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We developed a method to calculate two-photon processes in quantum mechanics that replaces the infinite
summation over the intermediate states by a perturbation expansion. This latter consists of a series of commutators
that involve position, momentum, and Hamiltonian quantum operators. We analyzed several single- and many-
particle cases for which a closed-form solution to the perturbation expansion exists, as well as more complicated
cases for which a solution is found by convergence. Throughout the article, Rayleigh and Raman scattering are
taken as examples of two-photon processes. The present method provides a clear distinction between the Thomson
scattering, regarded as classical scattering, and quantum contributions. Such a distinction lets us derive general
results concerning light scattering. Finally, possible extensions to the developed formalism are discussed.
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I. INTRODUCTION

Two-photon processes are of utmost importance for a
variety of applications and techniques in chemistry and biology
[1–4], including two-photon excited fluorescence microscopy
[5–7], optical imaging [8,9], three-dimensional optical data
storage [10,11], two-photon induced biological caging studies
[12,13], and also the analysis of mesoscopic systems [14].
In all the above-mentioned techniques, accurate theoretical
predictions of both two-photon absorption and light scattering
cross sections are highly demanded for the search of molecules
and specimens with the largest cross sections, and thus with
the highest contrast.

The main full quantum-mechanical approaches to calculate
two-photon cross sections are either third-order polarizabilities
[15–17], or the dispersion theory of Kramers-Heisenberg
[18,19], as well as its relativistic analogous method, the
S-matrix approach [20,21]. All of these approaches contain
a summation over the infinite intermediate states of the target
bound system. In the case of one-electron and nominal one-
electron (alkali-like) atomic systems, such an intermediate-
state summation has been evaluated for a variety of second-
order processes, leading to highly accurate values of cross
sections and emission rates [22–32], as well as its dependence
upon photon polarizations [33–36] and geometry [37,38].
Nevertheless, in the case of many-body systems or complex
potentials, such a summation over infinite intermediate states
is often difficult, or impossible, to be evaluated accurately
[39–44]. When considering molecules, this summation is even
harder to perform due to either the complexity of obtaining
states for complex potentials or the summation requiring a
huge amount of vibrational and rotational states for a reli-
able evaluation, even for harmonic potentials [19]. Because
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of these reasons, simpler methods, such as the Thomson
or the form factor (FF) approximations [45,46], are very
much used when calculating, for instance, light scattering by
many-electron atoms or crystallographic specimens [8,9,47],
although they are unable to capture quantum-mechanical
effects that are given by the target bound spectrum, such as
quantum interference [48,49] or resonance effects [29], among
others.

Here, we propose a method to calculate two-photon pro-
cesses that replaces the infinite summation over the interme-
diate states by a perturbation expansion. This latter consists
of a series of commutators that involve position, momentum,
and Hamiltonian quantum operators. Thus, the problem of de-
scribing two-photon processes is moved from solving complex
Schrödinger equations and Green’s functions—so to find the
intermediate states to be summed—to computing a series of
commutators. We show several cases for which a closed-form
solution to the perturbation expansion exists, as well as cases
for which the solution is found by convergence. Moreover, our
analytical method will allow us to make statements in the form
of rules that the two-photon process must obey.

For simplicity and brevity, we shall restrict our analysis to
light (Rayleigh or Raman) scattering, which is one of the most
interesting two-photon processes due to its interdisciplinarity.
In fact, Rayleigh and Raman scattering, besides being the main
tools used to analyze molecular specimens in diverse areas of
science [47,50,51], are also the basic processes in quantum
communication for upcoming technologies based on light
propagation at the single-photon level [52–54]. The reader will
notice that the formalism developed here is general and can be
applied to any two-photon process, such as two-photon decay
or two-photon absorption. Finally, conclusions and possible
extensions to the developed formalism are discussed at the end
of the article.

SI units are used throughout the article, unless differently
specified.
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FIG. 1. The light scattering process. An incident photon with
energy E1 and linear polarization vector ε1 scatters off a target T.
The scattered photon has energy E2 and linear polarization vector ε2.
θ is the scattering angle, while the xz plane is the scattering plane.

II. LIGHT SCATTERING OFF BOUND STATES

We shall work within the dipole approximation. Such an
approximation is justified if the light wavelength is much larger
than the size of the target. An extension of the present work to
higher multipoles is possible, for which details are provided in
Sec. VII.

Light scattering is described in nonrelativistic quantum me-
chanics by the Kramer-Heisenberg formula. The (polarization-
dependent) differential cross section for such a process reads
[55]

dσ ε1ε2

d�
= r2

e

E2

E1
|M|2, (1)

where re is a constant, and E1(2) and ε1(2) are the energy
and polarization vector of the incoming (outgoing) photon,
respectively. For atomic targets, re is equal to the classical
electron radius. Considering a target composed by N charged
compounds with mass m, the scattering amplitude M is
defined as

M = N 〈f | ε1 · ε∗
2 |i〉 − 1

m
(A12 + A21). (2)

The term A12 reads

A12 =
∑

ν

N∑
j,t=1

〈f | p̂j · ε∗
2 |ν〉 〈ν| p̂t · ε1 |i〉

Eν − Ei − E1
, (3)

while A21 is obtained from A12 by replacing E1 → −E2 and
ε1 ↔ ε2. p̂ is the momentum operator. We denote by Ei,f

the energies of the initial and final states of the target. On
the other hand, Eν are the energies of the intermediate states
to be summed for the computation of the amplitude. As in
Refs. [33,34], we shall consider light scattering as depicted in
Fig. 1. Without restriction of generality and unless differently
specified, we consider linearly polarized photons, with χ1(2)

being the azimuthal angle that defines the incoming (outgoing)
photon polarization. The polar angle θ uniquely defines the
direction of the scattered photon in the xz plane (scattering
plane). The target T is placed at the origin of the coordinate
axes xyz.
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FIG. 2. Graphical representation of the scattering amplitudes A12

and A21. The state |s〉 is the target intermediate state during the
scattering process.

