intermediate step of energy ω0 + ω. Figure 4 gives a pictorial
representation of the process, with time evolving from left to
right and energies of the two populated modes relative to ω0

given by the distance from the horizontal axis.
We can derive amplitudes in general from diagrams such as

Fig. 4. By drawing the diagrams corresponding to the possible
emission and absorption processes we can calculate the total
transition amplitude. With each emission and absorption event
in a diagram we associate a number 	 representing the
difference between the total amount of absorbed radiation by
the atom and the ground-excited energy gap. In Fig. 4, the
atom absorbs a photon of frequency ω0 + i0 (yielding 	i0 )
and emits a photon with energy ω0 + f0 yielding 	i0 − 	f0

corresponding to the residual energy between the two photons.
Absorbing the second incident photon produces the factor
	i0 + 	i1 − 	f0 . These terms appear as arguments of the
frequency dependent function g(x) in Eq. (11), which describes
the amplitude of the process depicted in Fig. 4. The “loop”
indicated by ω in Fig. 4 increases the power of g(	i0 +
	i1 − 	f0 ) by one. Finally, we impose energy conservation
via δ(f0 + f1 − i0 − i1).

Suppose that for a given n we have drawn all diagrams
corresponding to n

2 light-matter interaction events. Four of
these diagrams (the permutations over initial and final photon
frequencies) will always have one photon interacting with
the emitter n

2 times, with the second photon passing through
unperturbed (i.e., nonfrequency-mixing terms). These dia-
grams contribute amplitudes equivalent to the single-photon
case. Another class of diagrams we immediately discard is
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FIG. 5. The four nonzero types of diagram for the A(8) term in the expansion of the two-photon amplitude. Panel (a) represents the
nonfrequency-mixing term.

that in which an “internal” photon (such as ω in Fig. 4)
is emitted at time tm and not reabsorbed at t = tm−1, since
the interval [tm,tm−1] → 0. We rigorously demonstrate this in
Appendix E. The remaining diagrams are similar in structure to
Fig. 4, with initial absorption and final emission separated by a
number of internal photon loops. The structure of the integrals
corresponding to these diagrams is the same as in Eq. (10) with
additional frequency and time integrals corresponding to these
internal loops.

The procedure for converting diagrams into A(n) is as
follows:

(i) Draw all possible diagrams with n
2 total interactions

(ii) Identify the single-photon (nonfrequency-mixing)
terms

(iii) Discard the terms in which internal photons are emitted
and not immediately reabsorbed

(iv) The remaining terms get the constant prefactor
2
π

(i
√

πγ )n

(v) Each absorption event gets a factor g(	), where 	

corresponds to the total absorbed radiation, and each emission
event gets g(	res), where 	res is the amount of absorbed
radiation not reemitted

(vi) For each loop, multiply by an additional factor of g(	)
with the same 	 as at the previous absorption

(vii) At the final emission, multiply by δ(f0 + f1 − i0 −
i1).

The four species of diagram for the n = 8 case are shown in
Fig. 5, and in Appendix F we explicitly perform this procedure
to demonstrate equivalence between the diagrammatic and
integral methods.

One interesting observation here is that for n � 6 the
particular form of Eq. (2) causes vanishing of the terms
with internal photon emission not immediately followed by
reabsorption [step (iii) of the above outlined rules]. This
behavior is due to the Hamiltonian’s instantaneous coupling
between the emitter and continuum of waveguide modes
(without cutoff) at a constant rate. It is interesting to note
that this oft-employed model makes this prediction and still
agrees well with experimental data. General Hamiltonians
with discretized waveguide modes would not necessarily lead
to these terms vanishing. We show one of these disallowed
diagrams in Fig. 6.

Let the frequency-mixing term in A(n) for the two-photon
case be given by δ(f0 + f1 − i0 − i1)M(n). From the above
procedure we deduce that the total photon frequency-mixing
term in the two-photon transition amplitude is given by

M = ∑∞
n=2 M(n) where

M(n) =
∑
s=0,1

∑
s ′=0,1

g
(
	is

)
g
(
	is − 	fs′

)
g
(
	fs′⊕1

)

× 2

π
(−πγ 2)n

n−2∑
k=0

g
(
	is

)k
g
(
	fs′⊕1

)n−2−k
. (12)

The sum over k can be evaluated [30], and we sum over all
n to find M. Adding this to the nonfrequency-mixing com-
ponent yields a final expression for the two-photon transition
amplitude:

A = [t(i0) + t(i1) − 1]

× [δ(f0 − i0)δ(f1 − i1) + δ(f0 − i1)δ(f1 − i0)]

+ 2πγ 4δ(f0 + f1 − i0 − i1)
∑
s=0,1

∑
s ′=0,1

× g
(
	is

)
g
(
	is − 	fs′

)
g
(
	fs′⊕1

)
[
1 + πγ 2g

(
	is

)][
1 + πγ 2g

(
	fs′⊕1

)] , (13)

where t(i) is defined in Eq. (8). Equation (13) is the second
main result of this work and demonstrates our formalism’s
power to produce nonperturbative amplitudes for multiphoton
processes. We demonstrate its equivalence the expression
found by Fan et al. in Appendix D.

i0 f0

i1
ω

forbidden

f1

t

E1

E2

t6 t5

t4 t3

t2 t1

FIG. 6. Diagram for one of the impossible n = 6 processes.
Incident photons of energy ω0 + i0 and ω0 + i1 are scattered to
energies ω0 + f0 and ω0 + f1. An internal photon “loop” of energy
ω occurs, and ω is integrated over.
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|e〉

|g1〉
|g2〉

γ1
γ2

Δ̃1

Δ̃2

Ω

FIG. 7. A so-called �-system. Two ground levels |g1〉 and |g2〉
are coupled with amplitudes γ1 and γ2, respectively, to an excited
state |e〉. We define a zero energy separated from |e〉 by � and denote
the gap between |gi〉 and zero by 	̃i , where i = 1,2. In the following
we assume � > 	̃2 > 	̃1.

