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Multiple transparency windows and Fano interferences induced by dipole-dipole couplings
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We investigate the optical properties of a two-level system (TLS) coupled to a one-dimensional array of N other
TLSs with dipole-dipole coupling between the first neighbors. The first TLS is probed by a weak field, and we
assume that it has a decay rate much greater than the decay rates of the other TLSs. For N = 1 and in the limit of a
Rabi frequency of a probe field much smaller than the dipole-dipole coupling, the optical response of the first TLS,
i.e., its absorption and dispersion, is equivalent to that of a three-level atomic system in the configuration which
allows one to observe the electromagnetically induced transparency (EIT) phenomenon. Thus, here we investigate
an induced transparency phenomenon where the dipole-dipole coupling plays the same role as the control field
in EIT in three-level atoms. We describe this physical phenomenon, named a dipole-induced transparency (DIT),
and investigate how it scales with the number of coupled TLSs. In particular, we have shown that the number
of TLSs coupled to the main TLS is exactly equal to the number of transparency windows. The ideas presented
here are very general and can be implemented in different physical systems, such as an array of superconducting
qubits, or an array of quantum dots, spin chains, optical lattices, etc.

DOI: 10.1103/PhysRevA.97.043848

I. INTRODUCTION

Understanding of light-matter interaction has been the focus
of intense research during the last decades, mainly due to
advances in its manipulation allowed by the introduction of
laser fields. Many of these efforts are justified in view of the
possibility of using it for the implementation and control of
quantum systems in a variety of areas, including quantum
computing [1,2], collective atomic phenomena [3], trapped
ions [4], cavity and circuit QED [5,6], and other applications
involving microscopic scales. Despite the difficulties related to
the control and implementation of coupled quantum systems,
which are essential for building scalable quantum networks [7],
significant advances have been achieved using some quantum
devices in last years; see, for instance, Refs. [5–7], which
are some examples of physical systems where one finds high
control either of light-matter or matter-matter interactions,
which are essential for the implementation of our proposal
as discussed later. In this sense, electromagnetically induced
transparency (EIT) [8,9] has been shown to be a phenomenon
very useful for manipulating light with light, allowing many
applications, such as in optical transistors [10,11], quantum
memories [12,13], to generate controllable phase shifts on
single-photon pulses [14], or ground-state cooling of either
single atoms [15,16] or ion strings [17], among many others.
Thus, the investigation of other physical systems which present
EIT-related phenomenon could open new possibilities for the
implementation of such applications.

The first systematic experimental studies of EIT were
carried out with three-level atoms in � configuration [8]. Since
the appearance of the work by Boller et al. [8], the fundamental
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idea of EIT has been extended to other systems. Now one
can observe the interference between different absorption
pathways, resulting in adjustable transparency windows, in a
large variety of different physical systems, such as in coupled
classical [18] or quantum harmonic oscillators [19], two-
coupled optical cavity modes [20,21], a two-level atom coupled
to a cavity mode [22,23], quantum dot molecules [24–26], plas-
monic systems [27,28], optomechanical oscillators [29,30],
metamaterials [31,32], etc. By applying more control fields
and involving additional ground states, more transparency
windows can be obtained, thus revealing the double-EIT
phenomenon [33,34]. Double-transparency windows can also
be observed in multiple coupled photonic crystal cavities [35]
or in optomechanical systems [36]. These ideas can also be
extended to multiple transparency windows, which can be
achieved either in (N + 1)-level atomic systems [37] or in N

periodically coupled whispering gallery-mode resonators [38].
Here we investigate the optical response of a two-level

system (TLS) coupled to a one-dimensional (1D) array of
N other TLSs with dipole-dipole coupling between the first
neighbors, as schematically shown in Fig. 1. We show that
the dipole-dipole coupling plays exactly the same role as the
control field in the EIT phenomenon, either in free space [9,21]
or in cavity QED experiments [11]. We also investigate the
scalability of this system, i.e., how it is possible to control the
number of transparency windows.