Each of the amplitudes A12,21 describes one graph in Fig. 2.
The amplitude A ≡ A12 + A21 is the coherent sum of the two
graphs. Both terms are in general challenging to compute,
since both contain a summation over the infinite spectrum of
the target bound system. Within the Thomson approximation,
A12,21 are approximated to zero, which is evidently justified
from Eq. (3) if the photon energies (E1,2) are much larger than
the target binding energy. The first term of the right-hand side
in Eq. (2) thus represents the Thomson scattering amplitude.
It must be therefore clear that any correction coming from
the A term is to be regarded as a correction to the Thomson
approximation. Note that the Thomson scattering amplitude is
vanishing in the case of inelastic scattering (Raman scattering).

With the aim to avoid the summation over the (infinite)
intermediate target states, we shall propose an alternative
method that is based on a perturbation expansion.

III. PERTURBATION EXPANSION

A. Basic theory

Let us focus on the term A12 and rewrite it as

A12 =
N∑

j,t=1

〈f | p̂j · ε∗
2

1

Ĥ0 − Ei − E1
p̂t · ε1 |i〉 , (4)

where Ĥ0 is the target Hamiltonian, and we used the eigenval-
ues equation Ĥ0 |ν〉 = Eν |ν〉 as well as the completeness of
the states |ν〉. Now, let us define the state |s〉 as

|s〉 ≡ c

Ĥ0 − Ei − E1

N∑
t=1

p̂t · ε1 |i〉 , (5)

where c is the speed of light. Once the state |s〉 is known, the
term A12 can be simply calculated as

A12 = 1

c

N∑
j=1

〈f | p̂j · ε∗
2 |s〉 . (6)

The equation above resembles the amplitude for a single-
photon process, and can be calculated with high accuracy,
provided that |s〉 is known. Our task is then to find a solution for
the state |s〉. In the literature, there have been other studies that
used a similar starting point to get inhomogeneous equations
of the Green’s function to be solved numerically [25,56]. In
contrast, here we seek an analytical solution of the problem
via a perturbation expansion.

From Eq. (6), one sees that the state |s〉 evidently represents
the quantum intermediate state of the target during the scatter-
ing process, as depicted in Fig. 2. With the aim to find such a

043842-2



TWO-PHOTON PROCESSES BASED ON QUANTUM COMMUTATORS PHYSICAL REVIEW A 97, 043842 (2018)

state, we cast Eq. (5) as

|s〉 = −
N∑

t=1

cε1 · p̂t

E1
|i〉 + Ĥ0 − Ei

E1
|s〉 . (7)

Equation (7) can be regarded as a perturbation expansion of the
state |s〉 on (Ĥ0 − Ei)/E1. The term on which the expansion
is made is easily interpretable: The numerator (Ĥ0 − Ei)
describes the energy shift caused by the scattering photon,
while the denominator (E1) is the incident photon energy. The
expansion coefficient is thus a measure of how much energy
shift is brought to the target by the scattering photon in units
of the incident photon energy.

In the following, we shall explicitly calculate some pertur-
bation orders. Note that the state |s〉 need not be normalized
to one, since it does not represent a physical state. Close to
resonances, from Eq. (4) it can be easily seen that 〈s|s〉 ∼ +∞.

B. Zeroth order

At zeroth order, it is assumed 1/E1 = 0, which entails
E1 → +∞. From Eq. (7), this implies

|s〉0 = 0, (8)

where the subscript indicates the expansion order. In turn,
this implies that the amplitudes A12,21 are identically zero at
this expansion order, that is, A(0)

12,21 = 0. The total scattering
amplitude then turns out to be

M = N 〈f | ε1 · ε∗
2 |i〉 = Nε1 · ε∗

2δi,f , (9)

where we used 〈f |i〉 = δi,f . This expansion order evidently
corresponds to the Thomson approximation.

One may notice from Eq. (2) that the same result can be
accomplished by approximating m → +∞ and if the photon
energy is far from the target spectrum. In other words, this
is the case if the target can be considered classical. We may
therefore conclude that approximating the intermediate state
|s〉 at zeroth order, i.e., |s〉 ≈ |s〉0, is effectively as considering
the target as classical. Because of this, we shall hereinafter
call the zeroth-order term in the perturbation expansion as the
“classical term.”

C. First order

In order to compute the first order of the perturbed state,
we insert |s〉0 into the right-hand side of Eq. (7). We are thus
approaching the exact scattering solution from the Thomson
approximation, i.e., from photon energies above the spectrum.
By doing so we get

|s〉1 = −
N∑

t=1

cε1 · p̂t

E1
|i〉 . (10)

It can be easily seen from Eq. (7) that this approximation
corresponds to considering Ĥ0 |s〉 ≈ Ei |s〉. Within this ap-
proximation, we are therefore considering as if the energy of
the perturbed state |s〉 were approximately unperturbed, i.e.,
Es ≈ Ei .

By using (10), we can explicitly calculate the first-order cor-
rection to the scattering amplitude, A(1)

12 = − 1
E1

∑
j,t 〈f | p̂j ·

ε∗
2p̂t · ε1 |i〉. Analogously, the term A(1)

21 takes the form A(1)
21 =

+ 1
E2

∑
j,t 〈f | p̂j · ε1p̂t · ε∗

2 |i〉. Without restriction of gener-
ality and for simplicity, let us consider the case for which
photon polarizations are measured in the linear basis, for which
ε∗

1(2) = ε1(2). By using [p̂j · ε2,p̂t · ε1] = 0 for any j,t , we
obtain

A(1) = A(1)
12 + A(1)

21

=
N∑

j,t=1

〈f | p̂j · ε1p̂t · ε2 |i〉
(

1

E2
− 1

E1

)
. (11)

This is a fundamental correction to the Thomson amplitude that
depends only on initial and final states. The scattering operator
is in fact independent of the target binding potential. Given
that the Thomson amplitude is vanishing for Raman scattering,
Eq. (11) is actually the first nonvanishing quantum-mechanical
term related to Raman processes.

A first remark from Eq. (11) is that such an equation could
be also directly obtained from Eq. (3) by considering E1,2 �
Ei,f,ν and by then using the completeness of the intermediate
states,

∑
ν |ν〉 〈ν| = 1. A second remark is that the amplitude

goes to zero as E1 → E2. That demonstrates that the first-order
correction is always zero in Rayleigh scattering, independently
of the binding potential. This rule is a consequence of the
coherence between incoming and outgoing light in Rayleigh
scattering.