IV. �-SYSTEM

In many cases the perfect TLS is hard to realize, or some
additional control is required over the system. This means that
the emitter used in many light-matter interaction experiments
has a more complex internal structure, e.g., in Refs. [31–33].
This motivates the extension of our method to a second species
of local system. Consider the �-system shown schematically
in Fig. 7. Neglecting polarization, the interaction Hamiltonian
describing the dynamics of this system is readily derived [34]
and given by

HI(t) =
2∑

λ=1

γλ

∫
dε eit	ε,λa†

ε |gλ〉〈e| + e−it	ε,λaε |e〉〈gλ| ,

(14)

where we have defined the detuning	ε,λ = ω0 + ε − � + 	̃λ,
again linearizing the waveguide dispersion relation about ω0.
In general, prior to and following a photon-scattering event, a
�-system will be in some state described by |φ〉 = α |g1〉 +
β |g2〉, as radiative transitions to each of the ground states are
allowed but the |g1〉 ↔ |g2〉 transitions are forbidden. In order
to fully specify the dynamics, then, we need to evaluate matrix
elements of the form

Aμν = 〈ψout; gμ|U |ψin; gν〉 , (15)

where μ, ν = 1,2. Inserting Hamiltonian (14) into this expres-
sion for the transition amplitude then yields

A(n)
μν = (−i)n

2∑
{λ1,λ2···λn}=1

γλ1γλ2 · · · γλn

∫
dt̃ (n)

∫
dε̄(n)

×〈ψout; gμ|eit1	ε1 ,λ1 a†
ε1

∣∣gλ1

〉〈e|e−it2	ε2 ,λ2 aε2 |e〉 〈
gλ2

∣∣
· · · e−itn	εn,λn aεn

|e〉〈gλn
| |ψin; gν〉 , (16)

where, at each time step, we inserted only the two terms from
the Hamiltonian which either raise a ground state or lower an
excited one—the two terms corresponding to the opposite be-
havior necessarily vanishing. This means that, again, Eq. (16) is
nonzero only when n is even. The final simplification Eq. (16)
permits, before requiring knowledge about the input and output
optical states, utilizing the orthogonality of atomic states to

eliminate n
2 + 1 of the sums over λ by replacing inner products

between ground states with Kronecker delta functions, e.g.,
〈gλ2 |gλ3〉 = δλ2λ3 .

A. Single-photon scattering

We can evaluate the amplitude of Eq. (16) for the case
of single-photon scattering. We denote the input and output
optical states by |ψin〉 = |i〉 and |ψout〉 = |f 〉, respectively. It
is simple to deduce that

〈ψout| a†
ε1
aε2 · · · aεn

|ψin〉 = 〈0| af a†
ε1
aε2 · · · aεn

a
†
i |0〉

= δ(f − ε1)δ(ε2 − ε3) · · · δ(εn−2 − εn−1)δ(εn − i), (17)

and we can therefore eliminate n
2 + 1 of the integrals over ε in

Eq. (16), leaving

A(n)
μν = (−i)nγμγν

2∑
{λ2,λ4···λn−2}=1

γ 2
λ2

γ 2
λ4

· · · γ 2
λn−2

∫
dt̃ (n)

×
∫

dε2

∫
dε4 · · ·

∫
dεn−2e

it1	f,μe−it2	ε2 ,λ2 eit3	ε2 ,λ2

· · · eitn−1	εn−2 ,λn−2 e−itn	i,ν . (18)

Successively evaluating the frequency integrals in Eq. (18) in
the same manner as for the TLS case, we find

A(n)
μν = 2(−i)n

[
π

(
γ 2

1 + γ 2
2

)
g(	i,ν)

] n
2

γμγν

γ 2
1 + γ 2

2

δ(	f,μ − 	i,ν)

(19)

and again apply the binomial theorem and/or Borel summation
to determine

Aμν = δ(	f,μ − 	i,ν)

[
δμν − 2iπγμγν

	i,ν + iπ
(
γ 2

1 + γ 2
2

)
]

≡ δ(	f,μ − 	i,ν)[δμν + sμν(	iν)]. (20)

The predictions of Eq. (20) can be arrived upon via a variety
of other methods, e.g., Refs. [35–38]. Specifically we see that
Eqs. (23) of Ref. [37] are recovered under the transformation
πγ 2

i → �i . For a �-system with identical lifetimes into both
ground states, i.e., γ1 = γ2, the prediction that a single resonant
photon, incident upon an emitter prepared in the state |g1〉,
deterministically transfers the population to the state |g2〉 is
reproduced.

