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Optical binding with cold atoms
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Optical binding is a form of light-mediated forces between elements of matter which emerge in response to the
collective scattering of light. Such a phenomenon has been studied mainly in the context of the equilibrium stability
of dielectric sphere arrays which move amid dissipative media. In this article, we demonstrate that optically
bounded states of a pair of cold atoms can exist, in the absence of nonradiative damping. We study the scaling laws
for the unstable-stable phase transition at negative detuning and the unstable-metastable one for positive detuning.
In addition, we show that angular momentum can lead to dynamical stabilization with infinite-range scaling.
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I. INTRODUCTION

The interaction of light with atoms, from the microscopic
to the macroscopic scale, is one of the most fundamental
mechanisms in nature. After the advent of the laser, new
techniques were developed to manipulate precisely objects
of very different sizes with light, ranging from individual
atoms [1] to macroscopic objects in optical tweezers [2].
It is convenient to distinguish two kinds of optical forces
which are of fundamental importance: the radiation pressure
force, which pushes the particles in the direction of the light
propagation, and the dipole force, which tends to trap them into
intensity extrema, as, for example, in optical lattices. Beyond
single-particle physics, the multiple scattering of light plays
an important role in modifying these forces. For instance, the
radiation pressure force is at the origin of an increase of the size
of magneto-optical traps [3] whereas dipole forces can lead to
optomechanical self-structuring in a cold atomic gas [4] or to
optomechanical strain [5].

For two or more scatterers, a mutual exchange of light
results in cooperative optical forces which may induce optical
mutual trapping, and eventually correlations in the relative
positions of the particles at distances of the order of the
optical wavelength. This effect, called optical binding, was
first demonstrated by Golovchenko and co-workers [6,7], using
two dielectric microsized spheres interacting with light fields
within dissipative fluids. Since then a number of experiments
with different geometries and with an increasing number
of scatterers have been reported, all using a suspension of
scatterers in a fluid, thus providing a viscous damping of the
motion of the scatterers [8–15].

Equilibrium is reached when viscous friction dominates the
light-induced dynamics, a regime on which previous studies
have focused. For instance, the bistability of equilibrium
separations [11] and one-dimensional optically restoring
forces [13] were observed in a system of two dielectric particles
suspended in a viscous fluid. Furthermore, theoretical simu-
lations have predicted stable configurations for microsphere
arrays in two-dimensional (2D) compositions [8,10]. Actually,
out-of-equilibrium bound motion with light-mediated forces
has been assumed to be possible only above a critical
damping [16].

In this article, we consider a pair of cold atoms to demon-
strate optically bound motion in the absence of nonradiative
friction. As the atoms are confined in two dimensions by two
counterpropagating lasers (see Fig. 1), the angular momentum
becomes a conserved quantity, which guarantees perpetual
motion. We also study the response of the two-body system
to detuning between the pump and the atomic transition, a pa-
rameter which has yet to be considered, for dielectric spheres.

After introducing the dipole model in Sec. II, in Sec. III
we study the scaling laws for bound states of pairs of atoms
without angular momentum, comparing our findings to known
results on dielectric spheres [6,7]. We then turn to a more
general situation in Sec. IV, setting a finite angular momentum
for a pair of atoms, and discuss the regimes reached owing
to dynamical stability. Finally, we draw our conclusions and
discuss possible future works.

II. MODEL

We consider a system composed of two two-level atoms
of equal masses m which interacts with the radiation field.
Using the dipole approximation, the atom-light interaction is
described by

HAL = −
2∑

j=1

Dj · E(rj ), (1)

where Dj is the dipole operator and E(rj ) the electric field
calculated at the center of mass rj of each atom. Under the
dipole approximation, the light wavelength is much larger than
the typical atom size, which motivates a classical description of
the center-of-mass motion. Considering a linear optics regime
of low pump intensities, the Heisenberg equations of motion for
the expected values of the atomic dipoles βj and of their center-
of-mass positions reduce to the following classical dynamical
system [17],

β̇j =
(

i� − �

2

)
βj − i� − �

2
G(|rj − rl|)βl, (2)

r̈j = − h̄�

m
Im[∇rj

G(|rj − rl|)β∗
j βl], l �= j. (3)
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FIG. 1. Two atoms evolve in the z = 0 plane, trapped in 2D by
counterpropagating plane waves, with the wave vector orthogonal to
that plane. The light exchange between the atoms induces the 2D
two-body optically coupled dynamics.

