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Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits
numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom
of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations
of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under
the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a
rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic
(vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and
extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz
transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering
processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light

emitted by fast-moving bodies.

DOI: 10.1103/PhysRevA.97.043840

I. INTRODUCTION

In the past decade, the spin-orbit interactions (SOIs) of
light—including spin Hall effects, spin-to-orbital angular mo-
mentum (AM) conversions, etc.—have become an inherent
part of modern optics; see [1-5] for reviews. The vast majority
of known SOl effects originate from the fundamental polariza-
tion and AM properties of monochromatic Maxwell fields in
a single laboratory reference frame [1,6]. Similar phenomena
have also been described for relativistic electrons and other
spinning particles [7—12]. Electron SOIs play an important role
in atomic physics, condensed matter, and could also affect the
dynamics of relativistic free-electron states carrying intrinsic
AM [13-15].

At the same time, there is considerable recent interest
on relativistic transformations of photons and other particles
carrying intrinsic AM [16-20]. Transverse Lorentz boosts of
wave beams break down their monochromaticity and induce
a number of nontrivial relativistic AM-dependent phenomena.
In particular, the Lorentz transformations of the intrinsic and
extrinsic AM differ significantly from each other. Requiring
their consistency brings about the relativistic Hall effect (i.e.,
the boost-induced transverse position shift) related to the
delocalized nature of the wave AM [16-20].

Relativistic properties and transformations of AM-carrying
waves are important from both the fundamental and practical
viewpoints. These are involved in the “proton spin puzzle”
in QCD [21,22], studies of “chiral fermions” [17,18], and
collisions of spinning particles [17,19]. Moreover, there is a
rapidly growing interest in scattering of photons, electrons,
and other high-energy particles carrying intrinsic orbital AM
[14,23-25]. Naturally, the Lorentz transformations of wave
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packets or beams carrying spin and orbital AM are of great
importance for these topics.

Importantly, most of the recent studies of Lorentz trans-
formations of the wave AM considered the intrinsic spin
(polarization) and orbital (vortex) AM on equal footing. For
example, the Hall-effect shift of the energy centroid is largely
independent of the spin or orbital nature of the intrinsic AM
[16,17,19,20,26]. However, in this paper, we show that the
spin and orbital AM of photons and relativistic electrons
are transformed quite differently under Lorentz boosts. To
illustrate this crucial difference, we put forward the following
paradox about the transformation of the spin of a photon.

The spin AM of a paraxial photon can be well approximated
by the plane-wave expression S = ficP/P [27-29], where
o € (—1,1) is the polarization helicity and P is the photon
momentum. Assuming P = P Z (overbars denote the unit
vectors of the corresponding axes), we perform the transverse
Lorentz boost characterized by the velocity v = v X and the
corresponding Lorentz factor y = 1/4/1 — u2, u = v/c. This
transformation preserves the helicity o (which is Lorentz
invariant for massless particles) and rotates the propagation
direction by the angle # = sin~'u = cos~'y~!. As a result,
the photon spin in the boosted reference frame (indicated by
primes) becomes S’ = hio[y~'Z — uX'], Fig. 1(a). However,
this contradicts the Lorentz transformations of the relativistic
AM tensor, which consists of the AM J and the “boost
momentum” N [30]. Indeed, assuming that the photon is
represented by a large paraxial wave packet (close enough to
the plane wave) withenergy W = hw (w = kcisthe frequency;
k is the wave vector), momentum P = 7ik Z, and position of
the centroid R = ¢t Z, the boost momentum vanishes in the
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FIG. 1. Transverse Lorentz transformation of the photon spin.
The spin of an electromagnetic wave, S, is rotated by the angle
6 = sin~'u (a), which is in contrast to the Lorentz transformation of
a relativistic AM J (provided the boost momentum N = 0): J' = yJ
(b) [16,30].

original reference frame: N = c¢tP — RW/c = 0. Then, the
Lorentz transformations of the AM J = JZ yields J' =y J
[16,30,31], Fig. 1(b). Obviously, the photon spin AM S cannot
follow this rulebecause y > 1, while the spinis restricted to the
(—"h,h) range. In a more fundamental context, the difference
between the spin and AM transformations comes from the fact
that the spin of a relativistic particle follows the Pauli-Lubanski
four-vector rather than the rank-2 AM tensor [32-34].