II. PHYSICAL SYSTEM AND MODEL

We assume a weak probe field with oscillation frequency
ωp, driving only the main TLS, such that the Hamiltonian in
the rotating frame of the driving field is given by (h̄ = 1)

H =
N∑

i=0

�pσ i
z

2
+

N−1∑
i=0

(diσ
i
−σ i+1

+ + H.c.) + �p(σ 0
+ + H.c.),

(1)
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FIG. 1. Pictorial representation of the system: (a) 1 + N coupled
two-level systems (TLSs) and (b) a driven cavity mode coupled to
1 + N TLSs.

where �p = ω0 − ωp. Here σ i
z = (|e〉〈e|(i) − |g〉〈g|(i)) and

σ i
− = (σ i

+)† = |g〉〈e|(i) are the operators (Pauli’s matrix) of the
ith TLS, with |e〉 and |g〉 the excited and ground states, respec-
tively, whose transition frequency is ω0. di is the dipole-dipole
coupling, and 2�p is the Rabi frequency of the probe field.
The above Hamiltonian can be found or engineered in a large
variety of different physical systems, such as optical lattices
[39,40], in an array of coupled optical cavities with single
trapped atoms inside [41], superconducting qubits coupled to
two-level systems [42–46], coupled superconducting qubits
[47], in a trapped ion domain [48], or in an array of quantum
dots [49,50].

A. Dipole-induced transparency in a 1D array of TLSs

Considering the environment at T = 0 K and the limits
of a weak system-reservoir and weak dipole-dipole (|di | �
ω0) couplings, the dissipation mechanisms of the whole
system can be taken into account via the master equation
in Lindblad form [51] ρ̇ = −i[H,ρ] + D[ρ], where D[ρ] =∑N

i=0 γi(2σ i
−ρσ i

+ − σ i
+σ i

−ρ − ρσ i
+σ i

−), γi being the decay rate
of the ith TLS. We obtain the steady-state solution and then
investigate the optical response of the main TLS, which can
be derived analytically for an arbitrary number of TLSs in the
limit of a weak excitation regime. To this end, we derived the
average value 〈σ 0

−〉ss = Tr(ρssσ
0
−) in the weak probe field limit,

i.e., |�p| � |d0|, and when the decay rate of the main TLS is
greater than that of the others, i.e., γ0 � γi .

Such assumptions allow us to employ the semiclassical
approximation [52]. From this approximation, we find the
equations of motion for the expectation values of the system
operators where the correlations between atomic operators are
neglected, i.e., 〈σ i

±σ
j
z 〉 ≈ 〈σ i

±〉〈σ j
z 〉 (i �= j ). Based on these

assumptions we can derive the general system of equations for
the expectation values of the TLS operators:

〈σ̇ 0
−〉 = −(i�p + γ0)〈σ 0

−〉 + id0
〈
σ 0

z

〉〈σ 1
−〉 + i�p

〈
σ 0

z

〉
,

〈σ̇ j
−〉 = −(i�p + γj )〈σ j

−〉 + idj−1
〈
σ j

z

〉〈σ j−1
− 〉

+ idj+1
〈
σ j

z

〉〈σ j+1
+ 〉 (for 1 � j � N − 1),

〈σ̇ N
− 〉 = −(i�p + γN )〈σN

− 〉 + idN−1
〈
σN

z

〉〈σN−1
− 〉. (2)

Considering 〈σ k
z 〉 ≈ −1 (k = 0,1,...N ), from the general

motion equations (2), we obtain the general steady-state
solution:

〈σ 0
−〉ss ≈ −�p

δ1

δ0
(3)

with

δk = δk+1(�p − iγk) − δk+2|dk|2 (4)

for k = 0,1,...N − 2, and

δN−1 = δN (�p − iγN−1) − |dN−1|2, (5)

δN = (�p − iγN ). (6)

For some special cases, we can obtain simple expressions
for 〈σ 0

−〉ss (see Appendix A). For instance, considering the
main TLS coupled to another single (N = 1), in the weak probe
field limit we obtain the following steady-state solution:

〈σ 0
−〉ss = Tr(ρssσ

0
−) ≈ (�p − iγ1)�p

|d0|2 − (�p − iγ0)(�p − iγ1)
. (7)

From this expression we can promptly derive the dispersion
and absorption, its real and imaginary parts, respectively, and
then we can analyze the optical response of this system.

Our system, composed by two coupled TLSs, can be
compared to the system constituted by two quantum dots
with dipole-dipole coupling employed to perform an optical
switching [53]. However, different from our system, in [53] the
transparency is not induced by the dipole-dipole interaction
and the authors assume two fields acting simultaneously on
both quantum dots (TLSs) and the same decay rates for them.
In this way, they are able to show an efficient optical switching
only when the Rabi frequency of the control field is much
greater than the decay rate of the quantum dots. In fact, in this
regime one has an Autler-Townes (AT) splitting instead of a
real interference between different excitation pathways [54],
which is the fundamental process behind EIT.