B. Two-photon scattering

We now argue that is possible to extend the diagrammatic
approach used to compute the two-photon transition amplitude
for the TLS to the �-system. In order to do this we need to
demonstrate that the rules enumerated in Sec. III B continue
to apply—with slight modifications specified by the added
internal structure of the emitter. The first task therefore is to
show that we can continue to discard terms in which internal
photons are emitted and not immediately reabsorbed. These
diagrams correspond to terms in the transition amplitude where
an integral over the continuum of modes leads to a delta
function connecting nonadjacent times. It is easy to determine
that this continues to be the case by inspection of Eq. (16). We
see that the structure of the time integral is not modified, and so
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any delta function in the integrand of the form δ(ti − tj ), where
|i − j | > 1, will continue to integrate to zero by the logic of
Appendix E.

The nonfrequency-mixing diagrams for the �-system are
again simple to analyze but yield a subtly different term to that
found in the TLS case. This is expected [34] and related to
the breaking of photon exchange symmetry, introduced by the
nonunique ground states of the atomic system. Nonfrequency-
mixing diagrams correspond to the four terms in the transition
amplitude where, when the vacuum expectation value in
Eq. (16) is evaluated, one of the creation operators for an
initial photon state is commuted through one of the operators
for a final state photon. This means that the structure of delta
functions in the integrand of such terms is

δ(f ′ − i ′)δ(f − ε1)δ(ε2 − ε3)δ(ε4 − ε5) · · · δ(εn − i), (21)

where f,f ′,i and i ′ label the frequencies of final and initial
state photons respectively. We can therefore construct the
frequency-preserving portion of the transition amplitude:

Nμν = δμν[δ(f0 − i0)δ(f1 − i1) + δ(f0 − i1)δ(f1 − i0)]

+
∑
s=0,1

∑
s ′=0,1

δ(fs ′⊕1 − is⊕1)δ
(
	fs′ μ − 	isν

)
sμν

(
	isν

)
.

(22)

Having evaluated the nonfrequency-mixing terms and those
which do not contribute to the transition amplitude, the only
species of terms remaining correspond to frequency-mixing
processes. Applying the constraint that internal photons must
be immediately reabsorbed following emission, we find that
the structure of the vacuum expectation value in the integrand
of frequency-mixing terms is

δ(εn − i)δ(εn−1 − εn−2) · · · δ(f − εm+1)δ(i ′ − εm)

× δ(εm−1 − εm−2) · · · δ(f ′ − ε1), (23)

where m labels some point along the time evolution where
one photon ceases its interaction with the emitter and the
second one is absorbed. This completes our argument, as
we see that again in order to calculate the nth-order term in
the transition amplitude we have to sum all terms with n

2 total
interactions, varying the number of times each of the initial
photons interacts. Performing this procedure we calculate the
nth-order frequency-mixing term

M(n)
μν = 2

π
(−π )nγμγν(γ 2

1 + γ 2
2 )n−2

∑
s=0,1

∑
s ′=0,1

∑
λ=1,2

γ 2
λ

× g(	isν)g(	isν − 	fs′ λ)g(	fs′⊕1μ)

×
n−2∑
k=0

g(	isν)n−2−mg(	fs′⊕1μ)m

× δ(	fs′⊕1μ + 	fs′ − 	is⊕1 − 	isν), (24)

which we see is similar in structure to Eq. (12) with an
additional sum over the two possible mechanisms by which
the two incident photons could now couple. After summing
expression Eq. (24) over all n, adding this to the frequency-
preserving term and algebraic rearrangement we find the total

transition amplitude:

Aμν = Nμν + 1

2γμγν

∑
s,s ′,λ

γ 2
λ sμν

(
	isν

)
sμν

(
	fs′⊕1μ

)
× δ

(
	is⊕1λ − 	fs′⊕1μ

)
δ
(
	isν − 	fs′λ

)
+ i

2πγμγν

∑
s,s ′,λ

γ 2
λ

1

	isν − 	fs′ λ
sμν

(
	isν

)
× sμν

(
	fs′⊕1μ

)
δ
(
	isν − 	fs′⊕1μ + 	is⊕1 − 	fs′

)
.

(25)

The transition amplitude of Eq. (25) exactly specifies the
combined emitter-optical state following the scattering of two
initial photons with frequencies i0 and i1 on the �-system
depicted in Fig. 7. We can use this to investigate the properties
of light-matter scattering experiments, and we do this in the
following section.

Fewer reported techniques exist that capture the physics
of Eq. (25), compared with the single-photon case. However,
methods derived from those of relativistic quantum field
theory do exist as in, e.g., Ref. [39]. Here Pletyukhov and
Gritsev derive an expression for the “T matrix,” T (2)(ω) when
two photons scatter from a �-system. In Appendix G we
demonstrate that Eq. (25) of this paper is equivalent to Eq.
(46) of Ref. [39].

V. POLE STRUCTURE OF THE AMPLITUDE

Consider a two-photon scattering experiment. It is known
that the properties of the scattered state are determined in large
part by the pole structure of the transition amplitude [40]. In
particular, poles in the complex plane of the scattered photon
energy correspond to bound states of the system [41]. We might
naively imagine that the pole structure of the amplitude is
broadly similar whether the two photons scatter from a TLS or a
�-system, with the added internal structure of the emitter only
slightly shifting their location, for example. We can, however,
demonstrate that this is not the case and that the addition of a
second emitter ground state introduces a great deal of richness
to the system. In Fig. 8 we consider the frequency-mixing
portion of the transition amplitude of Eq. (25) and plot poles in
the complex plane of f , which gives the energy of one of the
scattered photons. Note that given f , the energy of the second
photon is completely specified by the single energy-conserving
delta function. In both Figs. 8(a) and 8(b) we drive the system
with two single-frequency photons, one detuned negatively
from the transition energy � by δ = 1 × 1014 rad/s and one
positively by the same amount.