In this paper, we resolve the above controversy by consider-
ing trasversely localized optical beams carrying both spin and
orbital AM. We derive quite nontrivial Lorentz transformations
of the spin and orbital AM carried by paraxial photons, as well
as the relativistic Hall-effect shifts caused by photon’s spin and
orbital AM. We find that Lorentz boosts inevitably produce
spin-to-orbital AM conversion as well as nontrivial spin and
orbital Hall-effect shifts, i.e., relativistic SOIs. We also perform

J
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Uk) = R.(—p)R, (MR (¢) =

is the rotational matrix superimposing the longitudinal axis
with the wave vector [(¢,¢) are the spherical angles of the
k vector and ﬁ’,y, . are the corresponding rotational matrices],
whereas

L1 0
V=—11 i 0
V2\o 0o 2

is the constant matrix of the transition to the circular-
polarization basis.

Onmitting the vanishing longitudinal component of the fields
(2), we end up with the two-component electric field E =
(E*E ’)T and the corresponding magnetic field H = —i6E
following from Maxwell’s equations. Here 6 = diag(1, — 1)
is the helicity operator and throughout the paper we use
Gaussian-like units with g = o = 1.

We now define the “photon wave function” [35,36] in the
helicity representation as

P
¥(k) = «/TT/[E(k) +icHK)] = \/;E(k), 3)

. 219 .
—sin” % sin 2¢
sin ¥ cos ¢

analogous Lorentz-boost calculations for the Dirac-electron
beams, and show that most of their AM transformation features
are similar to the photon case, albeit modified by the finite
electron mass.

II. RELATIVISTIC TRANSFORMATIONS
OF OPTICAL BEAMS

A. General formalism

We first introduce the general formalism for calculations of
dynamical properties (energy, momentum, AM, etc.) of generic
free-space Maxwell fields. This is mostly based on the results
of works [6,35,36].

The real electric and magnetic fields £(¢,r) and H(¢,r) are
represented via their complex Fourier (plane-wave) compo-

nents:
Ewr)| _ @k [E®)| iorsice
{’H(t,r)} _2Re/(2ﬂ)3/2 {H(k)}e ikr (1)

where w(k) = kc. Due to Maxwell’s equations, the Fourier
components are orthogonal to the wave vector: E-k =H -
k = 0, and it is instructive to make a transformation to the local
k-space coordinates with the longitudinal axis attached to the
wave vector. The fields have only two transverse components in
these coordinates, and using the basis of circular polarizations
corresponds to the helicity representation of Maxwell fields.

The transition to this basis is realized by the unitary
transformation [6]

{Ek),HK)} = V UK){E®K),HK)}. 2)

Here
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(

where the normalization factor N is the number of photons
defined below. Then, the expectation value of an operator O
can be calculated as [35,36]

A d’k i A
0= oY) = / 7o ¥ &) - (0) ¥ k). 4)

Note that the factor w~'(k) in Eq. (4) is crucial for non-
monochromatic fields. Assuming the one-photon normaliza-
tion (¥|¥) = 1, the number of photons in Eq. (3) is N =
2 [ Lk Rk

For further calculations, we need operators of the energy
W, momentum P, position R, spin AM S, orbital AM L,
and boost momentum N (see [16,30,37-39] for the latter
quantity). According to the works [6,35,36], in the helicity
representation, projected on the 2D subspace of Maxwell fields
E(k), these operators read

A

k, R=iVy—AzKk),

>
Il
St
S
>
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, L=RxP, N:ctf’—f(W/c. )
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Here AB(k) = 6k~ '[(1 — cos ¥)/ sin 9] @ (@ is the unit vector
of the azimuthal coordinate ¢) is the Berry connection, which
determines the covariant derivative and parallel transport of
E(k) L k on the sphere S = {k/k} [the electric field E(k) be-
longs to the vector fiber bundle over this sphere] [1 3,6,36,40].
The operators W, P, the total AM J = S + L, and N provide 10
generators of the Poincaré group, and their expectation values
are conserved in free space [35,36,38,39].