Comparing the linear susceptibility function of our system
with those of a three-level atomic system in the EIT regime
[9,21], we immediately recognize a kind of induced trans-
parency in which the dipole-dipole coupling d0 plays the same
role as the Rabi frequency of the control field [see Eqs. (A1)
and (A2) in Appendix A]. We can also see that the decay
rate of the first (second) TLS plays the same role as the
total decay rate of the excited state 
 (dephasing rate γph)
in three-level systems in the EIT regime, which makes clear
the requirement for different decay rates for the two TLSs
employed in our model. Thus, here we have a dipole-induced
transparency (DIT) phenomenon. However, it is important to
emphasize that despite that the linear optical response of our
system and that of the�-type three-level system are completely
analogous, the nonlinear responses have marked differences.
(The analytical expressions of third-order optical susceptibility
for both systems are shown in the Appendix A.)

In Fig. 2(a) we plot the imaginary and real parts of 〈σ 0
+〉ss as

a function of �p/γ0 for a set of parameters which allows the
observation of DIT. Keeping |d0| � |�p| and |d0| < γ0, we
can note that the transparency window directly depends on the
dipole-dipole coupling d0, as expected. In another related work
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FIG. 2. (a) Normalized absorption (black solid line) and disper-
sion (red dashed line) of the first TLS when coupled to a second
one as a function of �p/γ0. The black dotted line represents the
absorption when d0 = 0. (b) Imaginary part of the third-order optical
susceptibility for two different systems: two TLSs coupled by dipole-
dipole interaction (solid line) and a usual three-level system where
EIT phenomenon can be observed (dashed line). (c) Real part of the
first-order and (d) real part of the third-order optical susceptibility
functions for two TLSs coupled by dipole-dipole interaction (solid
line) and usual � system (dashed line). In (c) the curves overlap
perfectly. Parameters used: �p = 0.03γ0, d0 = 0.5γ0, γ1 = 10−3γ0.

[55], the authors claim that it is possible to observe a similar
effect, i.e., a dipole-induced transparency, in a high-density
atomic medium which contains two species of atoms (different
dipoles). However, as they assume the same decay rate for both
dipoles, they cannot observe an extremely narrow transparency
window, as usually allowed in EIT experiments [56]. In order
to observe the differences and similarities between the usual
EIT phenomenon in three-level atoms in � configuration and
our DIT in coupled TLSs, in Figs. 2(b)–2(d) we compare the
optical susceptibility functions of both systems. In Fig. 2(b) we
plot the imaginary part of the third-order optical susceptibility
function of both systems (for the same set of parameters)
as a function of �p/γ0, where it is possible to observe the
transparency effect induced by dipole-dipole interaction (solid
line) and by a control electromagnetic field in three-level atoms
(dashed line). The real part of the first-order and third-order
optical susceptibility functions is plotted in Figs. 2(c) and 2(d).
These results evidence the difference between the nonlinear
optical response of both systems, although their linear optical
responses are identical.

B. DIT in a 1D array of TLSs coupled to a resonator

Considering a three-level atom in the EIT configuration and
coupled to a cavity mode, one can observe a cavity EIT [11].
According to the discussion above, the same effect should be
observed by replacing the three-level atom by two coupled
TLSs. This is in fact the case, as we will explain in the
following. To this end, let us first describe a more general
system, i.e., the interaction of a quantum resonator with a 1D
array of 1 + N two-level systems, as schematically represented
in Fig. 1(b), with dipole-dipole coupling di and individual
decay rates γi . The first TLS is then resonantly coupled to the

cavity mode, coupling g, which is driven by a probe field of
strength ε and frequency ωp. The Hamiltonian of this system,
written in the rotating frame of the probe field, reads (for h̄ = 1)

Hc = �p

(
a†a +

N∑
i=0

σ i
z

2

)
+ (εa + H.c.) + HI , (8)

with �p = ω0 − ωp = ωcav − ωp, ωcav being the cav-
ity mode frequency and HI = ∑N−1

i=0 di(σ i
−σ i+1

+ + H.c.) +
g(aσ 0

+ + H.c.). In this case, the dissipation of the cavity mode
can be taken into account by adding the term κ(2aρa† −
a†aρ − ρa†a) into the master equation of the system, with
κ the decay rate of the cavity field amplitude. This new master
equation can also be analytically solved for some particular set
of parameters, as we show in the following.

Employing the semiclassical approximation [52], which
allows us to factorize the correlator 〈aσ i

−〉 ≈ 〈σ i
−〉〈a〉, we

obtain the analytical solution for the average value of the
annihilation operator of the cavity mode for the 1 + N coupled
TLS case. This semiclassical approach is a good approximation
whenever the driving field is very weak compared to the
dissipation rate of the cavity mode and the atom-field coupling
is also not so strong (again, when compared to the cavity field
decay rate κ).