In Fig. 8(a) we plot the location of the poles for three
different systems. Blue circles illustrate the locations of the
poles for a simple TLS, with central frequency � = 2 ×
1015 rad/s and coupling γ = 2 × 104 (rad/s)

1
2 . This coupling

strength would correspond to a lifetime of 1 ns, which is a
reasonable estimate for a TLS formed by, e.g., a semiconductor
quantum dot. We note the two poles at f = � ± iπγ 2, this is
the result found by many previous authors and corresponds
to the formation of a frequency-entangled pair of photons. It
is interesting to ask under which circumstances the photons
scattered from a �-system appear indistinguishable from those
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FIG. 8. Location of poles in the photon mixing component of the total transition amplitude on the complex energy plane of f —the energy
of one of the scattered photons. The coupling γ1 = 2 × 104 (rad/s)

1
2 corresponds to a lifetime of approximately 1 ns. In both cases we drive

the system with two single-frequency photons, one positively detuned from � by δ = 1 × 1014 rad/s and one negatively detuned by the same
amount. (a) TLS and special �-system configurations. Central angular frequencies are � = 2 × 1015, 2.2 × 1015, and 2.4 × 1015 rads−1 for
systems represented by circles, triangles, and crosses respectively. The coupling γ1 = 2 × 104 (rad/s)

1
2 . (b) �-system prepared initially in the

state |g1〉, with � = 2 × 1015 rad/s, 	̃1 = 0, and 	̃2 = �/10. We further set γ1 = 2 × 104 (rad/s)
1
2 and γ2 = γ1/

√
2. Some poles correspond

specifically to the emitter scattering to a given state, and others are present in both cases.

scattered by a TLS. Obviously we would expect that when
γ2 = 0, for arbitrary 	̃2, the system should behave as the
TLS—photons have no access to the state |g2〉. As a validity
check of Eq. (25) we plot the poles of such as a system (with
� = 2.4 × 1015 rad/s now) using green crosses and find that
this is indeed the predicted behavior. A more surprising result
is indicated by the orange triangles of Fig. 8(a). Here we
set γ2 = γ1, with γ1 the same as for the TLS. We find that,
when 	̃2 = 0, the pole structure of the �-system is again the
same as that of the TLS—though the poles are now located at
f = � ± iπ (γ 2

1 + γ 2
2 ). This is due to the degenerate ground

states appearing indistinguishable to incoming photons, and
thus their only effect is a strengthening of the light-matter
interaction, evidenced by shifting of the poles away from the
real axis.

It is not generally true that the dynamics of scattering from
a �-system are well approximated by the TLS. In Fig. 8(b)
we consider a more general �-system with � = 2 × 1015

rad/s, 	̃1 = 0 and 	̃2 = �/10. We further assume the sys-
tem is prepared initially in the lower ground state |g1〉 and
set the couplings asymmetrically so that again γ1 = 2 × 104

(rad/s)
1
2 but γ2 = γ1/

√
2. Now, it is important to note that the

frequency-mixing component of Eq. (25) corresponds to two
distinct processes. In one the emitter returns to the state |g1〉
following the scattering, while in the other it scatters to |g2〉.
We plot both species of poles in Fig. 8(b), using blue circles
and orange triangles, respectively, and also use green crosses
to denote the location of poles common to both parts of the
transition amplitude.

The most striking feature of Fig. 8(b) compared to Fig. 8(a)
is the emergence of poles on the Im[f ] = 0 axis of the complex
plane. This means that there are now singularities in the tran-
sition amplitude corresponding to physical scattered photon
energies—resonances. These occur at the frequencies of the
photons input to the system, plus the input frequencies minus
the energy gap 	̃2. For the emitter state-preserving portion of
the amplitude there is an additional resonance at � + 	̃2 + δ,

stemming from a process where one of the photons scatters
the system to |g2〉, with the second photon then picking up this
excess energy. The final point to note is the emergence of a
second pair of imaginary poles at � − 	̃2 ± iπ (γ 2

1 + γ 2
2 ) in

the portion of the transition amplitude in which the emitter
is scattered to the state |g2〉. This has a simple physical
interpretation; if we were to postselect onto this state, the bound
state of entangled photons that formed would have its central
frequency shifted so as to conserve overall energy.

VI. CONCLUSIONS

We have developed an intuitive, diagrammatic approach
to the problem of light-matter coupling in waveguide QED.
In contrast to previously reported techniques, our method
allows visualization of the photon-atom dynamics. We have
demonstrated analytical results for both single- and two-photon
input optical states for both the TLS and �-systems. The dia-
grammatic approach is straightforward to extend to higher pho-
ton number input states (though increasingly computationally
expensive) and potentially more realistic Hamiltonians, and
analytic results are expected to follow. Several open questions
emerge from this work. For instance, how does the choice
of Hamiltonian in Eq. (2) impact the transition amplitude?
In particular, a waveguide will have a range of supported
frequency modes defined largely by its dimensions. In theory
this leads to observable consequences [42], and this would
seem to suggest that some of the processes associated with
forbidden diagrams actually contribute in physical systems.
The limit on our method is ultimately a computational one,
with an N -photon event requiring N permutations over both
initial and final frequencies.
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APPENDIX A: THE HAMILTONIAN