D. nth order

To find the second order of the perturbed state, we insert the
first-order solution into the right-hand side of Eq. (7),

|s〉2 = |s〉1 − 1

E2
1

[
Ĥ0,

N∑
t=1

cε1 · p̂t

]
|i〉 , (12)

where we used (Ĥ0 − Ei) |i〉 = 0 and the fact thatEi commutes
with any quantum operator. By n replacements, the state at
order n is found to be

|s〉n =
{

0, for n = 0,

|s〉n−1 + Ôn

(E1)n |i〉 , for n > 0,
(13)

or, equivalently,

|s〉n =
{

0, for n = 0,∑n
k=1

Ôk

(E1)k |i〉 , for n > 0,
(14)

where

Ôk = − im

h̄

∑
t

cε1 ·

Ĥ0 repeated for
k times︷ ︸︸ ︷

[Ĥ0,[Ĥ0,[. . . ,[Ĥ0 ,r̂t ] . . .]]]

= [Ĥ0,Ôk−1], (15)

while Ô0 = − im
h̄

∑
t cε1 · r̂t and Ô1 = −cε1 · ∑

t p̂t . To write
Eq. (15), we used the equivalence p̂t = im

h̄
[Ĥ0,r̂t ], which holds

as long as the target binding potential commutes with the
position operator. From Eq. (15), one sees that, if Ôk−1 is
vanishing, then Ôk is also vanishing, as well as all operators
Ôj with j � k.
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We define T̂ as the transition operator, that is, the operator
that transforms the initial state into the intermediate state, viz.,

|s〉 ≡ T̂ |i〉 . (16)

From Eqs. (13) and (14), it immediately follows

T̂ = Ô1

E1
+ Ô2

E2
1

+ Ô3

E3
1

+ · · · . (17)

Therefore, the transition operator at order n is given by
T̂n = ∑n

k=1
Ôk

(E1)k . Equations (13)–(17) can be used jointly
with Eqs. (6) and (2) to find the total two-photon scattering
amplitude, given the target Hamiltonian Ĥ0. We shall explicitly
do this in Secs. V and VI.

IV. GENERAL THEORETICAL RESULTS AND REMARKS

By using the theory presented in the previous sections, here
we derive several general results in the form of statements
and formulas, which are potentially useful when analyzing
Rayleigh and Raman scattering. We shall also use them later
in Secs. V and VI.

A. Scattering cross-section formula

The dependence of the scattering amplitude on the photon
energies E1,2 is wholly within the denominators of the kind
∼1/E1,2 that are contained in the transition operator T̂ [see
Eq. (17)]. This means that, without any assumption on the
target binding potential, we may predict the cross-section de-
pendence on the photon energy. For example, let us take Raman
scattering, for which 〈f |i〉 = 0 and Ei �= Ef . While the energy
of the incident photon E1 ≡ E is freely adjustable, the energy
of the scattered photon is bound by energy conservation to
be E2 = E − Eres, where we defined the resonance energy
Eres = Ef − Ei . The cross section at the leading order of the
series expansion is thus proportional to [see Eq. (11)]

σ (1) ∝ ∣∣M(1)
∣∣2 ∝

∣∣∣∣ 1

E2
− 1

E1

∣∣∣∣2

= E2
res

E2

1

(E − Eres)2 . (18)

Deviations from this formula come from higher orders in
1/E1,2. For example, from Eq. (17) the cross section at the
second order can be written as

σ (2) ∝ ∣∣M(2)
∣∣2 ∝

∣∣∣∣c1

(
1

E2
− 1

E1

)
+ c2

(
1

E2
2

+ 1

E2
1

)∣∣∣∣2

≈
(

E2
res

E2

|c1|2
(E − Eres)2 + Eres

E

4 Re(c1c
∗
2)

(E − Eres)3

)
, (19)

where we assumed |c2| � |c1|, and we kept terms of lowest
order in 1/E. The coefficients c1,2 are scaling factors that
depend on the matrix elements of the transition operator (and
therefore they depend in general on the target potential). The
second term on the right-hand side of Eq. (19) represents the
first correction to the leading-order term. One may therefore
measure the energy dependence of the scattering cross section
and parametrize it as in Eq. (19) (and subsequent orders),
by using the coefficients c1,2,3,.... This will help isolate the
quantum contributions to the scattering cross section, and
would also provide an empirical cross-section formula whose
terms have physical meaning. From the fitted coefficients, one

would then be able to retrieve the (dipole) matrix elements for
the target specimen.

B. Cancellation of quantum contributions for targets composed
by identical particles

Let us suppose the target to be composed by just two
particles of equal mass and charge, which we denote by particle
A and B. Suppose also that two such particles experience a
two-body potential that depends on the reciprocal distance,
that is, of the type V (rA − rB), as it is mostly the case in
nature, e.g., the Coulomb potential. Calculating the second-
order contribution of the operator Ô we obtain

Ô2 =
⎡
⎣ ∑

j=A,B

p̂2
j

2m
+ V (r̂A − r̂B),Ô1

⎤
⎦

= −cε1 ·
∑

j=A,B

[V (r̂A − r̂B),p̂j ]

= −ih̄cε1 ·
∑

j=A,B

∇rj
V (r̂A − r̂B). (20)

However, since ∇rB
V (r̂A − r̂B) = −∇rA

V (r̂A − r̂B), then
Ô2 = 0. Consequently, Ôk�2 = 0, as seen from Eq. (15).
Therefore, the only two nonvanishing terms of the perturbation
expansion are the classical term (9) and the first quantum
correction (11). If light is scattered elastically (as it is mostly
the case), then also the quantum correction is vanishing.
Therefore, the target behaves as a classical scatterer, since
all quantum contributions are identically zero. This result can
be trivially extended to a target composed by any number of
identical particles, as long as the interparticle potentials are
reciprocal.

Summarizing, this finding shows that when the target is
composed of identical particles that interact with light, the
quantum contributions to the scattering amplitude are either
zero or significantly reduced. More specifically, the depen-
dence of the interparticle potential on the reciprocal distance
generates coherent scattered waves that interact destructively
with each other, in pairs, thus resulting in a cancellation of
the quantum contribution to the scattering amplitude. In the
case of elastic scattering (Rayleigh scattering), the cancellation
of quantum contributions is complete. The resulting scattered
wave is thus the same as if it were scattered by a classical target.
Hence, the process of elastic scattering does not retrieve any
information about the quantum nature of the scatterer. On the
other hand, in the case of inelastic scattering (Raman scatter-
ing), the cancellation of quantum terms is almost complete,
since only one term is left out of the perturbation expansion,
besides the classical term.