The derivation of the steady-state solution for 〈a〉 and
arbitrary number of TLSs coupled to a resonator follows the
recurrence relations for the equations of motion for the average
value of the atomic or resonator operators:

〈ȧ〉 = −i(�p − iκ)〈a〉 − ig〈σ 0
−〉 − iε,

〈σ̇ 0
−〉 = −i(�p − iγ0)〈σ 0

−〉 + ig〈a〉〈σ 0
z

〉 + id0
〈
σ 0

z σ 1
−
〉
,

〈σ̇ j
−〉 = −i(�p − iγj )〈σ j

−〉 + idj−1
〈
σ j

z σ_j−1
〉

+ idj

〈
σ j

z σ_j+1
〉
, (for 1 � j � tN − 1)

〈σ̇ N
− 〉 = −i(�p − iγN )〈σN

− 〉 + idN−1
〈
σN

z σ_N−1
〉
. (9)

From this coupled equation system we can derive the
stationary solution of 〈a〉ss for an arbitrary number of TLSs
coupled to the cavity mode. Following a similar procedure
used to obtain the optical response of the 1D array of TLSs
in free space, here we can write the expectation values of 〈a〉
and 〈σ i

±〉. Thus, considering again 〈σ k
z 〉 ≈ −1 (k = 0,1,...,N ),

we obtain from the general motion equations (9) the following
general expected value:

〈a〉ss ≈ −ε
δ0

δc

, (10)

with

δc = δ0(�p − iκ) − δ1|g|2, (11)

δk = δk+1(�p − iγk) − δk+2|dk|2, (12)

for k = 0,1,...N − 2, and

δN−1 = δN (�p − iγN−1) − |dN−1|2, (13)

δN = (�p − iγN ). (14)
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FIG. 3. Normalized absorption Im〈a〉ss (black solid line) and
dispersion Re〈a〉ss (red dashed line) of the cavity mode when coupled
to two-coupled TLSs as a function of the normalized detuning
�p/κ . Parameters used: γ0 = κ, g = 5κ, d = 3κ, |ε| = 0.03κ , and
γ1 = 10−3κ . The black dotted lines represent the absorption when
there is no TLS coupled to the cavity mode (g = 0).

For instance, for N = 1 (two coupled TLSs coupled to the
cavity mode), the steady-state solution reads

〈a〉ss = εd2 − ε(�p − iγ0)(�p − iγ1)

−g2(�p − iγ1) − d2
0 (�p − iκ) + 

, (15)

where  = (�p − iγ0)(�p − iγ1)(�p − iκ). This equation
must be compared to the equation for the average value of the
annihilation operator for a cavity mode coupled to a three-level
atom in the EIT configuration (cavity-EIT) [21]. In Fig. 3 we
plot the normalized absorption and dispersion of the cavity
mode when coupled to two coupled TLSs, here defined as
Im〈a〉ss and Re〈a〉ss , respectively.

III. SCALABILITY OF THE SYSTEM: MULTIPLE DIT

The results above can be properly extended to multiple
transparency windows by adding more TLSs, as schematically
shown in Fig. 1. Thus, now we discuss what happens to the
optical properties of the first TLS when coupled to a series of
other qubits. We assume that the coupling between the first
TLS (i = 0) and the second one is still given by d0 and, for
simplicity, the coupling between the other TLSs is d. We also
assume the same decay rate for the other TLSs, γi = γ � γ0

(i = 1,N ).
To understand what happens to the system when we couple

more TLSs, it is instructive to analyze the eigenenergies of the
bare Hamiltonian (without the probe field). When the coupling
between the main and the first TLS is of the order of or weaker
than its decay rate, i.e., when d0 � γ0, the system can present
interference between the different excitation paths. This regime
is represented by the gray area shown in Figs. 4(a) and 4(c).
Otherwise, for d0 � γ0 the separation of the energy levels can
be large enough to produce AT splitting. On the left panels
of Fig. 4 we plot the first eigenenergies (ground states and
eigenstates with one excitation) of the system as a function of
d/γ0, keeping �p = 0 and d0/γ0 = 0.5γ0. (See expressions

FIG. 4. (Left) First eigenenergies as a function of d/γ0. (Right)
Transition rates from the first excited states to the ground state
also as a function of d/γ0. In all these plots we have fixed d0 =
0.5γ0 and N = 2 in panels (a) and (b), and N = 4 in panels (c)
and (d).

for the eigenstates and/or eigenenergies in Appendix B for the
case N = 2.) From this figure we can see the following: (i)
for d < γ0 all the energy levels are within the linewidth of
the excited state of the first TLS (γ0); (ii) otherwise, in the
intermediate region (d ≈ γ0) some levels can be inside and
others outside the linewidth of the excited state, thus presenting
close eigenstates with possibly different decay rates; and (iii)
finally, for very strong couplings (d0,d � γ0) one observes
a complete level splitting. Thus, depending on the set of
parameters, the system displays total interference between the
excitation paths (EIT [9]), different resonant states but, near
one of each other, with asymmetric shape (Fano interference
[57]), or a complete separation of the levels (AT splitting [9]).