The present work assumes that the atoms are trapped in the
z = 0 plane, a situation which can be obtained with a pair of
counterpropagating plane waves, for example. The strength
of the atom-laser coupling in that plane is given by the Rabi
frequency � of the resulting stationary wave, whose frequency
ωL = ck is tuned close to the two-level transition frequency
ωat . m is the mass of the atom, � is the decay rate of its
excited state, and � = ωL − ωat the detuning between the
laser and the associated atomic transition. The light-mediated
long-range interaction between the atoms is given, in the scalar
light approximation, by the Green’s function

G(|rj − rl|) = eik|rj −rl |

ik|rj − rl| , (4)

where G has been obtained from the Markovian integration
over the vacuum modes of the electromagnetic field [17], which
makes the two-atom system an open one.

Equation (2) thus describes the dipole dynamics under the
influence of the pump and of the radiation of the other dipole,
in the linear optics regime, whereas Eq. (3) captures the atom
motion under the effect of an optical force generated by the
other atom (the 2D trapping beams do not generate any force
in the plane orthogonal to their propagation). Note that, while
the dipole amplitude βj responds linearly to the light field
�, their mutual coupling with the centers-of-mass dynamics
is responsible for the nonlinearity emerging in Eqs. (2) and
(3). Similar emergent nonlinearities are at the origin of photon
bubbles [18] and optomechanical pattern formation [4].

This coupled dipole model has been shown to provide an
accurate description of many phenomena based on cooperative
light scattering, such as the observation of a cooperative
radiation pressure force [19,20], superradiance [21] and subra-
diance [22] in dilute atomic clouds, linewidth broadening, and
cooperative frequency shifts [23,24]. In such a description,
quantum matter wave effects are neglected. Also, quantum
optics effects, expected to arise for strong pump intensities,
are not taken into account. In particular, Eq. (3) neglects the
contribution of stochastic heating which rises from the random
nature of the spontaneous emission recoils. As a first step, this
hypothesis is a convenient simplification since a bound motion
can have its origin only from deterministic force laws. The
implementation of a more realistic stochastic dynamics, for

example, using a Langevin scheme, will be an important next
step toward demonstrating the feasibility of bound states with
cold atoms.

Central force problems, as the one described by Eqs. (2)
and (3), are best studied in the relative coordinate frame, so we
define the following coordinate transformations,

b = β1 − β2, (5)

B = β1 + β2

2
, (6)

r = r1 − r2, (7)

R = r1 + r2

2
, (8)

where B and b are the average and differential dipoles, and
R and r the center-of-mass and differential positions. As the
motion is restricted to two dimensions, we choose the polar
coordinate parametrization r = r(cos φ, sin φ), which yields
the following dynamical equations,

.

b = −�

2

[
1 − sin kr

kr
− i

(
2δ − cos kr

kr

)]
b, (9)

.

B = −�

2

[
1 + sin kr

kr
− i

(
2δ + cos kr

kr

)]
B − i�, (10)

r̈ = 2L2

m2r3
− �h̄k

2m

(
sin kr

kr
+ cos kr

k2r2

)
(4|B|2 − |b|2), (11)

L̇ = d

dt

(
mr2

.

φ

2

)
= 0, (12)

where the center-of-mass dynamics has naturally decoupled
from all equations. The angular momentum L = mrv⊥/2 of
the system is a conserved quantity, with v⊥ the magnitude of the
velocity perpendicular to the interparticle separation r = r r̂.
This is a fundamental difference with other optical binding
systems where the angular momentum is quickly driven to
zero by friction.

III. STABILITY ANALYSES FOR � = 0

In order to study optically bound states, we first have to
identify the equilibrium points of the system. We start by
highlighting the absence of the source term in Eq. (9), so
the relative dipole coordinate b vanishes on a time scale
of the order of 1/�, which is very fast compared to the
atomic motion. Therefore, the atoms can be considered always
synchronized and the interatomic dynamics r couples only
to the average dipole B. This synchronized mode has a
dimensionless energy − cos kr/2kr , relative to the atomic
transition, and a dimensionless decay rate 1 + sin kr/kr . It
becomes clear later that around the equilibrium points of the
dynamics [r ≈ (n + 1/2)π , n integer], this rate is very close
to unity, so no superradiant or subradiant behavior is expected.

Assuming b = 0 for all times, it is possible to write

B = β1 = β2 ≡ βeiχ , (13)
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with β � 0 and χ ∈ R, which yields the following set of
reduced dynamical equations,

.