Note that the expectation value of the position operator (5),
R, describes the “photon centroid,” while the energy centroid
of the field is determined as Rg = c(ctP — N)/ W. These two
positions can differ from each other in nonmonochromatic
fields; they play a crucial role in the Lorentz transformations
of the AM and relativistic Hall effects [16,17,19,26,30].

We also note that the same expectation values (4) can be
obtained without transition to the helicity representation (2).
In the canonical momentum representation, the six-component
photon wave function is given by the Fourier components (1):

V() = — (ER)HK), ©)
N
where N = [ 4k 4k (|E(k)[? + |H(K)|?). In this representation,
the operators (5) have canonical form without the Berry
connection:

Rcan = ina Lcan = Rcan X P,

. P (7N
Ncan =ctP — RcanW/C»

whereas the spin operator S.,, is given by the momentum-
independent spin-1 3 x 3 matrices [6,29,35]. Although the
canonical operators have simpler form, the canonical photon
wave function (6) is considerably complicated, having six
components instead of two. Therefore, below we employ the
helicity representation (2)—(5) for photonic calculations, but
use the canonical representation analogous to Egs. (7) for the
Dirac-electron calculations in Sec. III.

In addition to the expectation values of operators (5) in the
momentum representation, we will use the spatial energy and
Poynting-momentum densities in the coordinate representation
of real fields (1) [30]:

w=(E>+H>/2, p=c " (ExH). (8)

The integral energy, momentum, total AM, and boost momen-
tum of a localized field are then determined as W = f wd’r,
P=[pd’r,J = [(r xp)d’r,and N = [(ctp — rw/c)d’r.
For a one-photon field, these values are equivalent to the cor-
responding expectation values calculated using Egs. (3)—(5).
We finally describe the Lorentz boosts of a generic electro-
magnetic field. The real fields {E(¢,r), H(¢,r)} are transformed
as components of the antisymmetric rank-2 field tensor, to-
gether with the Lorentz transformation of the four-coordinates
(ct,r) [30]. The Fourier components {E(k),H(k)} acquire the
extra factor y ~!, because the differential in the integrals (1) is
transformed as d°k’ = y d’k due to the Lorentz contraction.
Considering the boost with the velocity v = v X, this yields

E, = yilEXa H,; = Vﬁle,

X
E,=E,—uH, H/ =H,+uk., 9)

E.=E,+uH, H =H, —uE,.

This field transformation is accompanied by the Lorentz boost
of the four-wave vector (w/c,K):

o =y k=y(k =)

k; =ky, k. =k, (10)

The boosted fields in the helicity representation,
(E'(k"),H/(K')}, are obtained from the fields (9) via the
unitary transformation (2) involving the boosted wave vectors
k’ (10) and the corresponding spherical angles (¢',¢").

B. Lorentz boost of a Bessel beam

We are now in the position to consider a photon state
carrying spin and orbital AM, the simplest model of which
being provided by monochromatic Bessel beams [6,14,41].
The Fourier spectrum of the z-propagating Bessel beam is
a circle lying on the sphere of radius k = ko = wp/c at the
polar angle ¥ = ¥y; see Fig. 2(a). Assuming well-defined
helicity o = +£1 (i.e., the same right-hand or left-hand circular
polarizations of all plane waves in the beam spectrum), the
electric field of the Bessel beam can be written as [6]

E(k) = A <1 * U)a(k — ko)8(® — ¥o)e?,  (11)
2\l —-o
where A is the field amplitude, § is the delta function,
and exp(ify) indicates a vortex with the integer topological

(b)