The decay rates of the excited eigenstates |ψk〉 of the
whole system to its ground state |ψg〉 can be calculated via
Fermi’s golden rule 
kg = γ0|〈ψg|σ 0

−|ψk〉|2 [58], where we
have neglected the dissipation channels related to the other
TLSs since we are assuming γ0 � γ . For a few TLSs we
can analytically derive the eigenstates and then the analytical
expressions for the decay rates (see Appendix B). In Figs. 4(b)
(N = 2) and 4(d) (N = 4) are plotted the transition rates
between the excited and ground states of the whole system
as a function of coupling d for a given coupling d0. As
can be seen, these decay rates are always different, except
for a specific value of d, where all the transition rates co-
incide (d = d0/

√
2). Such features will have a direct effect

on the optical properties of the system, as discussed in the
following.

In Figs. 5(a) and 5(b) we plot the absorption and dispersion
of the first TLS coupled to N = 4 other TLSs in the DIT
regime. The positions of the outer peaks depend ond0, while for
the inner peaks their positions and widths depend on d. In this
way, the number of transparency windows is exactly equal to
the number of TLSs (N ) coupled to the main TLS. For d0 < γ0

[Fig. 5(a)], we have multiple transparency windows (multi-
DIT), while for d0,d � γ0 we have an AT splitting. For d0 < γ0

and d > γ0 we have asymmetric excitation paths, resulting
in resonant states with asymmetric line shapes [Fig. 5(b)].
This happens since the increase of the coupling d makes the
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FIG. 5. Normalized absorption (black solid line) and dispersion
(red dashed line) of the first TLS when coupled to N = 4 TLSs as a
function of �p/γ0. The parameters used here are �p = 0.03γ0, γi =
γ = 10−3γ0, and d0 = 0.5γ0. The values of the d coupling are (a)
d = d0/

√
2 and (b) d = 2.5γ0. The black dotted lines represent the

absorption at d0 = 0. In (c) and (d) we show the normalized absorption
(black solid line) and dispersion (red dashed line) of the cavity mode
when coupled to five TLSs (i.e., N = 4) as a function of �p/κ .
The parameters used here are |ε| = 0.03κ, γi = γ = 10−3κ , and (c)
d = 0.4κ, g = √

2d , and γ0 = 10−3κ; and (d) d = 3.0κ, g = 2.0κ ,
and γ0 = 10−3κ . The black dotted lines represent the absorption
for g = 0.

inner peaks broader and then, depending on the coupling d0,
they can approach the other peaks, producing interference in
the absorption paths, i.e., Fano interferences [57]. The depth
of the transparency windows is strongly dependent on the
decay rate γ . In Fig. 5(a) all the depths of the transparency
windows are close to the maximum value since we have
assumed very small γ (i.e., γ = 10−3γ0). On the other hand,
the width of the transparency windows depend on the transition
rates between the excited and ground states of the whole
system. As seen in Figs. 4(b) (N = 2) and 4(d) (N = 4), all
the transition rates are equal at a specific value d = d0/

√
2.

When they are equal, the widths of the resonance peaks of
the system, which also depend on the coupling d, are the
same and then we end up with perfectly symmetric multi-DIT
windows.

For any number of coupled TLSs, the point where all the
decay rates coincide always occurs at d = d0/

√
2. (We were

able to derive the decay rates and the crossing points for up
to N = 4 TLSs coupled to the main TLS, as can be seen in
Appendix B.) So, by choosing the specific parameters for that
crossing point we will have a perfectly symmetrical absorption
profile.