One could use this result in different areas, ranging from
fundamental to applied physics. For example, one could build
quantum information carriers made of identical bound particles
that interact with light, such as BCS pairs [57]. The quanta
of information could be embedded into a quantum feature of
the bound system that is not retrievable by the classical term.
Thus, any attempt to steal the information from the system
with elastic light scattering would fail, provided that the dipole
approximation is valid. Moreover, this result also has an impact
on the coherence time of the quantum carriers, which is an
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ongoing research field [58,59], since it predicts a suppression of
electromagnetic noise for carriers made of identical particles.

Potentials that depend on the reciprocal distance are typ-
ical in atoms and nuclei. In atoms, however, electrons also
experience interactions with the nucleus, other than with
themselves. Similarly, in nuclei, protons experience interac-
tions with neutrons, other than with themselves. The resulting
overall potential is thus not only among particles of equal
mass and charge, but also among particles with different mass
and charge. Because of this, the quantum cancellation does
not fully apply, and consequently the scattered light does
possess information about the quantum nature of the target.
Nevertheless, we can show that there is a suppression of the
contribution of reciprocal potentials among identical particles,
such as electron-electron or proton-proton repulsion, at high
energies. To this aim, let us call V̂R ≡ ∑

μ>ν V (r̂μ − r̂ν) the
reciprocal potential of the identical compounds within the tar-
get, where μ,ν = (1, . . . ,N) indexes the compound. One may
straightforwardly compute the scattering operators Ô1,Ô2,Ô3,
and find out that they are linear in the momentum operator.
They therefore commute with the reciprocal potential, as
shown above. The fourth order is the lowest order where the
scattering operator presents nonlinear terms in the momentum
operator. As a matter of fact, Ô4 presents terms of the type
∼p̂μi p̂νj , where i,j = (x,y,z) are the Cartesian coordinates. At
fifth order, the scattering operator gets nonzero contributions
from the reciprocal potential since in general Ô5 ∝ [V̂R,Ô4] �=
0. Therefore, the fifth order is the lowest scattering order in
which the reciprocal potential within identical particles in the
target, such as electron-electron or proton-proton repulsion,
contributes to the scattering cross section. This entails that
the contribution of reciprocal potentials to the scattering cross
section is reduced in those cases, as long as the photon
energy is high enough to lead to convergency in Eq. (13). In
addition to this argument, we shall demonstrate in Sec. VI that
reciprocal potentials do not contribute at all to the Rayleigh
scattering amplitude, as long as (a) the binding potential can
be approximated to harmonic, and (b) the target wave function
can be separated into relative and center-of-mass coordinates.

C. Information retrieved by linearly polarized light

Let us suppose that the target binding potential is of the
form V (x,y,z) = V (x) + V (y) + V (z), and that the incident
light is linearly polarized along the x direction. From Eq. (15),
we can easily calculate that the perturbation equation for the
scattering operator Ô depends only upon the potential along
the x axis,

Ôk =
[

p̂2

2m
+ V (x̂,ŷ,ẑ),

[
. . . ,

[
p̂2

2m
+ V (x̂,ŷ,ẑ), − cp̂x

]
. . .

]]

=
[

p̂2
x

2m
+ V (x̂),

[
. . . ,

[
p̂2

x

2m
+ V (x̂), − cp̂x

]
. . .

]]
. (21)

This entails that the total cross section will only depend on the
potential along the x axis. Generalizing, if the target binding
potentials along different Cartesian axes are fully decoupled
(i.e., they are different terms in the Hamiltonian), linearly

polarized light will only probe the binding potential along the
polarization axis.

This result is particularly useful if one wants to individually
probe the target binding potential along a given axis, as it might
be the case, for example, in ion traps [60], especially in array-
based approaches where the transport of ions along the trap axis
is sought, to be eventually used for quantum communication
purposes [61]. Alternatively, this result can be used to polarize
light, by inducing asymmetric target potentials, where the
asymmetry needs to be in the polarization plane. Conversely,
one could retrieve asymmetries in the target binding potential
by analyzing the polarization of the scattered light.

D. Further considerations

Owing to the commutators, at the nth order we get a
correction proportional to h̄n. This feature resembles typical
semiclassical expansions which are also in powers of h̄, such
as the Wentzel-Kramers-Brillouin (WKB) approximation [62].
Here, however, the inverse dependence on the photon energy
contributes to the convergence of the series in addition to the
dependence on h̄. If the target binding potential and all its
derivatives are not singular anywhere, the convergence of the
series in Eqs. (13)–(17) will be attained, at least for energies
significantly above the target spectrum. To this regard, one
must be careful when considering Coulomb binding potentials
since they present singularities given by the terms ∝1/|r i | or
∝1/|r i − rj |.

As a last remark, we point out that an exact solution of
the series expansion in Eq. (15) is in general difficult to
find. Even so, below, we shall show a few cases for which
a closed-form solution can be found. Moreover, we shall show
that convergence for any (arbitrarily complex, not singular)
binding potential is guaranteed provided that the photon energy
is high enough with respect to the binding energy. This endows
the formulas (13)–(15) with a fundamental value that paves the
way to compute two-photon processes within a full second-
order quantum-mechanical framework for complex quantum
systems where the infinite sum of intermediate states is difficult
or unfeasible to calculate.

V. APPLICATION TO A FEW SINGLE-PARTICLE CASES

As practical examples, in this section we shall apply
the technique we developed above to some specific (single-
particle) cases that are easily found in the literature for
modeling quantum phenomena. We shall proceed in order of
complexity with regard to the target binding potential. We will
analyze Raman or Rayleigh light scattering, depending on the
case study.