5 0 xx'5b

FIG. 2. Monochromatic z-propagating Bessel beam (11) and (12)
(a),(b) and the same beam in the reference frame moving with
velocity v = vX (c),(d). The Fourier spectra (i.e., the wave vector
distributions with color-coded vortex phases exp(if¢)) (a),(c) and
the real-space distributions of the energy and Poynting-momentum
densities (8) (b),(d) are shown. One can see the nonmonochromatic
character (0’ = k’c # const) of the boosted beam, its elliptic Lorentz-
contraction deformation, and the relativistic Hall-effect shift of the
energy centroid: Y = (v/wo)(€ + o). For better visibility, we used
nonparaxial beams with the following parameters: o =1, £ =2,
sin ¥y = 0.4 (a),(c), sin¥y = 0.7 (b),(d), u = 0.8 (¢),(d), and k¥ =
k() sin 19() (b),(d)
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charge ¢, which is responsible for the intrinsic orbital AM
carried by the beam [27-29].

Using Eq. (2), we obtain the Bessel-beam field components
in the Cartesian coordinates:

A a—>b ez""f"
Ek) = — | io(a+be* %) |5k — ko)s( — Do)e't?,
—2/ab ¢
(12)

where a = cos?(9y/2) and b = sin?(%/2). Since we are deal-
ing with the helicity eigenstate, §E = o E, the corresponding
magnetic field is H(k) = —iocE(k).

Evaluating the Fourier integrals (1), we find the real Bessel-
beam fields £(¢,r) and H(¢,r), and plot the transverse real-
space distributions of the energy and Poynting-momentum
densities (8) in Fig. 2(b). Paraxiality implies 9y < 1, but the
Bessel beams are exact solutions of Maxwell’s equations for
any values of 3.

Calculating the expectation values (3)—(5) of the energy,
momentum, spin and orbital AM, etc., for the Bessel-beam
field (11), we obtain [6]

W = hwy, P = hkycos oz ~ hkyz,

L =hl+ o1 — cos )]z >~ hlz,
(13)
S = hiocos Bz >~ hoiz,

J=h(oc+0z, R, =N, =0,

where we used the paraxial approximation ¥y < 1, and the
subscript L indicates the transverse (x,y) components. Note
that the Bessel beams are delocalized in the longitudinal z
direction and are not square-integrable in the transverse plane.
Therefore, all the integrals of squared fields and the normal-
ization factor A diverge but their ratios (13) are finite [6,16].
The longitudinal photon and energy centroid coordinates Z
and Z g, are ill-defined in the beam, but if we were to consider a
long z-localized wave packet, we would approximately obtain
Z = Zg = (c*P/ W)t = ct. This corresponds to the vanishing
boost momentum N, = 0. Equations (13) present the expected
picture of a paraxial photon carrying intrinsic spin (o) and
orbital (£) AM [29].

We now perform the Lorentz boost (10) and (9) of
the Bessel beam (12). This brings about cumbersome
but exact expressions for the boosted Bessel-beam fields
(E/(k"),H'(K)}, {E'{',x),H (t',x)}, and the corresponding
helicity-representation field E'(K). Figures 2(c) and 2(d) show
the Fourier spectrum and the real-space transverse distributions
of the energy and Poynting momentum densities (8) for these
fields (cf. [16,19,42]). One can see that the boosted field is not
monochromatic anymore (' = k’c # const), it is elliptically
deformed due to the Lorentz contraction, and its energy
centroid is shifted in the transverse direction, Y # 0, which
is a manifestation of the relativistic Hall effect [16,17,19,26].
At the same time, since the helicity is Lorentz invariant, the
boosted field is still the helicity eigenstate: 6 E'(k') = o E'(k),
o ==l1,and H'(k') = —ioE'(K').