The multi-DIT or multi-Fano interference also appears
when we couple the array of 1 + N TLSs to a cavity mode.
As discussed above, the number of transparency windows is
equal to the number of TLSs coupled to the main TLS. Thus,
considering 1 + N coupled TLSs (each coupling given by d),
which in turn is coupled to the cavity mode (coupling g), we
will have N transparency windows, as we see in Fig. 5(c)
(N = 4), which presents four inner peaks. The position of the
resonance peaks is determined by all the couplings. However,

the outer peaks are mainly due to the atom-field coupling g,
and the inner peaks (and their widths) are mainly influenced
by the dipole-dipole couplings d. For greater values of g and
d we can have a large separation between the resonance peaks
(AT splitting) or even Fano interference when d > g, as we
see in Fig. 5(d). So, here we have a tunable system which
allows us to arbitrarily choose the number of transparency
windows, and their widths, by simply adjusting the number
of TLSs and the dipole-dipole coupling in our model. In
Appendix C we show explicit solutions for 〈a〉ss for N = 2
and N = 3.

IV. CONCLUSIONS

In summary, here we have investigated how dipole-dipole
coupling can induce transparency on a TLS or on a resonator
mode. The dipole-dipole coupling works out as the control field
in EIT or cavity-EIT experiments, while the decay rate of the
first (second) TLS is the equivalent to the total decay rate of
the excited state (the dephasing rate of the ground state which
is coupled to the excited one via a control field) in EIT experi-
ments with three-level atoms in � configuration. We also could
show the scalability of our system: by coupling more TLSs
our system presents more transparency windows, their number
being exactly equal to the number of TLSs coupled to the main
TLS. As mentioned before, our study can be implemented in
many different physical systems. In particular, in Ref. [43]
we find a very good platform to experimentally investigate
our results, since it presents a controllable coupling between
two different two-level systems: the Josephson-phase qubit and
the atoms which can occupy two different states (positions).
Additionally, the states of the atomic system present much
longer coherence times than those from the superconducting
qubits, which is another requirement for the observation of the
dipole-induced transparency predicted in our work. Likewise,
in Ref. [45] was observed a dark state with a long lifetime, oc-
casioned by the interaction of a flux qubit with a couple of nitro-
gen vacancy ensembles in a diamond hybrid system. The signa-
ture of this dark state is related to the experimental observation
of a narrow peak at the crossing point of levels in the energy
spectrum. Thus, those results are very connected to those we
present here, making the system of Ref. [45] another suitable
platform to investigate the phenomena predicted in our work.
We hope this kind of induced transparency could be useful
for manipulation of the optical properties of TLSs in general,
for example, for the study of slow light, transport properties
in spin chains, and also frequency filters for light fields. Also,
by detecting the optical response of a driven TLS or resonator
mode we can estimate properties of dipole-dipole interaction.
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APPENDIX A: 1 + N COUPLED TLSS IN FREE SPACE

In this first part we demonstrate some expressions for a stationary solution of the 〈σ 0
−〉ss for 1 + N coupled TLSs (with

dipole-dipole interaction) in free space. Assuming a low atomic excitation limit, the linear response of our system and of the
usual three-level system where the EIT phenomenon is observed (given by imaginary and real parts of the first-order optical
susceptibility function χ (1)) are completely analogous, as can be seen in the expressions below:

χ
(1)
DIT = �p + iγ1

d2
0 + (γ0 − i�p)(γ1 − i�p)

, (A1)

χ
(1)
EIT = �p

�2
c − �p(�p + i
3)

, (A2)

being 
3 = 
31 + 
32. Therefore, with γ1 = 0, γ0 → 
3, and d0 → �c the expressions are exactly the same.
On the other hand, the nonlinear terms of the optical susceptibility function present a significant difference. This feature can

be clearly seen in the third order of the optical susceptibility function, whose expressions for both systems are given by

χ
(3)
DIT = 2i

[−(γ1 − i�p)2(γ1 + i�p)(γ0 + γ1 − 2i�p) + d4
0 + d2

0

(
γ 2

1 + �2
p

)]
(γ0 + γ1 − 2i�p)

[
d2

0 + (γ0 − i�p)(γ1 − i�p)
]2[

d2
0 + (γ0 + i�p)(γ1 + i�p)

] , (A3)

χ
(3)
EIT = �p

{−i
32�
2
p
2

3 + �p�2
c[
32
3 − i�p(2
31 + 3
32)] − 2i
31�

4
c

}

31

[
�p(
3 + i�p) − i�2

c

][
�p�c(
3 − i�p) + i�3

c

]2 . (A4)

In order to make evident the difference in the optical response of both systems, the optical response is shown in Fig. 2 of the
main text (real and imaginary parts of the χ function) for the two systems: two TLSs coupled by dipole-dipole interaction and
for a three-level system in the � configuration. From these results we can clearly see, in the limit of a weak probe field, the linear
optical response is equal for both systems. However, the nonlinear response (as χ (3)) presents significant difference.