A. Potential box

The simplest binding potential is a potential box, where
the potential is zero (or any constant) within the box, while
it is infinite outside. Notwithstanding its simplicity, such a
potential is used to model bound states in nuclear physics
[63], subnuclear physics [64], and semiconductor physics [65],
among others. Eigenstates and eigenenergies can be found
in standard textbooks [66]. Specifically, the combination of
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FIG. 3. Probability density |M|2 for Raman scattering off one
particle trapped by a potential box (see Sec. V A). Atomic units are
used. The potential parameters can be retrieved by analyzing the
relative positions of the resonance peaks.

quantum numbers (nx,ny,nz) defines the eigenstates, with
nj = 1,2,3, . . . for any j = x,y,z. Quantum states are char-
acterized by the energy En = ξan

2, where n2 = n2
x + n2

y + n2
z

and ξa = π2 h̄2

2ma2 . Given that all eigenfunctions are vanishing at
the edge of the potential box and beyond, we can restrict the
integrals in Eq. (3) within the domain |x| < a/2, |y| < a/2,
|z| < a/2, where a is the size of the potential box. Within such
a domain, the potential is constant and therefore Ôk�2 = 0. By
using the theory developed in the previous sections, the total
(exact) scattering amplitude M is calculated as

M = ε1 · ε2δi,f − 1

m

(
1

E2
− 1

E1

)
〈f | p̂ · ε1p̂ · ε2 |i〉︸ ︷︷ ︸

Cf,i

, (22)

where E2 = E1 − Ef + Ei by energy conservation, and where
we considered (without restriction of generality) linear photon
polarizations. The matrix elements Cf,i can be calculated by
using standard techniques.

Let us investigate Raman scattering off one particle trapped
in the potential box. Provided that the matrix element Cf,i

is not zero, the Raman cross section will peak at photon
energy E1 � Ef − Ei , as can be seen from Eq. (22). Since
ξa depends on a, the relative position of the energy peaks
will also depend on a (the box size). For example, the first
peak is located at energy E1 = 3ξa = 3π2h̄2/(2ma2) ≈ 15/a2

(atomic units). By scanning through the incident photon energy
and by thus investigating the distance between peaks, one can
retrieve the size of the potential box. See Fig. 3 for this purpose,
where |M|2 is plotted after having summed over the final
target states, integrated over the scattering angle, as well as
summed (averaged) over the final (initial) photon polarizations.
Furthermore, the dependence of the energy peaks on the box
size a can be used to roughly estimate the range of the target
binding potential, as long as it can be approximated to a
potential box.

A similar analysis can be performed for a semi-infinite
potential well or for a delta potential, which are potentials
that can be used to model nucleon-nucleon and short-range
interactions, respectively [67].

B. Symmetric linear potential

Besides box potentials, linear potentials are also a class of
potential models that are used in different areas of physics [68–
71]. Let us therefore consider light scattering off one particle
bound by a potential of the form V = bx |x| + by |y| + bz|z|,
where bx,y,z are constants. Eigenstates and eigenenergies are
well known and can be found in the literature [72]. By using
linear photon polarizations (without restriction of generality),
from Eq. (15) we can solve for the operator Ô of the amplitude
A12,

Ô2 = −ih̄cε1 · b̂−, Ôk�3 = 0, (23)

where b̂− = (x̂bx/|x̂|,ŷby/|ŷ|,ẑbz/|ẑ|), while Ô1 has been de-
fined in Eq. (15). Equations (23) are valid only for x �= 0,
y �= 0, z �= 0. On the other hand, if x = 0 or y = 0 or z = 0, the
operators Ôk�2 cannot be calculated since the first derivative
of the potential is not defined. Nevertheless, this problem can
be circumvented by either taking the principal value of the
integral in Eq. (6), or by working with antisymmetric target
wave functions, which are vanishing in those points.

By coherently summing the amplitudes A12 and A21 as in
Eq. (2), the total (exact) scattering amplitude M is found as

M = ε1 · ε2δi,f − 1

m

(
1

E2
− 1

E1

)
〈f | p̂ · ε1p̂ · ε2 |i〉

− ih̄

m
〈f |

(
ε2 · p̂ε1 · b̂−

E2
1

+ ε1 · p̂ε2 · b̂−

E2
2

)
|i〉 , (24)

where E2 = E1 − Ef + Ei by energy conservation.
Let us consider Raman scattering, where the initial state is

the (symmetric) ground state, while the incident photon linear
polarization is along thex axis (χ1 = 0). Let us further consider
for simplicity the case of (a) scattering in the backward
direction (θ = π ), and (b) no linear polarization flip, which
implies χ2 = 0. Figure 4 displays |M|2, after having summed
over the final target states. As for the previous case, the relative
distance between peaks can be used to retrieve the potential
parameter bx . On the other hand, by virtue of the chosen
settings, the scattering amplitude does not depend on the other
two parameters by,bz, which is also a consequence of our
findings in Sec. IV C.

FIG. 4. Same as Fig. 3, but relative to the case study presented in
Sec. V B.
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C. Harmonic potential

Here, we consider the target being characterized by one
charged particle bound by a harmonic potential. Such a model
is extensively used in quantum optics [73,74] as well as in
nuclear physics (shell model) [75], among others. The target
Hamiltonian is

Ĥ0 = Ĥho = p̂2

2m
+ mω2

2
(r̂ − r0)2, (25)

where ω is the oscillator constant, and r0 the displacement
vector. Let us further consider an incident photon that is linearly
polarized along the x direction, which entails ε1 = (1,0,0).
Consequently, we have Ô1 = −cp̂x . By straightforward cal-
culation, one can see that [Ĥ0,Ô1] = −cω2(x̂ − x0)ih̄m, as
well as [Ĥ0,[Ĥ0,Ô1]] = h̄2ω2Ô1. This can be replaced in the
definition of T̂ to find

T̂ = Ô1

E1
+ [Ĥ0,Ô1]

E2
1

+ [Ĥ0,[Ĥ0,Ô1]]

E3
1

+ [Ĥ0,[Ĥ0,[Ĥ0,Ô1]]]

E4
1

+ · · ·

= Ô1

E1
+ [Ĥ0,Ô1]

E2
1

+ h̄2ω2

E2
1

(
Ô1

E1
+ [Ĥ0,Ô1]

E2
1

+ [Ĥ0,[Ĥ0,Ô1]]

E3
1

+ · · ·
)

= Ô1

E1
+ [Ĥ0,Ô1]

E2
1

+ h̄2ω2

E2
1

T̂. (26)

This leads to a closed-form solution,(
1 − h̄2ω2

E2
1

)
T̂ = Ô1

E1
+ [Ĥ0,Ô1]

E2
1

. (27)