In this appendix we derive the interaction Hamiltonian
(2) that describes a TLS coupled to an optical waveguide.
We begin by dividing the total Hamiltonian into free and
interacting parts, H0 and Hint, respectively. The dynamics of
an isolated emitter and bare waveguide are described by H0,
while the coupling between them—which we assume is of
dipole form—is specified by Hint. We take a limit where the
waveguide supports a continuum of optical modes with wave
number k and apply the rotating-wave approximation. This
leads to

H0 = 1

2
�σz +

∫
0

dk ω(k)ã†
kãk,

(A1)
Hint = γ̃

∫
0

dk (σ+ãk + ã
†
kσ−),

where ω(k) gives the waveguide dispersion relation and the
operator ãk destroys a photon of wave number k while obeying
[ãk,ã

†
k′] = δ(k − k′). We have assumed the fixed coupling rate

γ̃ between optical modes of wave number k and atomic tran-
sition and adopted the convention that unspecified lower and
upper integration limits imply negative and positive infinity,
respectively.

It is shown by, e.g, Maier [43] that the dispersion relation
for waveguide confined optical modes is surface-plasmonic.
We linearize this about some central wave number k0 so that
ω̃(k) ≈ ω0 + vg(k − k0), where vg represents the photon group
velocity. This means that

H0 = 1

2
�σz +

∫
dk ω0ã

†
kãk + vg(k − k0)ã†

kãk,

(A2)

Hint = γ̃

∫
dk (σ+ãk + ã

†
kσ−),

where we have also extended the limits of integration to
cover the entirety of wave number space—an appropriate
approximation when the band of populated modes is narrow.
We next introduce the variable: ε ≡ vg(k − k0), which we use
to rewrite the Hamiltonian

H0 = 1

2
�σz +

∫
dε (ω0 + ε)a†

εaε,

(A3)

Hint = γ

∫
dε (σ+aε + σ−a†

ε ),

where we have defined γ ≡ v
− 1

2
g γ̃ and aε = v

− 1
2

g ãk0+v−1
g ε . It

can be easily shown that the commutation relation [aε,a
†
ε′] =

δ(ε − ε′) is preserved.
At this point we can simply use the definition of the

interaction Hamiltonian [24] and equation (A3) to deduce that

HI(t) = γ

∫
dε (e−i	ε tσ+aε + ei	εtσ−a†

ε ), (A4)

which is the desired result, with the detuning defined by
	ε ≡ ω0 + ε − �. Eq. (A4) has the expected structure of an
interaction Hamiltonian, with phases on the operators given
by the energy mismatch between photons and emitter. The
last point to note is the slight difference in structure between
Hamiltonian (A4) and the version used by other authors
(e.g., Ref. [11]). The discrepancies can be ascribed simply to

our not working in a frame rotating at the waveguide’s central
frequency and our inclusion of the free emitter Hamiltonian in
H0 as opposed to Hint.

APPENDIX B: INTEGRATION TECHNIQUE

For completeness we describe here the integration technique
used to evaluate the explicit integral expressions for the single-
and two-photon transition amplitudes. This is a relatively
well-known result and can be found in, e.g., the appendix of
Ref. [27]. We define the integral I and begin by changing
variables so as to shift the limits of integration

I ≡
∫ t1

−∞
dt2 e−i	i t2 =

∫ ∞

0
dt2 e−i	i (t1−t2).

This can be decomposed and multiplied by unity to give

I = e−i	i t1 lim
α→0

∫ ∞

0
dt2 e−αt2 [cos (	it2) + i sin (	it2)],

(B1)

and we then make use of standard results [44], for example,
noting

δ(x) = 1

π
lim
a→0

a

a2 + x2
(B2)

to find that

I = e−i	i t1 lim
α→0

(
α

α2 + 	2
i

+ i
	i

α2 + 	2
i

)

= e−i	i t1

[
πδ(	i) + i

	i

]
, (B3)

which is the desired formula.

APPENDIX C: BOREL SUMMATION

In order to find the single-photon transition amplitude it is
necessary to evaluate the sum

σ =
∞∑

n=1

[−γ 2πg(	i)]
n, (C1)

which is rendered possible for the case of |πγ 2g(	i)| < 1 via
the binomial theorem. Terms in the series are divergent when
this condition is not satisfied, and we therefore need to take a
more nuanced approach to assign a value to the sum outside
of this regime. In fact, such divergent series are a common
occurrence in quantum electrodynamics [45], and there are a
range of methods used to extract meaning from them. The tool
we utilize here is the Borel summation—a technique applied
in a diverse range of fields [46] to analyze series with the nth
term divergent up to a factor of n!.

We first demand that 	i �= 0 and find

σ =
∞∑

n=0

(
− iπγ 2

	i

)n

. (C2)

The Borel transformation of Eq. (C2) is defined by [47]

φ(z) ≡
∞∑

n=0

1

n!
(−iπz)n = e−iπz (C3)
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and the Borel sum by

B
(

γ 2

	i

)
≡

∫ ∞

0
dt e−tφ

(
γ 2

	i

t

)
= 1

1 + i
πγ 2

	i

(C4)

under the condition now that Im[ πγ 2

	i
] < 1. However, it is

possible to derive the Heisenberg-Langevin equations asso-
ciated with the Hamiltonian of Eq. (2), as in, e.g., Ref. [48],
and in doing so we find that the emitter lifetime is directly
proportional to γ −2. This means that πγ 2

	i
is entirely real, and

thus the condition is always satisfied. The Borel-summed result
is then

A = δ(f − i)
	i − iπγ 2

	i + iπγ 2
, (C5)

valid for all coupling strengths.