From the general solution shown in the main text (3) one can derive the stationary solution for an arbitrary number of coupled
TLSs. For instance, below we present some explicit expressions. For N = 2 the solution is

〈σ 0
+〉ss = − �p[d2 − (�p + iγ1)(�p + iγ2)]

(�p + iγ0)[d2 − (�p + iγ1)(�p + iγ2)] + d2
0 (�p + iγ2)

.

The stationary solution for N = 3 is

〈σ 0
+〉ss = i�p{id2(�p + iγ3) + (γ1 − i�p)[−d2 + (�p + iγ2)(�p + iγ3)]}

d2
0 [−d2 + (�p + iγ2)(�p + iγ3)] + (�p + iγ0){d2(�p + iγ3) − (�p + iγ1)[−d2 + (�p + iγ2)(�p + iγ3)]} .

For N = 4, the solution in the steady state is given by

〈σ 0
+〉ss = i�p(d2[−d2 + (�p + iγ3)(�p + iγ4)]+(�p + iγ1){d2(�p + iγ4) + (−�p − iγ2)[−d2 + (�p + iγ3)(�p + iγ4)]})

d2
0 {id2(�p + iγ4) + (γ2 − i�p)[−d2 + (�p + iγ,3)(�p + iγ4)]} + ϒ

,

where

ϒ = (�p + iγ0)(d2[(γ3 − i�p)(�p + iγ4) + id2] + (�p + iγ1){d2(γ4 − i�p) + i(�p + iγ2)[−d2 + (�p + iγ3)(�p + iγ4)]})

.
Just to illustrate, in Fig. 6 we present the absorption spectrum for N = 7,10,12, and 15. Note that the number of transparency

windows is exactly equal to N . Also, note that the depth of the transparency windows is different in this figure. This is due to
the non-null decay rate γ used here. By increasing the number of TLSs coupled to the main TLS, we increase the number of
transparency windows. However, the higher the number of transparency windows, the more sensitive the system is to the noisy
effects.

APPENDIX B: EIGENSTATES, EIGENENERGIES, AND TRANSITION RATES BETWEEN THE FIRST EXCITED STATES
AND THE GROUND STATE FOR 1 + N TLSs

The main goal of this section is to present the analytical solutions for the transition rates between the eigenstates of the system
(the first excited state and the ground state). To this end, first we must derive the eigenstates of our system, once the transition
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FIG. 6. Normalized absorption Im〈σ 0
+〉ss as a function of the normalized detuning �p/γ0 for different numbers of TLSs coupled to the main

one (N = 7,10,12, and 15). The parameters used here were γ0 = 1, �p = 0.03γ0, γi = γ = 10−3γ0, d0 = 0.5γ0, and d = d0/
√

2.

rate is defined as


kg = γ0|〈ψg|σ 0
−|ψk〉|2, (B1)

|ψg〉 and |ψk〉 (k = 1,2,...) being the ground and excited eigenstates, respectively.
We have obtained analytically the expressions for the eigenstates and transition rates forN = 2, 3, and 4 only. As the expressions

for the eigenstates or eigenenergies are too extensive, below we present them only for the N = 2 case.
For N = 2, the eigenvalues and the respective eigenvectors are

E0 = −3ω0 → |ψ0〉 = |ggg〉,
E1 = −ω0 −

√
d2

0 + d2 → |ψ1〉 = d0√
2
(
d2

0 + d2
) |egg〉 − 1√

2
|geg〉 + d√

2
(
d2

0 + d2
) |gge〉,

E2 = −ω0 → |ψ2〉 = − d√
d2

0 + d2
|egg〉 + d0√

d2
0 + d2

|gge〉,

E3 = −ω0 +
√

d2
0 + d2 → |ψ3〉 = d0√

2
(
d2

0 + d2
) |egg〉 + 1√

2
|geg〉 + d√

2
(
d2

0 + d2
) |gge〉,

E4 = ω0 −
√

d2
0 + d2 → |ψ4〉 = d√

2
(
d2

0 + d2
) |eeg〉 − 1√

2
|ege〉 + d0√

2
(
d2

0 + d2
) |gee〉,

E5 = ω0 → |ψ5〉 = − d0√
d2

0 + d2
|eeg〉 + d√

d2
0 + d2

|gee〉,

E6 = ω0 +
√

d2
0 + d2 → |ψ6〉 = d√

2
(
d2

0 + d2
) |eeg〉 + 1√

2
|ege〉 + d0√

2
(
d2

0 + d2
) |gee〉,

E7 = 3ω0 → |ψ7〉 = |eee〉.
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With those eigenstates we can derive the transition rates between the first excited states (with one excitation) and the ground
state, which reads


2g = d2

d2
0 + d2

, 
1g = 
3g = d2
0

2
(
d2 + d2

0

) .