Most importantly, we can now calculate the expectation
values (3)—(5) for the boosted Bessel beam. In the ¥y < 1

(@) z (b) o4z
J
i < ' int”
vortex L T~ L
polarization S

X

SI

FIG. 3. Transformations of the spin and orbital AM in a paraxial
vortex beam under a transverse Lorentz boost (# = 0.6 here). (a) The
original monochromatic beam carries the spin AM S = ocP/P due
to the circular polarization (helicity) (o = 1 here), as well as the
intrinsic orbital AM Li" = ¢P/P due to the vortex (£ = 2 here).
(b) The boosted beam carries spin AM tilted together with the beam
momentum: S’ = o P’/ P’ [Fig. 1(a)], the intrinsic orbital AM Li"’,
Eq. (15), due to the elliptically deformed and tilted vortex, and the
extrinsic orbital AM caused by the transverse shift (Hall effect) of
the beam centroid: L= = R’ x P’. Although all these contributions
point in different directions, the total AM is transformed according to
the Lorentz transformation: J' = y J [Fig. 1(b)].

approximation, this yields

W = hy wo, P’ = hky(Z — yui’),
L' =hlly +o(y —y D7 + hou¥,

(14)
S =holy™'Z —ux'], Y =hy(+o0)Z,
R, = — (£ +20)§ —vrx, N, =—hyu(t +0)y.
2(1)()

These equations contain the central results of this work, which
are also illustrated in Fig. 3. The energy and momentum (14)
present the standard Lorentz transformation of the quantities
(13): W =y W; P =P — y Wv/c?. The boost momentum
also agrees with the Lorentz transformation of the relativistic
AM tensor [16,30]: N’ = —y J x v/c. This corresponds to the
transverse Hall-effect shift of the energy centroid R, | + vt =
J X v/W = (v/wy)£ + o)y [Fig. 2(d)], in agreement with
recent results [16] (for o = 0) and [17-19] (for £ = 0).

At the same time, the AM parts and the photon centroid in
Egs. (14) exhibit several unusual features. First, the spin AM
is indeed transformed as expected for a polarized plane wave:
S’ = o P’/ P’, Fig. 1(a), and in contrast to the relativistic AM
transformation, Fig. 1(b). Second, this paradox is resolved
by the nontrivial transformation of the orbital AM L/, which
acquires unexpected helicity-dependent terms, both longitu-
dinal and transverse. This signals the relativistic spin-orbit
interactions of light; cf. [1]. As a result, the total AM J' =
L’ + §' is transformed exactly as expected for the relativistic
AM with N =0: J' = y J. Third, the photon centroid R’,
exhibits the natural drift —vz in the moving frame and the
transverse Hall-effect shift Y’ = (v/2wg)(¢ 4 20). This differs
from the previously analyzed spinless and massive-particle
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cases [16,26] by the factor of 2 before the helicity [43].
This unexpected factor plays an important role in the Lorentz
transformations (14) of the photon AM.

Indeed, the photon centroid R’ allows us to separate the
intrinsic (vortex-related) and extrinsic (shift-induced) contri-
butions to the orbital AM [1,6,16,29]:

o1
L =R x P’ = h(€ + 20)(—)/ 7+ gx>

—1
L e = ae( Yy Ry as)
2 2

Here we used the longitudinal photon position Z' = y~!ct
because of the oblique propagation at the angle § = cos™'y .
Remarkably, the form of the intrinsic orbital AM L™’ can
be clearly explained by the geometric deformations of the
vortex phase in the beam. Namely, the vortex is elliptically
deformed due to the Lorentz contraction with the factor of y
and also tilted by the angle 6, as shown in Fig. 3(b) (because
the phase fronts in the boosted beam are near perpendicular to
the momentum P”). It is easy to show that these deformations,
X = x/y,ky = yky,andz = x tan0 = uyx — ux,resultin
the intrinsic orbital AM (15) for a vortex wave function ¥
(x 4+ iy)*. Importantly, the x'-directed term in L™, related to
the tilt of the vortex, was missed in previous studies [16,42]
only focused on the longitudinal z’ component of the AM. The
set of equations (14) and (15) shows that both this new term
and the factor of 2 before the helicity in the centroid shift R’
ensure the proper Lorentz transformation of the total AM J.