APPENDIX D: EQUIVALENCE TO FAN et al. RESULT

In this section we demonstrate the equivalence between our
results for the one and two-photon transition amplitudes for
a TLS and those found by Fan et al. [11]. As our transition
amplitudes are evaluated in the limit t → ∞ and the single final
atomic state |g〉 is assumed, then the scattering matrix is in fact
the quantity given by these amplitudes. For the single-photon
case we find that

A = 1 − πγ 2g(	i)

1 + πγ 2g(	i)
δ(f − i). (D1)

We can substitute our definition of g(	) into Eq. (D1) to
determine

A = 	i − iπγ 2 − π2γ 2	iδ(	i)

	i + iπγ 2 + π2γ 2	iδ(	i)
δ(f − i), (D2)

which is naturally equal to that found by Fan et al.:

A = 	i − iπγ 2

	i + iπγ 2
δ(f − i). (D3)

The two-photon result requires a little more effort, our result
is that

A = [t(i0) + t(i1) − 1][δ(f0 − i0)δ(f1 − i1)

+ δ(f0 − i1)δ(f1 − i0)]

+ 2πγ 4δ(f0 + f1 − i0 − i1)

×
∑
s=0,1

∑
s ′=0,1

g
(
	is

)
g
(
	is − 	fs′

)
g
(
	fs′⊕1

)
[
1 + πγ 2g

(
	is

)][
1 + πγ 2g

(
	fs′⊕1

)] .

(D4)

Now, if we expand out the factor g(	is − 	fs′ ) so that

g
(
	is

)
g
(
	is − 	fs′

)
g
(
	fs′⊕1

)
[
1 + πγ 2g

(
	is

)][
1 + πγ 2g

(
	fs′⊕1

)]
= πg(	is )δ

(
	is − 	fs′

)
g
(
	fs′⊕1

)
[
1 + πγ 2g

(
	is

)][
1 + πγ 2g

(
	fs′⊕1

)]
+ ig

(
	is

)
g
(
	fs′⊕1

)
(
	is − 	fs′

)[
1 + πγ 2g

(
	is

)][
1 + πγ 2g

(
	fs′⊕1

)] .

(D5)
It is then true that

A =[t(i0) + t(i1) − 1][δ(f0 − i0)δ(f1 − i1) + δ(f0 − i1)δ(f1 − i0)]

+ 4π2γ 4[δ(f0 − i0)δ(f1 − i1) + δ(f0 − i1)δ(f1 − i0)]
g
(
	i0

)
g
(
	i1

)
[
1 + πγ 2g

(
	i0

)][
1 + πγ 2g

(
	i1

)]

+ 2πiγ 4δ(f0 + f1 − i0 − i1)

{
g
(
	i0

)
g
(
	f0

)
(
	i0 − 	f1

)[
1 + πγ 2g

(
	i0

)][
1 + πγ 2g

(
	f0

)]

+ g
(
	i0

)
g
(
	f1

)
(
	i0 − 	f0

)[
1 + πγ 2g

(
	i0

)][
1 + πγ 2g

(
	f1

)] + g
(
	i0

)
g
(
	f1

)
(
	i1 − 	f0

)[
1 + πγ 2g

(
	i1

)][
1 + πγ 2g

(
	f1

)]

+ g
(
	i1

)
g
(
	f0

)
(
	i1 − 	f1

)[
1 + πγ 2g

(
	i1

)][
1 + πγ 2g

(
	f0

)]
}

. (D6)

We can rearrange the frequency-conserving terms and again substitute the definition of g(	) into the frequency-mixing term to
determine

A = t(i0)t(i1)[δ(f0 − i0)δ(f1 − i1) + δ(f0 − i1)δ(f1 − i0)]

+ 2πiγ 4δ(f0 + f1 − i0 − i1)[
	f0 + iπγ 2

][
	f1 + iπγ 2

]
{

	f1 + iπγ 2(
	f1 − 	i0

)[
	i0 + iπγ 2

] + 	f0 + iπγ 2(
	f0 − 	i0

)[
	i0 + iπγ 2

]

+ 	f0 + iπγ 2(
	f0 − 	i1

)[
	i1 + iπγ 2

] + 	f1 + iπγ 2(
	f1 − 	i1

)[
	i1 + iπγ 2

]
}

. (D7)
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FIG. 9. Integration region defined by the enclosed volume. We
see that it intersects the surface defined by t5 = t2 at only a single
point.

Straightforward algebraic manipulation of Eq. (D7) then leads
us to

A = t(i0)t(i1)[δ(f0 − i0)δ(f1 − i1) + δ(f0 − i1)δ(f1 − i0)]

+ 4πiγ 4δ(f0 + f1 − i0 − i1)[
	f0 + iπγ 2

][
	f1 + iπγ 2

]
×

(
1

	i0 + iπγ 2
+ 1

	i1 + iπγ 2

)
(D8)

which is the result by Fan et al.