β = −�

2

(
1 + sin kr

kr

)
β − � sin χ, (14)

.
χ = � + �

2

cos kr

kr
− �

cos χ

β
, (15)

r̈ = 2L2

m2r3
− 2�h̄k

m

(
sin kr

kr
+ cos kr

k2r2

)
β2. (16)

The equilibrium points of these equations are given by choos-
ing β̇ = χ̇ = 0, namely,

β0 = 2
�

�

[(
1 + sin kr

kr

)2

+
(

2δ + cos kr

kr

)2
]− 1

2

, (17)

χ0 = arctan

(
− 1 + sin kr

kr

2δ + cos kr
kr

)
, (18)

which, combined with r̈ = 0, gives the equilibrium condition
for the interatomic separations,

F ≡ �2

k3r3
− �2

�2

sin kr
kr

+ cos kr
k2r2(

1 + sin kr
kr

)2 + (
2δ + cos kr

kr

)2 = 0. (19)

The equilibrium points are then obtained from the zeros of F

(see Fig. 2). In particular, Fig. 2(a) illustrates the dependence
of F on the angular momentum and on the detuning, showing
that the zeros of F tend to disappear as we get farther from
resonance or at a larger angular momentum. Note that Eq. (19)
depends on the pump strength �/�, laser detuning δ ≡ �/�,
and the dimensionless angular momentum � ≡ Lk/2

√
h̄�m =

krv⊥/
√

32vDopp, where v2
Dopp = h̄�/2m corresponds to the

Doppler temperature of the two-level laser cooling. This
equation includes both stable and unstable equilibrium points.
For the particular case � = 0, the equilibrium points are given
by the simplified condition tan kr = −1/kr which does not
depend on the light-matter coupling � or �, but only on
the mutual distance between the atoms. The details of the
light-matter interaction will, however, come into play when
the stability of these equilibrium points is considered.

As pointed out in Ref. [16], linear stability may not be
sufficient to provide a phase diagram with bound states. We
thus choose to study its stability by integrating numerically the
dynamics, starting with a pair of atoms with initial velocities,
and moving around the equilibrium separation r ≈ λ. We first
focus on states without angular momentum, so the atoms
are chosen with opposite radial velocities v‖, parallel to the
interatomic distance. We compute the escape time τ at which
the atoms start to evolve as free particles by integrating the
associated one-dimensional dynamics.

Figure 3(a) presents the stability diagram of the r ≈ λ

equilibrium point, for a pair of atoms with an initial temperature
of T = 1 μK. Throughout this article, the conversion between
initial velocities and initial temperature is performed merely
to give an idea of the typical atomic velocities involved.
We perform this conversion by using the 87Rb atom mass
m = 1.419 × 10−25 kg. We have also used in all simulations
the values λ = 780 nm and � ≈ 6 MHz. For zero angular
momentum, the initial temperature is associated with the radial

FIG. 2. Two-atom equilibrium distance pattern for (a) different �

and (b) different detunings.

degree of freedom kBT = mv2
‖ . In the lower (black) part

of the diagram (low pump strength), free-particle states are
always observed after a short transient τ ≈ 0.1 ms, which
means that the optical forces are unable to bind the atoms
[see the trajectory for δ = −2.5 in Fig. 3(b)]. For negative
δ, a free-particle to bounded-motion phase transition occurs
as the pumping strength �/� is increased. In the stable
phase, the atoms’ mutual distance r converges, oscillating to
r ≈ λ, as displayed for δ = −1 in Fig. 3(b). We verified that
these bound states, characterized by an infinite escape time τ ,
occur around the equilibrium points r = nλ, with n ∈ N. The
unstable equilibrium points are found around (n + 1/2)λ and
contain only free-particle states. We stress that the damping
observed in the bound-state region cannot be associated with
a viscous medium as in Refs. [6,7]. In our case, the cooling of
the relative motion for negative detuning can be understood as
Doppler cooling in a multiple-scattering regime [25–27].

For positive detuning (δ > 0), we also observe a free-
particle to bound-state phase transition, symmetric to the
negative detuning case [see Fig. 3(a)]. However, we find that
these bound states appear to be only metastable, with the
pair of atoms separating on large time scales [see Fig. 3(b)].
As presented in Fig. 4, the binding time tends to grow
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FIG. 3. (a) Stability diagram around the equilibrium point r ≈ λ

for the 1D dynamics with � = 0. Free-particle states are found for
low laser strength (black region), bound states on the red-detuned
side (light blue area), and metastable states on the blue-detuned side
(color gradient). (b) Typical dynamics of free-particle, bound, and
metastable states around the equilibrium point. Simulations realized
with particles with an initial temperature T = 1 μK, as throughout
this article.