From these expressions we find that these transition rates have a crossing point at d = d0√
2
.

For N = 3, the transition rates are given by


2g = 
3g =
2d2 − d2

0 +
√

4d2 + d2
0

4
√

4d2 + d2
0

, 
1g = 
4g =
−2d2 + d2

0 +
√

4d2 + d2
0

4
√

4d2 + d2
0

,

and the crossing point of the transition rates is exactly the same, d = d0√
2
.

For N = 4, the expressions of transition rates follow below:


3g = d2

d2+2d2
0
, 
2g = 
4g = d2

0 (2d2−d2
0 +C)

2(d2+2d2
0 )C , 
1g = 
5g = d2

0 (−2d2+d2
0 +C)

2(d2+2d2
0 )C ,

where C =
√

5d4 − 2d2d2
0 + d4

0 . For this configuration we have found two crossing points: d = d0√
2
, in which all the rates cross,

and d =
√

2
5d0, where some rates cross.

APPENDIX C: TLSs COUPLED TO A RESONATOR – ANALYTICAL SOLUTIONS

Here we consider 1 + N coupled TLSs with the first one interacting with a resonator (for instance, in the circuit QED
framework). From the general solution shown in the main text (10) we also can obtain the expression for the expected value to
〈a〉 in steady state for any number of TLSs coupled to the resonator. For instance, below we show some explicit expressions for
〈a〉ss . For N = 2 it reads

〈a〉ss = −
{
− ε{d2(−iγ2 + �p) + (−iγ0 + �p)[d2 − (−iγ1 + �p)(−iγ2 + �p)]}

−g2[d2 − (−iγ1 + �p)(−iγ2 + �p)] + {d2(−iγ2 + �p) + (−iγ0 + �p)[d2 − (−iγ1 + �p)(−iγ2 + �p)]}(−iκ + �p)

}
.

For N = 3 we obtain to steady state the solution

〈a〉ss = −
{−ε(−d2[d2 − (−iγ2 +�p)(−iγ3 + �p)] + (−iγ0 + �p){d2(−iγ3 + �p) + (−iγ1 + �p)[d2 − (−iγ2 + �p)(−iγ3 + �p)]})

−g2{d2(−iγ3 + �p) + (−iγ1 + �p)[d2 − (−iγ2 + �p)(−iγ3 + �p)]} + a

}
,

with

a = {−d2[d2 − (−iγ2 + �p)(−iγ3 + �p)] + (−iγ0 + �p){d2(−iγ3 + �p) + (−iγ1 + �p)

× [d2 − (−iγ2 + �p)(−iγ3 + �p)]}(−iκ + �p)}.
Again, we were able to derive the steady-state analytical solutions for arbitrary N ’s, but the expressions are very large to be

presented here. Just to illustrate, in Fig. 7 we present the absorption spectrum for N = 7,10,12, and 15. Note that the number of
transparency windows exactly equals N .

Transition rates between the first excited states to the ground state for 1 + N TLSs coupled to a resonator mode

Analogous to the free-space case, we could derive the transition rates for some cases when 1 + N TLSs are coupled to the
resonator. It can be calculated through the following expression:


kg = γ0|〈ψg|a|ψk〉|2,
|ψg〉 and |ψk〉 (k = 1,2,...) being the ground and excited eigenstates, respectively.

For N = 2, the rates are given by


1g = 
4g = d2g2

4d4 + g4 + (2d2 − g2)
√

4d4 + g4
, 
2g = 
3g = d2g2

4d4+g4+(g2−2d2)
√

4d4+g4
.

Similarly to what happens in the free space, there is a crossing point associated to a specific value of d where all the transition
rates are the same. For this case the crossing point is d = g/

√
2.
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FIG. 7. Normalized transmission Im〈a〉ss as a function of the normalized detuning �p/κ for 1 + N TLSs coupled to the cavity mode (for
N = 7,10,12, and 15). The parameters used here are γ0 = γi = 10−3κ, |ε| = 0.03κ, d = 1.0κ , and g = √

2d .

For N = 3, the rates are given by


3g = d2

d2 + 2g2
, 
1g = 
5g = g2(g2 − 2d2 + C)

2C(d2 + 2g2)
, 
2g = 
4g = g2(2d2 − g2 + C)

2C(d2 + 2g2)
,

with C =
√

5d4 − 2d2g2 + g4. For this case all the rates cross again at d = g/
√

2, while some rates cross at d = √
2/5g.
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