In the case of zero displacement (|r0| = 0), the equation above
can be recast as

T̂ = −i
h̄2ω2

E2
1 − h̄2ω2

√
2mc2

h̄ω
â†x,γ , (28)

where â†x,γ = √
mω
2h̄

(x̂ − i
mω

γ p̂x) = 1
2 [â†x(1 + γ ) + âx(1 − γ )]

and γ = E1/(h̄ω). Here, âx and â†x represent the standard
annihilation and creation operator for the quantum harmonic
oscillator along the x direction [62]. While γ denotes the
ratio between the photon energy and the oscillator energy,
â†x,γ can be considered the “perturbed” creation operator along
the polarization direction. This leads us to an additional
result: When linearly polarized photons with energy E1 are
scattered by a harmonic oscillator with angular frequency ω,
the intermediate scattering state of the harmonic oscillator
is equal to |s〉 = T̂ |i〉 = K â†j,γ |i〉, where j is the photon
polarization direction and K is a numerical factor defined
from Eq. (28). We may notice here again that, if the photon
hits the resonance (E1 → h̄ω), then K → +∞, and therefore
〈s|s〉 ∼ +∞.

From Eqs. (28) and (6), the term A12 can be calculated.
Considering a general linear polarization for the incident

FIG. 5. Probability density for elastic light scattering (Rayleigh
scattering) off a particle bound by a harmonic potential.

photon, one has

A12 = m

(
h̄2ω2

E2
1 − h̄2ω2

) ∑
j,k

= x,y,z

ε2j ε1k 〈f | (â†j − âj )â†kγ |i〉 .

(29)

Finally, with the help of Eq. (2), in the case of Rayleigh
scattering (i.e., for E1 = E2 ≡ E, which implies |i〉 = |f 〉),
the total amplitude M (exact) can be evaluated analytically,

M = ε1 · ε∗
2

(
1 + h̄2ω2

E2 − h̄2ω2

)
. (30)

It can be easily noticed that the second term (which is
the quantum term) represents a Lorentzian peak, with zero
resonance width, the probability density being proportional
to h̄4ω4

(E+h̄ω)2
1

(E−h̄ω)2 . The fact that the resonance width is zero
is not unexpected, since we have not inserted the widths of
bound states into the formalism. Moreover, we may notice
that the amplitude peaks at the resonance E = h̄ω, which
is the energy gap between neighboring states in a harmonic
potential spectrum. This is easily understandable, since within
the dipole approximation the transition operator is proportional
to ε · p̂, and thus proportional to ε · (â† − â). Therefore, such
an operator has nonvanishing matrix elements only between
states whose energy difference is h̄ω. One could also use
this feature to retrieve Eq. (30) directly from Eqs. (3) and
(2), by restricting the summation over intermediate states to
neighboring states. In Fig. 5 we show the probability density
for Rayleigh scattering off a harmonic oscillator with angular
frequency ω, as obtained from (30).

We see from Eq. (30) and from Fig. 5 that the amplitude M
asymptotically vanishes as E → 0. At low photon energies,
the contribution of higher terms [the quantum terms, which
are represented by the second addend in Eq. (30)] fully
destructively interferes with the contribution of the zeroth-
order term [the classical term, which is represented by the first
addend in Eq. (30)]. Overall, this results in a vanishing cross
section. At low light frequency, also Raman scattering is zero,
since the light does not carry enough energy to excite the target.
Thus, a harmonic oscillator does not scatter light when the light
frequency is much lower than the oscillator frequency. This is in
line with the Rayleigh scattering formula, which states that the
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scattering cross section for low energetic light is proportional
to the fourth power of the light frequency [76].

D. Morse potential

The Morse potential is typically used in molecular physics
to model vibrations [77,78]. In this section, we consider the
target having one charged particle that is vibrating along the x

axis, the vibration being modeled by a Morse potential

V (x) = V0(e−2a(x−x0) − 2e−a(x−x0)), (31)

where x and x0 are respectively the position with respect to the
core potential and the position at the equilibrium, while a,V0

are parameters. The eigenstates of this potential are known
[77]. Let us denote by V(y,z) the binding potential along
directions different than x. Let us also suppose that the incident
light is linearly polarized along the x direction. In this situation,
V(y,z) does not contribute to the scattering amplitude, as
shown in Sec. IV C. We are thus selectively probing the Morse
potential axis with light [79].

We shall consider Rayleigh scattering off the ground state.
The calculated components of the scattering operator Ô, at
orders zeroth to sixth, are showed in the Appendix. Con-
vergence of the series (13) is attained at sufficiently high
energies. We explicitly show such a convergence in Fig. 6,
where the scattering probability density is plotted for different
perturbation orders, for the specific case of (a) scattering in
the backward direction (θ = π ), and (b) no linear polarization
flip, which implies χ2 = 0.

The elastic resonance peak does not appear in Fig. 6, since
it is located at lower energies. In the energy range related to the
resonance peak, convergence of the perturbation expansion is
difficult to attain, since it requires computing many expansion
orders. Generally, convergence of the perturbation expansion
is attained within a few expansion orders if the photon energy
is sufficiently above the resonance energies.

FIG. 6. Probability density of elastic light scattering (Rayleigh
scattering) off a particle vibrating along the x direction, the vibration
being modeled by a Morse potential. Light is polarized along the x

direction. Parameters are set as (a,V0,xe) = (1/3,1,0). M(n) means
scattering amplitude evaluated at the nth order, with M(0) = ε1 · ε∗

2.
Convergence of the series expansion is showed.

VI. APPLICATION TO MULTIPARTICLE CASES:
COUPLED-HARMONIC OSCILLATORS AND HOOKE’S

ATOM

In this section, we analyze two-photon scattering off multi-
particle targets. For this purpose, we consider the target being a
set of two coupled-harmonic oscillators, as displayed in Fig. 7.
The Hamiltonian of such a system is

Ĥ0 =
∑

i=A,B

(
p̂2

i

2m
+ mω2

2
r̂2
i

)
+ V (r̂A − r̂B), (32)

where V (r̂A − r̂B) is any coupling potential between the
oscillators. Let us consider, for simplicity, an incident photon
that is linearly polarized along the x direction. As shown
in Sec. IV B, we may use [V (r̂A − r̂B),Ô1] = 0. Therefore
[Ĥ0,Ô1] = −ih̄cmω2(xA + xB) and [Ĥ0,[Ĥ0,Ô1]] = h̄2ω2Ô1.
As a consequence, Eqs. (26) and (27) also hold in this
multiparticle case. Then, similarly to Eq. (28), the transition
operator T̂ turns out to be

T̂ = −i
h̄2ω2

E2
1 − h̄2ω2

√
2Mc2

h̄ω
Â

†
1x,γ , (33)

where Â
†
1x,γ =

√
Mω
2h̄

(R̂x − i
Mω

γ P̂x), and M = 2m. R̂x and P̂x

are the projections along the x axis of the operators related
to the center-of-mass coordinates; these are defined as R̂ =
(r̂A + r̂B)/2 and P̂ = p̂A + p̂B .