FIG. 4. Logarithm of the escape time τ vs the detuning for
different values of �/�. r ≈ λ for the 1D dynamics with � = 0.

exponentially with the detuning δ in the metastable regime.
We have verified that the oscillations of an atom in the optical
potential of another atom kept at a fixed position also result in
an increase (decrease) of kinetic energy for positive (negative)
detuning. These results of mutual heating or cooling are thus
reminiscent of the asymmetry reported in multiple-scattering-
based atom cooling schemes [25–27], but differ from previous
works on the optical binding of dielectric spheres, which did
not study the sign of the particles’ refractive index [14].

We have performed a systematic study of the free-to-bound
state transition and identified the following scaling law for the
critical initial temperature Tc of this transition,

Tc

TDopp
= �2

�2 + 4�2

16

kr
, (20)

with TDopp = h̄�/2kB the Doppler temperature. This criterion
can be obtained from the balance between the kinetic energy
Ekin = mkBv2

‖/2 and the dipole potential induced by the
interference between the incident laser beam and the scattered
light field,

V (r) = 4h̄�2

�2 + 4�2

cos kr

kr
. (21)

We recall that here we are considering zero angular motion
dynamics, and the temperature is thus associated with the
parallel (radial) velocity of the two atoms (kBT = m〈v2

‖〉).
Equation (20) is valid for atoms at large distances (r � λ)
since, for short distances, corrections due to their coupling
should be included. We note that this scaling law corresponds
to the law derived for dielectric particles, where the interac-
tion is given by W = − 1

2α2E2k2 cos kr/r [6], where the α2

scaling of the polarizability indicates double scattering. The
corresponding scaling law for two-level atoms yields a dipole
potential (∝�2) but with double scattering and a corresponding
square dependence of the atomic polarizability, which at large
detuning scales as α2 ∝ 1/�2. The difference from previous
work lies in the fact that we do not have an external friction
or viscous force, which would dampen the atomic motion
independently from the laser detuning. The metastable phase
region is thus a different feature for cold atoms compared to
dielectrics embedded in a fluid.

A fine analysis of the transition between bound states to
metastable states in Fig. 3(a) shows a small shift δ0 compared
to the single-atom resonance condition. The origin of this
shift can be partially understood by the cooperative energy
shift of the two-atom state at the origin of the dynamics for
these synchronized dipoles. Indeed, despite the fact that the
synchronized pair of atoms does not present any superradiant or
subradiant effect, it possesses a finite energy δs = cos kr/2kr ,
as can be observed in Eq. (10): This shift will thus be
strongest for close pairs of atoms (kr ≈ λ/2). In addition to
this cooperative effect, we identified an additional dependence
on the velocity, so the total shift δ0 scales as

δ0 ≈ −cos kr

2kr
− kv‖(τ )

�
. (22)

IV. STABILITY ANALYSES FOR � > 0

An additional feature emerging from the frictionless na-
ture of the cold-atom system is the conservation of angular
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FIG. 5. Rotating states for the pair of atoms for (a) and (b) fixed
interparticle distance, (c) and (d) vibrational mode, and (e) and
(f) metastable state. As the orbits of both atoms coincide in (a),
only a single orbit is displayed. Simulations realized with � = 0.09,
�/� = 0.25, and T = 1 μK, where the 87Rb atom mass was adopted.

momentum during the dynamics. This leads to a striking
difference from optical binding with dielectric particles as
we can obtain rotating bound states. Examples of such states
are shown in Fig. 5: The pair of atoms can reach a rotating
bound state with a fixed interparticle distance on resonance [see
Figs. 5(a) and 5(b)], but it may also support stable oscillations
along the two-atom axis far from resonance [see Figs. 5(c) and
5(d)], analogous to a molecule vibrational mode. As in the 1D
case, the atoms may remain coupled for long times, before
eventually separating [see Figs. 5(e) and 5(f)]. As can be seen
in Eq. (19), for � �= 0 the stationary points are circular orbits
in the plane z = 0 instead of fixed points. We note that high
values of angular momentum � strongly modify the equilibrium
point landscape, suppressing the low-r equilibrium points [see
Fig. 2(a)].