APPENDIX E: VANISHING TERMS IN HIGHER ORDER
TRANSITION AMPLITUDES

In this appendix we show mathematically why diagrams
with internal photon loops spanning multiple time integrals, as
described in Sec. III B and shown in Fig. 6, should be discarded.
If we methodically calculate A(6) we arrive upon many terms,
for example,

−γ 6
∫

dt̃ (6)
∫

dω ei(	f1 t1−	ω(t2−t5)+	f0 t3−	i0 t4−	i1 t6). (E1)

Evaluation of the frequency integral in this expression yields
the Dirac delta function δ(t5 − t2), and so we are evaluating an

integral of the form∫ t2

dt3

∫ t3

dt4

∫ t4

dt5 h(t5,t4,t3)δ(t5 − t2), (E2)

where h(t5,t4,t3) is some exponential function. The integral
here is over a volume in time-space, bounded by the surfaces
t5 = t4 and t4 = t3. The delta function has the effect of
converting this volume integral into one over a surface, where
the surface is defined by projection of the original volume onto
t5 = t2. A representation of this is depicted in Fig. 9, and we
see that the resulting surface is given by a point. This term
therefore does not contribute to the transition amplitude.

APPENDIX F: INTEGRAL AND DIAGRAMMATIC
EVALUATION OF A(8) FOR THE TWO-PHOTON CASE

1. Direct Integration Approach

In this appendix we demonstrate that for n = 8 the diagram-
matic and integral approaches to evaluation of the nth-order
transition amplitude agree. By definition we have that

A(8) = γ 8
∫

dt̃ (8)
∫

dε̄(8)

× ei(	ε1 t1−	ε2 t2+	ε3 t3−	ε4 t4+	ε5 t5−	ε6 t6+	ε7 t7−	ε8 t8)

×〈0|af0af1a
†
ε1
aε2a

†
ε3
aε4a

†
ε5
aε6a

†
ε7
aε8a

†
i1
a
†
i0
|0〉. (F1)

The vacuum-expectation value in this expression can be di-
rectly evaluated, and we find expressions for a total of 32 terms:

A(8) = γ 8
∫

dt̃ (8)
∫

dε1

∫
dε2

× [
ei(	f0 t1−	ε1 t2+	f1 t3−	ε2 t4+	ε1 t5−	i1 t6+	ε2 t7−	i0 t8)

+ ei(	f1 t1−	ε1 t2+	f0 t3−	ε2 t4+	ε1 t5−	i1 t6+	ε2 t7−	i0 t8)

+ · · ·
+ ei(	f1 t1−	i0 t2+	f0 t3−	ε2 t4+	ε2 t5−	ε1 t6+	ε1 t7−	i1 t8)

]
,

(F2)

where we have used the delta functions from the decomposed
vacuum-expectation value to eliminate six of the eight fre-
quency integrals. We can then use the definition of the Dirac
delta function to transform the remaining frequency integrals
and integrands into delta functions in time. Using the method
outlined in Appendix E, we can then eliminate any term with
a delta function connecting nonadjacent times [e.g., δ(t7 − t4),
δ(t4 − t1), etc.], and 16 terms remain. There are, however,
only four “categories” of terms, with each category containing
four terms that are permutations over initial and final photon
energies. We find that

A(8) = (2π )2γ 8
∑
s=0,1

∑
s ′=0,1

∫
dt̃ (8)

[
2πδ(fs ′ − is)δ(t7 − t6)δ(t5 − t4)δ(t3 − t2) e

i(	f
s′⊕1

t1−	is⊕1 t8)

+ δ(t7 − t6)δ(t5 − t4)ei(	f
s′ t1−	is⊕1 t2+	f

s′⊕1
t3−	is t8) + δ(t3 − t2)δ(t7 − t6)ei(	f

s′ t1−	is⊕1 t4+	f
s′⊕1

t5−	is t8)

+ δ(t5 − t4)δ(t3 − t2)ei(	f
s′ t1−	is⊕1 t6+	f

s′⊕1
t7−	is t8 )]

. (F3)
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The integrals in Eq. (F3) can be evaluated directly, as in the main text for n = 6, and we find

A(8) = 2π3γ 8
∑
s=0,1

∑
s ′=0,1

[
πg4

(
	is

)
δ(fs ′ − is)δ(fs ′⊕1 − is⊕1) + g3

(
	is

)
g
(
	is − 	fs′

)
g
(
	fs′⊕1

)
δ(f0 + f1 − i0 − i1)

+g2
(
	is

)
g
(
	is − 	fs′

)
g2

(
	fs′⊕1

)
δ(f0 + f1 − i0 − i1) + g

(
	is

)
g
(
	is − 	fs′

)
g3

(
	fs′⊕1

)
δ(f0 + f1 − i0 − i1)

]
, (F4)

which is the final result for the n = 8 term in the two-photon
transition amplitude.

2. Diagrammatic Method

The diagrams corresponding to the four species of term
in Eq. (F3) are shown in Fig. 5. In Fig. 5(a) a single
photon is absorbed and emitted by the atom four times, in
Fig. 5(b) a photon is absorbed and emitted three times, before
a second photon is absorbed and emitted once. Figure 5(c)
shows both photons being absorbed and emitted twice and
the Fig. 5(d) shows a single absorption or emission for the
first photon, followed by three for the second. Diagram 6(a)
represents the nonfrequency-mixing component of the n = 8
term and therefore contributes a factor of 2π4γ 8g4(	is )δ(fs ′ −
is)δ(fs ′⊕1 − is⊕1) to the amplitude—this being the single-
photon result multiplied by an additional delta function to
impose conservation of energy for the second photon.