To further proceed, one needs to define the interaction
that yields the coupling potential V (r̂A − r̂B), so to define
the states |i〉 and |f 〉. As a first example, let us choose
the coupling potential to be harmonic. Harmonic coupling is
mostly considered in crystals (classic phonon theory) [80], but
also in many other physics fields, such as astrophysics [81]
or quantum many-body systems [82]. With this choice, the
target eigenstates |〉 are factorized into the three Cartesian
coordinates |〉 = |φx〉 |φy〉 |φz〉, where the vector state for
each axis is itself factorized into center-of-mass and relative
(interparticle) coordinates as [83]

|φj 〉 = (Â
†
1j )n1j (Â

†
2j )n2j√

n1j !n2j !
|00〉 , (34)

for any j = x,y,z, while nij = 0,1,2, . . . is the excitation
number. The ladder operator related to the center-of-mass co-

ordinates is defined as Â
†
1j =

√
Mω
2h̄

(R̂j − i
Mω

P̂j ) = Â
†
1j,γ=1.

On the other hand, Â
†
2j is the ladder operator related to the

relative coordinates, and is not important for our analysis.

A B

FIG. 7. A set of two coupled-harmonic oscillators. The binding
potential (blue line) is harmonic, while the A-B coupling (red line)
can be differently defined.
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Since the transition operator (33) does not contain operators
related to relative coordinates, it follows that the Rayleigh
scattering amplitude is the same as in Eq. (29) with aj → Â1j

and aj,γ → Â1j,γ . The final form of the total amplitude is thus
the one shown in Eq. (30) and displayed in Fig. 5. In conclusion,
although the target bound structure in this multiparticle case is
richer than in the single-particle case, the Rayleigh scattering
amplitudes are the same, due to the fact that the transition
operator only contains operators related to the center-of-mass
coordinates, and that the wave function is factorized into
center-of-mass and relative coordinates.

As a second example, we consider the coupling potential
to be of Coulomb type, V (r̂A − r̂B) = α/|r̂A − r̂B |, where α

is the coupling constant. With this choice, the set of coupled-
harmonic oscillators in Fig. 7 is known as Hooke’s atom [84].
The Hooke’s atom is an atomic model for helium that approx-
imates the Coulomb interaction between atomic electrons and
the nucleus with a harmonic interaction, while retaining the
full electron-electron repulsion term in the Hamiltonian. For
this reason, it is considered important in quantum chemistry
and physics for the study of electron-electron correlations
and quantum entanglement [85,86]. The ground-state wave
function of the Hooke’s atom is known analytically for many
values of ω. Such a wave function can be written in a factor-
ized form as (R,u) = χ (R) φ(u), where u = r1 − r2 is the
relative coordinate and R (defined above) is the center-of-mass
coordinate. While the function φ(u) is specific to the Hooke’s
Hamiltonian, the function χ (R) turns out to be the wave
function of a quantum harmonic oscillator. χ (R) describes
the movement of the center of mass of the coupled-harmonic
oscillators in Fig. 7. Let us now come back to the calculation
of the Rayleigh scattering amplitude off the Hooke’s atom.
Since the transition operator (33) does not contain operators
related to relative coordinates, it will only act on the wave
function χ (R), and will consequently lead, once again, to the
same transition amplitude we calculated for the single-particle
harmonic oscillator in Sec. V C.

The calculations above lead us to another interesting result,
which can be formulated as follows: Irrespectively of the
choice of the coupling potential, the Rayleigh scattering off
coupled- and uncoupled-harmonic oscillators is characterized
by the same transition amplitude, as long as the wave function
can be separated into center-of-mass and relative coordinates.
In other words, the Rayleigh scattering is not sensible to the
interparticle coupling potential, provided that the mentioned
hypotheses are satisfied. The same result would be obtained
for N coupled-harmonic oscillators.

VII. FURTHER STUDIES AND EXTENSIONS

Similarly to what shown in Secs. V and VI, one could
compute light scattering (as well as any two-photon pro-
cesses) off other kinds of potentials. The computation of the
transition amplitude could be algebraically more complicated
but certainly feasible. In other words, with the formalism
developed in this article, one can calculate (dipole) two-photon
transitions irrespectively of the complexity of the potential. If a
closed-form solution for the transition amplitude cannot be
found, a solution given by convergence can be sought, provided

that (a) the potential is not singular anywhere in the real space,
and that (b) the photons have a sufficiently high energy.

The present study can be extended to higher multipoles.
In order to consider all multipoles, one needs to replace ε1,2 ·
p̂ → ε1,2 · p̂e±ik1,2 r̂/h̄ in Eq. (6), as well as in Ô1 in Eq. (15),
where k1,2 are the photon momenta. Furthermore, one needs
to adjust also the classical term (9), so to replace the Thomson
term with the so-called form factor term [46]. The resulting
computation for the matrix amplitude would be more difficult
but certainly feasible, at least if one looks for convergence at
high photon energies. A closed-form solution might be in fact
not be available when high multipoles are considered, even for
the simpler cases described in Secs. V and VI.

An extension to relativistic quantum mechanics is analo-
gously possible since the relativistic two-photon transition am-
plitude has a structure similar to the nonrelativistic one. Even
so, the commutators would be more challenging to compute,
since the Dirac matrices do not commute with each other.

So far we considered the interaction potential to be that
one given by (nonrelativistic) quantum electrodynamics. If the
interaction potential were different, Eqs. (13) and (15) would
still hold, as long as second-order perturbation theory can
be applied. The whole formalism developed here would be
therefore unchanged. What would need an amendment is the
definition of the operator Ôn, of Eq. (6), and of the classical
term (9). The amendment would be the replacement of the
potential operators.