Rotating bound states are characterized by both radial
v‖ and tangential v⊥ velocities, the latter being associated
with the conserved angular momentum. For simplicity, we
focus on the initial states of atoms with purely tangential and
opposite velocities, kBT = mv2

⊥, neglecting thus any initial
radial velocity, although it may appear dynamically. A phase
diagram for the r ≈ λ and � = 0.09 (corresponding to an
initial temperature T = 1 μK) states is presented in Fig. 6,
where the escape time τ has been computed following the
same procedure as before. Let us first remark that the purely
bounded to metastable transition is no longer delimited by a

FIG. 6. Stability diagram around the equilibrium point r ≈ λ

for � = 0.09. Free-particle states are found for low pump intensity
(black region), bound states on the red-detuned side (light blue), and
metastable states in the blue-detuned side, where the color gradient
denotes the state lifetime. Simulations realized with particles with
an initial temperature T = 1 μK, where the conversion between
temperature and velocity was realized using the Rb atom mass.

sharp transition, in contrast to the � = 0 case. For � �= 0, this
energy shift varies nonlinearly according to the field pump
strength �/�, allowing dynamically stable bound states for
δ > δ0, including the resonant line. The stable phase for � �= 0
covers a larger part of the phase diagram, so the introduction
of an angular momentum in the system allows one to reach
bound states for ranges of parameters where they do not exist
at � = 0.

An estimation of the stability criterion for rotating bound
states can be obtained via the following analysis: We consider
rotating states with a large interparticle distance (r � λ)
where the initial kinetic energy is associated only with the
rotational degree of freedom, kBT = m〈v2

⊥〉 and v‖ = 0. The
conservation of the angular momentum L = mrv⊥/2 implies
that over a displacement of δr = λ/2 necessary to escape the
radial potential well δV = −4�h̄�2/3π (�2 + 4�2), only a
portion of the kinetic energy δE = mv⊥L2δr/2r is transferred
to the radial degree of freedom. This leads to the stability
transition law,

Tc

TDopp
= 8

π

�2

�2 + 4�2
. (23)

A systematic numerical study of the stability of rotating bound
states, tuning their angular momentum, initial interparticle
distance, and temperature, shows an excellent agreement with
Eq. (23).

Let us first comment that the diagram of the � �= 0 case
presents lifetimes for the metastable states which are much
longer than for the � = 0 case (see Fig. 6). Moreover, Eq. (23)
differs substantially from the � = 0 case in that the distance
between the atoms has disappeared: In other words, for a given
angular momentum, rotating pairs of bound states will be stable
below a certain kinetic energy which does not depend on their
distance. Thus, the presence of a conserved angular momentum
strongly promotes the stability of the system, and is particularly
promising for the optical stabilization of macroscopic clouds.
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This dynamical stabilization of optical binding in frictionless
media is an important feature since it opens the possibility of
enhanced long-range and collective effects in cold atoms and
beyond.

V. CONCLUSIONS

In conclusion, our study of optical binding in cold atoms has
allowed us to recover the prediction of the optical binding of
dielectric particles for negative detuning, where the viscosity
of the embedding medium is replaced by a diffusive Doppler
cooling analog. For positive detuning, we find a metastable
region, as Doppler heating eventually leads to an escape of
atoms from the mutually induced dipole potential. We also
identified a dynamical stabilization with rotating bound states.
We have shown that pairs of cold atoms can exhibit optically
bound states in vacuum. The absence of nonradiative damping
in the motion allows for a different class of dynamically bound
states. While this demonstration of optical binding for a pair
of particles paves the way for the study of this phenomenon
on larger atomic systems, the generalization of these peculiar
stability properties will be an important issue to understand the
all-optical stability of large clouds.

One interesting generalization is the study of optical forces
in astrophysical situations. Whereas radiation pressure forces
are well studied and participate, for instance, in the determi-
nation of the size of a star, dipole forces are often neglected
[28]. The possibility of trapping a large assembly of particles
in space would allow us to consider different approaches
in astrophysical imaging [15,29] and could shed additional
light on the motion of atoms such as the abundant hydrogen
around high-intensity regions of galaxies, where even small
corrections to pure gravitational attraction might be important
[30].

In the context of cold-atom light scattering, an important
issue is the one of stochastic processes due to spontaneous
emission. In order to obtain more complete predictions on
the possibility to optically bind atoms, one may, for example,

FIG. 7. Stability diagram for the equilibrium point around r ≈ 2λ.

implement a Langevin dynamics to study the effect of stochas-
tic processes on the stability diagram. This may also be relevant
to account for collective diffusion or collisions as one considers
many-atom systems.
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APPENDIX

The phase diagram of the r ≈ 2λ equilibrium point is shown
in Fig. 7: The pair of atoms presents a higher threshold in
pump strength to become stable, in order to compensate for
their weaker interaction at a larger distance.
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