In addition to the analytical k-space calculations of the
expectation values (14), we numerically calculated the values
W', P’, J, and N’ using the r-space integration of the energy
and Poynting-momentum densities (8) in the transformed
Bessel beam. The results were in agreement with Eqs. (14).
Here we should make two important remarks. First, since
Bessel beams are delocalized along the longitudinal z axis,
the integration should be performed over a 2D cross section
of the beam. In doing so, the result depends on the choice of
the cross section, similar to the “geometric spin Hall effect of
light” [45,46]. We found that the proper Lorentz transformation
of the AM is obtained using the integration in the tilted
plane 7/ = uyx’ parallel to the phase fronts (i.e., orthogonal
to the momentum) of the boosted beam, Fig. 3(b). This is in
agreement with the Wigner-translation approach used in [19].
In the k-space calculations of Egs. (14) the tilted-cross-section
condition was alsoused as d/dk. = uy 9/dk. Second, we note
that the Berry connection Ap(K)) in the operators (5) played
a crucial role in obtaining the transformed quantities (14).
In the paraxial limit 9y — 0, it is determined by the mean
momentum P’ and equals Ag = —6k0_'[(1 -y H/(yuw]ly.
This illuminates the geometric SOI origin of the nontrivial
transformations (14) [1,6].

III. RELATIVISTIC TRANSFORMATIONS
OF DIRAC-ELECTRON BEAMS

A. General formalism

It is interesting to check if the nontrivial transformations
(14) and (15) of the spin and orbital AM quantities are specific
to photons (i.e., massless spin-1 particles) or these have a

universal character. For this purpose, we consider a similar
Lorentz-transformation problem for a Bessel-beam state of the
Dirac electron [12], i.e., a massive spin-1/2 particle.

We first recall the Dirac equation in the standard represen-
tation [32]:

w

ih—> = (6 - Pc+ pmc*)y, (16)
where ¥(r,t) is the four-component bispinor wave function,
P = —ihV is the momentum operator in the coordinate repre-

sentation, m is the electron mass, and

. (0 &\ , (1 ©
"‘:<& 0)”3:<0 —1)

are the 4 x 4 Dirac matrices with ¢ being the vector of the
2 x 2 Pauli matrices.

The wave function can be represented as the Fourier
integral, i.e., as a superposition of Dirac plane waves:

f) = d3k ~(k —iwt+ik-r 17)
w(r5 ) - (27_[)3/2 'ﬁ )e . (
Here, w(k) = /k2c? 4+ u2, u = mc*/h, and the Fourier am-
plitudes can be factorized as
- NZESTE: )
k) = f(k)®(Kk), ®K) = — oo ),
P = FRORK), B(K) m(mw-k)s

(18)

where f(K) is the scalar Fourier amplitude, ®(k) is the
normalized polarization bispinor (®'®=1), k= k/k, and
&= (Z) is the two-component polarization spinor (& e =1)
describing the spin state of the plane-wave electron in its rest
frame [12,14,32].

The Fourier amplitudes ¥(K) can be regarded as the (non-
normalized) Dirac wave function in the canonical momentum
representation. In this representation, the operators of the
energy, momentum, position, spin, orbital angular momentum,
and boost momentum have a canonical form similar to Eq. (7):

W = how, P=rhk, R=iVy,

J(? "), L—RxP N=
216 O

>

ctP —RW/e. (19)

The normalized (one-electron) expectation values are calcu-
lated similar to Eq. (4):

A
O—NWlOIr/f)—N/d K10 (O)F®.  (20)

with the number of electrons N = [ @’k |§(k)|?. Note that,
in contrast to photons, the inner product for electrons does not
involve the w~!(Kk) factor. This is because the squared wave-
function amplitudes correspond to the particle and energy
densities for electrons and photons, respectively.

It is worth remarking that one can alternatively use the
Foldy-Wouthuysen momentum representation for the calcu-
lation of the expectation values for Dirac electrons. This
representation, diagonalizing the Dirac Hamiltonian, allows
one to reduce the wave function to the two components & (k),
but complicates the operators with the Berry-connection terms,
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similar to the helicity representation (2) and (5) for photons
[7,8,12,34].