The three frequency-mixing diagrams require application
of the rules supplied in the main text. For example, consider
the diagram shown in Fig. 5(c). We first associate the prefactor
2π3γ 8 to this diagram’s term, substituting n = 8 into the ex-
pression 2

π
(
√

πγ )n for the nth-order case. The first absorption
event then yields a factor of g(	is ) as per the rules, and we
gain an additional factor of this term from the internal emission
and absorption of the ε1 photon. Emission of the photon with
frequency fs ′ then yields the factor g(	is − 	fs′ ) before the
next incident photon is absorbed, producing g(	is⊕1 + 	is −
	fs′ ). One additional copy of this factor is required, because of
the second internal photon emission or absorption process but
its argument can be simplified, as the final emission event yields
the factor δ(f0 + f1 − i0 − i1), meaning that 	is⊕1 + 	is −
	fs′ = 	fs′⊕1

. Multiplying individual factors together yields
the expression 2π3γ 8g2(	is )g(	is − 	fs′ )g

2(	fs′⊕1
)δ(f0 +

f1 − i0 − i1), exactly as found in Eq. (F4).

APPENDIX G: EQUIVALENCE OF Aμν AND T (2)(ω)

In Ref. [39], Pletyukhov and Gritsev derive the following
expression [their Eq. (46)] for the T -matrix when two photons
scatter from a �-system:

T (2)(ω) = [
g2

31P1 + g2
32P2 + g31g32(|2〉〈1| + |1〉〈2|)]

× a†
ν1

G3aν2

(
g2

31G1 + g2
32G2

)
a†

ν3
G3aν4 . (G1)

Here g31 and g32 represent the ground-excited state couplings,
equivalent to our γ1 and γ2, respectively. The states |1〉 and |2〉
are the atomic ground levels, which we labeled |g1〉 and |g2〉
and the operators P1 and P2 project onto these states. Bosonic
operators are given by aν and propagators by G1,G2, and G3.

The first step in demonstrating the equivalence between
Eq. (G1) and our Eq. (25) is to apply the “intertwining
property” [Eq. (15) in Ref. [39]] and rearrange bosonic op-

erators and propagators. This has the effect of adding terms
to the propagator’s denominator, and we note this in the
propagator argument. Note that integration over the internal
photon frequencies ν is implied, and we arrive upon

T (2)(ω) = [
g2

31P1 + g2
32P2 + g31g32(|2〉〈1| + |1〉〈2|)]

×G3(ν1)
[
g2

31G1(ν1 − ν2) + g2
32G2(ν1 − ν2)

]
×G3(ν1 + ν3 − ν2)a†

ν1
aν2a

†
ν3

aν4 . (G2)

Applying Wick’s Theorem to the string of bosonic operators
on the right-hand side of Eq. (G2), we see that there are two
distinct species of term in the resulting T -matrix elements.
The first is where the “internal” photon annihilation operators
are contracted only with “external” photon creation operators,
which we label with frequencies k0 and k1. In this case
energies of incoming and outgoing particles are not individ-
ually preserved. In the second species of term, the operator
a†

ν3
is contracted with aν2 . This means that an additional

delta function arises from the overlap between incoming and
outgoing states.

Using the definition of the T matrix in the two-photon
sector, we determine that the requirement for equivalence
between our result and that of Pletyukhov and Gritsev is

−2πiT
(2)μν

p0,p1,k0,k1
δ(Eout − Ein)

?= Aμν − Nμν, (G3)

whereT
(2)μν

p0,p1,k0,k1
≡ 〈p0,p1; μ|T (2)|k0,k1; ν〉 andT (2) is defined

as the on-shell evaluation of T (2)(ω). We see immediately that
the bound-state contributions to the left- and right-hand sides
of Eq. (G3) are indeed equivalent. Consider

−2πig3μg3νg
2
31G

os
3 Gos

1 Gos
3 δν2k1δν4k0δν1p1δν3p0

= 1

g3μg3ν

−2πig2
31

k0 + εν − p0 − ε1

g3μg3ν

p1 + εμ − ε3 + iπg2

× g3μg3ν

k0 + εν − ε3 + iπg2

= i

2πγμγν

1

k0 +,εν − p0 − ε1

2πiγμγν

	p1μ + iπγ 2

2πiγμγν

	k0ν + iπγ 2
,

(G4)

where Gos indicates that the propagator is to be evaluated
on-shell, we made the transformations g3i → γi , ε3 → � and
defined γ 2 ≡ γ 2

1 + γ 2
2 . We see that Eq. (G4) is nothing more

than one of the eight components of the bound state amplitude
in Eq. (25). As we must sum over all possible permutations of
initial and final photon states (and both of the propagators G1

and G2), the proof is complete.
It then only remains to treat the component of Eq. (G3)

where individual photon energies are preserved separately.
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Consider

−2π2g3μg3νg
2
31G

os
3 Gos

3 δν2ν3δν4k0δν1p0δp1+μ,k1+ε1

= γ 2
1

2γμγν

2πiγμγν

	k0ν + iπg2

2πiγμγν

	p0μ + iπg2
δp1+μ,k1+ε1 , (G5)

where we have simply made the same transformations as for
the bound-state case and also applied Eq. (16) of Ref. [39].
Again, Eq. (G5) is one of the eight components of the nonbound
state portion of Eq. (25) and, owing to the sum over internal
propagators, initial and final photon configurations, our main
result is recovered.
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