VIII. SUMMARY AND CONCLUSIONS

We developed a method for evaluating two-photon pro-
cesses that replaces the (well-known) summation over the
intermediate states by a series of commutator operators. By
focusing on Raman and Rayleigh scattering as examples of
two-photon processes, we showed how this method gives a
clear distinction between the Thomson scattering, regarded as
the classical term, and the next terms of powers of h̄, regarded
as quantum contributions. We applied this method to study
light scattering off several target Hamiltonians, and we thereby
obtained closed-form solutions of the commutator series for
the simpler potential cases, while we looked for convergence
in the case of more complex potentials.

In the course of our analysis, we derived several results.
First, we derived a general correction to the Thomson ap-
proximation, as well as an energy-dependence law for the
cross section, which is valid for any target potential within the
dipole approximation. Furthermore, we found an analytical
transformation from the ground state to the perturbed state
of a harmonic oscillator undergoing light scattering. We also
showed that quantum contributions are vanishing (or signifi-
cantly reduced) for targets composed of identical particles that
are interacting with light. Moreover, we showed that linearly
polarized light only probes the target binding potential along
the polarization axis, under the assumption that such a potential
is decoupled in Cartesian coordinates. Finally, we demon-
strated that as long as (a) the target binding potential can be
approximated to harmonic, and (b) the target wave function can
be separated into relative and center-of-mass coordinates, then
the elastic scattering amplitude is independent of interparticle
potentials.
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As mentioned in previous sections, two-photon processes
are applied in many scientific areas. Therefore, the present
work can be potentially useful for forthcoming studies—
in quantum chemistry, biology, crystals, mesoscopic sys-
tems, many-body physics, quantum optics, and fundamental
physics—that aim at analyzing two-photon processes beyond
the Thomson or single resonance approximations [87], for
which the infinite summation over the target intermediate states
is difficult or unfeasible to calculate, or where a clear distinc-
tion between classical and quantum contributions is sought.
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APPENDIX

Here, we explicitly write the scattering operator Ô for the case investigated in Sec. V D, that is, Rayleigh scattering off a
particle vibrating along the x axis, the vibration being modeled by a Morse potential. For simplicity, let us set units such that
(V0,a,x0,m,h̄,c) = (1,1/3,0,1,1,1). The ground state of the Morse potential is

ϕ0 = 2
9√
2
− 3

4 33
√

2−1e
x
3 −3

√
2e−x/3

e
− x

3

(
1
2 +3

√
2
)√

6
√

2 − 1

�(6
√

2)
. (A1)

The components of the operator Ô up to sixth order are found to be as follows,

Ô1 = − p̂x, Ô2 = 2

3
ie−2x̂/3 − 2

3
ie−x̂/3, Ô3 = −2

9
(p̂xe

−2x̂/3) + 1

9
(p̂xe

−x̂/3) − 2

9
(e−2x̂/3p̂x) + 1

9
(e−x̂/3p̂x),

Ô4 = − 2

27
i
(
p̂2

xe
−2x̂/3

) + 1

54
i
(
p̂2

xe
−x̂/3

) − 2

27
i
(
e−2x̂/3p̂2

x

) + 1

54
i
(
e−x̂/3p̂2

x

) − 4

27
i(p̂xe

−2x̂/3p̂x) + 1

27
i(p̂xe

−x̂/3p̂x)

− 2

9
i(e−x̂/3e−2x̂/3) − 2

9
i(e−2x̂/3e−x̂/3) + 8

27
ie−4x̂/3 + 4

27
ie−2x̂/3,
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p̂3

xe
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x

)
− 1

27
i
(
e−2x̂/3p̂2

x

) + 2

243
i
(
e−2x̂/3p̂4

x

) − i
(
e−x̂/3p̂4

x

)
1944

− 52

243
i(e−2x̂/3e−x̂/3e−2x̂/3) + 10

243
i
(
p̂2

xe
−x̂/3e−2x̂/3

)
− 8

81
i
(
e−2x̂/3p̂2

xe
−2x̂/3

) + 17

162
i
(
e−x̂/3p̂2

xe
−2x̂/3

) + 64

243
i(e−x̂/3e−2x̂/3e−x̂/3) + 55

486
i
(
p̂2

xe
−2x̂/3e−x̂/3

)
+ 17

162
i
(
e−2x̂/3p̂2

xe
−x̂/3

) − 1

81
i
(
e−x̂/3p̂2

xe
−x̂/3

) − 136

243
i(p̂xe

−4x̂/3p̂x) − 17

243
i(p̂xe

−2x̂/3p̂x) + 8

243
i
(
p̂3

xe
−2x̂/3p̂x

)
− 1

486
i
(
p̂3

xe
−x̂/3p̂x

) + 55

486
i
(
e−x̂/3e−2x̂/3p̂2

x

) + 4

81
i
(
p̂2

xe
−2x̂/3p̂2

x

) + 10

243
i
(
e−2x̂/3e−x̂/3p̂2

x

) − 1

324
i
(
p̂2

xe
−x̂/3p̂2

x

)
+ 8

243
i
(
p̂xe

−2x̂/3p̂3
x

) − 1

486
i
(
p̂xe

−x̂/3p̂3
x

) − 8

81
i
(
p̂xe

−2x̂/3p̂xe
−2x̂/3

) + 26

243
i(p̂xe

−x̂/3p̂xe
−2x̂/3)

+ 49

243
i(p̂xe

−2x̂/3p̂xe
−x̂/3) − 1

81
i(p̂xe

−x̂/3p̂xe
−x̂/3) + 10

81
i(p̂xe

−x̂/3e−2x̂/3p̂x) − 8

81
i(e−2x̂/3p̂xe

−2x̂/3p̂x)

+ 49

243
i(e−x̂/3p̂xe

−2x̂/3p̂x) + 10

81
i(p̂xe

−2x̂/3e−x̂/3p̂x) + 26

243
i(e−2x̂/3p̂xe

−x̂/3p̂x) − 1

81
i(e−x̂/3p̂xe

−x̂/3p̂x).

To compute the above elements we used the QUANTUM MATHEMATICA package [88].
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