We finally introduce the Lorentz transformation (with the
velocity v = v X) of the Dirac wave function ¥ (k). Akin to the
transformation of the Fourier components of Maxwell fields,
Eq. (9), it acquires an extra )/’1 factor and reads [32]

%’=[%y(ﬁ—m&x)w/7. 1)

The Lorentz transformation of the electron four-wave vector
(w/c k) is still given by Eq. (10).

B. Lorentz boost of a Dirac-Bessel beam

The Bessel-beam state of the Dirac electron (i.e., the
Dirac-Bessel beam) is constructed similar to the optical beam
(11) and (12), Fig. 2(a). The scalar part and the polarization
spinors of the two spin states of the electron are given by
[12,14]

(k) = Ad(k — ko)3(0 — 6p)e'™?,

1 _ 0
@ e-()

These states correspond to the well-defined z components of
the electron spin, s, = +1/2, in its rest frame. Alternatively,
one can choose two states with well-defined helicity [14,32],
but these states reduce to the same £* states in the paraxial
approximation 6y < 1.

Substituting the wave functions (18) and (22) into Eqgs. (19)
and (20), we obtain the expectation values of the energy,
momentum, AM, etc. for the Bessel-Dirac electron in the
paraxial limit:

W= ha)o,
L = ntz,

P = hkyz,
S = 7is, 7,

R, =N, =0,
J = h(s. + O (23)

This coincides with Eqgs. (13) with the only difference being
that now wp = vVkjc? + u?, and the spin quantum number
s, = £1/2 substitutes the helicity o = £1. Note that the
longitudinal boost momentum also vanishes, N, = 0, when
we assume the relativistic equation of motion Z = Zg =
(PP/W)t.

Now, performing the Lorentz transformations (21) and (10)
of the Dirac-Bessel wave functions (18) and (22), we calculate
the expectation values (19) and (20) in the boosted reference
frame. Remarkably, this results in formulas very similar to
photonic Eqgs. (14):

’ ’ — @y _,
W' =hywy, P = hk0<z — yu—x),
k()C

k
L' =hlty +s,(y —y D7 + hszulci’,
)
’ (24)
k
S, = hSz ()/12, — MLC)_(/), J/ = ﬁ)/(f + Sz)i/,
wo

v
R, = — (£ +2s.)fy —vi %, N| = —hyu(t +s.)y.
260()

The main difference from the photonic case is that wy/koc #
1, and these factors modify the directions of the boosted
momentum, spin, and orbital AM.

One can see that the modified transformations (24) ex-
actly correspond to the fact that the Pauli-Lubanski four-
pseudovector (Xg,X) = (S - P, SW/c¢) [32], orthogonal to the
electron four-momentum (W/c, P), is transformed as a four-
vector under Lorentz boosts. This has several consequences.
First, the direction of the spin AM does not follow the momen-
tum of the electron: S’ }t P’. Second, the absolute value of the
spin AM diminishes: S’ = (4/2)V'1 — uzuz/a)g < S, which
can be interpreted as partial depolarization of the boosted
electron. Finally, the transformation of the Pauli-Lubanski
vector also describes the transformation of the electron helicity
ho = Xy/P. In the original and boosted frames, the helicity
becomes
Sz

—_—, (25)
/1+ u2k%‘7
which clearly indicates that the helicity is Lorentz invariant
only for massless particles.
Akin to the photonic case, Egs. (15), we separate the

intrinsic (vortex-related) and extrinsic (shift-related) parts of
the electron orbital AM:

oc=s, o =

, . k
Lo =R x P’ = (¢ +25,)( LV — 7 + 25 %),
2 2&)0
1

- ki
YAV g B, e
2 2(1)()

where we used Z’' = (c?P//W’)t. Thus the intrinsic and
extrinsic orbital AM of electrons are also analogous to those
of photons (up to modification by the koc/wp factors). In
particular, as it should be, the vortex-related intrinsic orbital
AM depends only on the vortex quantum number ¢ and is
independent of the spin s,.

Similar to the case of optical beams, the expectation values
of the R-dependent operators for electrons depend on the
choice of the beam cross section used in the integration.
We found that Egs. (24), consistent with the Lorentz trans-
formations of the relativistic AM, are obtained only when
choosing the tilted cross section 7’ = x’tanfg, i.e., 9/dk, =
tan 05 9/0k;, where 0g = tan~!(uy koc/wp). Notably, this an-
gle corresponds to the direction of the electron spin AM
S’ rather than momentum P’ (for photons these directions
coincide). Understanding this peculiarity requires further in-
vestigations of properly 3D localized Dirac wave packets,
which is beyond the scope of this study.

Lint' — L/ _Lext’ — hg(

IV. DISCUSSION

We have considered relativistic transformations of the spin
and orbital AM of paraxial photons and Dirac electrons under
the transverse Lorentz boost. The main results are summarized
in Egs. (14), (15), (24), (26), and in Fig. 3. We have found
that the Lorentz transformations of these quantities, as well as
of other beam characteristics, exhibit quite nontrivial forms,
which together ensure the proper Lorentz transformation of
the total AM and resolve the paradox with the transformation
of the photon spin, Fig. 1. Most importantly, the transverse
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Lorentz boost inevitably produces the spin-to-orbital AM
conversion (i.e., helicity-dependent terms in the orbital AM)
and nontrivial redistribution between the intrinsic (vortex) and
extrinsic (shift) parts of the orbital AM. These effects have the
geometric origin and evidence the relativistic SOIs of light.

Although we considered the particular case of Bessel beams
(allowing analytical calculations), the results are generic for
paraxial azimuthally symmetric beams or wave packets. This is
because all derived transformations have very clear geometric
and relativistic explanations, independent of the particular type
of the beam. Note also that we considered only transverse
Lorentz boosts. It is easy to see that a longitudinal z boost
does not break the monochromaticity of the beam and can only
modify its parameters (13). Until this breaks the paraxiality of
the beam (i.e., for y <« '), the spin and orbital AM (13)
remain practically unchanged. We also note that the general
formalism developed in this work allows one to perform the
Lorentz transformations of arbitrary Maxwell and Dirac fields
and to determine their properties in any reference frame. These
results can play an important role in scattering processes
involving relativistic particles carrying intrinsic AM, as well
as in studies of light emitted by fast-moving bodies.

It should be emphasized that the nontrivial transformations
found in this work are actually fixed by fundamental reasons.
Namely, the transformation of the total AM J and the boost
momentum N are determined by the Lorentz boost of the rank-2
AM tensor, while the spin AM S follows the boost of the Pauli-
Lubanski four-vector (this is applied to both electrons and
photons [33,34]). Hence the total AM and spin AM inevitably
obey different transformations. The difference between these
two determines the nontrivial form of the orbital AM L.
Moreover, the orbital AM can be splitinto the extrinsic part L*
(determined by the position of the particle) and the intrinsic one
L (related to the vortex phase structure of the wave function).

If we adopt the fact that the intrinsic contribution must depend
only on the vortex quantum number £ (but not on the spin
state ¢ or s;), this unambiguously determines the position
shift R" proportional to (£ + 20) or (£ + 2s;). Interestingly,
such dependence was previously known only for the magnetic
moment of the Dirac electron [12,32,44], and was directly
associated with the g = 2 gyromagnetic factor for the electron
spin. Our calculations show that this combination is universal
for the relativistic Hall effect, independent of the spin and mass
of the particle.

The difference between relativistic transformations of the
spin and orbital AM can also be compared with the difference in
the commutation relations of the quantum-mechanical versions
of these quantities [6,34,47]. Neither spin nor orbital AM
operators (assuming their second-quantization or covariant
Berry-connection forms) obey the canonical SO(3) commuta-
tion rules, while the total AM does. In a similar manner, neither
spin nor orbital AM obeys the proper Lorentz transformation of
the total AM. This nicely illuminates the intimate links between
quantum and relativistic features inherent in the Maxwell and
Dirac equations.
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