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Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set
of multilayered particles with piecewise-smooth boundaries in a passive host medium
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We present a general derivation of the frequency-domain volume integral equation (VIE) for the electric field
inside a nonmagnetic scattering object from the differential Maxwell equations, transmission boundary conditions,
radiation condition at infinity, and locally-finite-energy condition. The derivation applies to an arbitrary spatially
finite group of particles made of isotropic materials and embedded in a passive host medium, including those
with edges, corners, and intersecting internal interfaces. This is a substantially more general type of scatterer than
in all previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the entire
discussion accessible to the applied scattering community. We also consider the known results on the existence
and uniqueness of VIE solution and conjecture a general sufficient condition for that. Finally, we discuss an
alternative way of deriving the VIE for an arbitrary object by means of a continuous transformation of the
everywhere smooth refractive-index function into a discontinuous one. Overall, the paper examines and pushes
forward the state-of-the-art understanding of various analytical aspects of the VIE.
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I. INTRODUCTION

The frequency-domain volume integral equation (VIE) for
the electric field inside a nonmagnetic scattering object has
been known for more than 60 years [1]. It has traditionally been
intended to be a rigorous formulation of the electromagnetic-
scattering problem equivalent to the more conventional one
based on the differential Maxwell equations subject to appro-
priate boundary conditions [2–4]. Moreover, the VIE has been
used as the fundamental basis for a number of “numerically
exact” computational methods to simulate electromagnetic
scattering, the most popular one being the discrete dipole
approximation (DDA) [5]. The latter has been used to calculate
electromagnetic scattering by virtually all classes of scatterers,
including those with sharp edges and internal interfaces [6–8].

Despite the vast existing literature on the subject (see, e.g.,
the monographs [2,4,9]), the theoretical understanding of the
VIE remains incomplete and incommensurate to the domain of
its actual practical applications. Indeed, the literature is largely
grouped around the following two extremes: (i) accessible
derivations with all complex issues swept under the rug with
the intent to maximally shorten the path to practical compu-
tations [4,10,11], and (ii) mathematically rigorous treatises
that commence with concepts such as Banach spaces, Hölder
continuity, etc. and thus are hardly comprehensible to the
applied scattering community [2,9,12–14]. As a consequence,
the publications from the first group tend to ignore funda-
mental issues such as the strong singularity of the integral
kernel [4,10] and the explicit use of boundary conditions
for a scatterer with a distinct boundary [11], which can
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potentially lead to ambiguities. On the other hand, rigorous
mathematical studies from the second group are typically
based on simplified assumptions of smooth particle boundaries
and continuous interiors [2,9,12,14], whereas sharp edges and
vertices and internal interfaces are hardly mentioned [13].
Moreover, mathematical rigor comes at the expense of various
limiting assumptions on the constitutive parameters, e.g., that
both the scatterer and the host medium are nonabsorbing
dielectrics [14] or that the real part of the electric permittivity
is positive [2,12,13]. As a result, the current understanding of
the conditions guaranteeing the existence and uniqueness of
the VIE solution, and that of the scattering problem in general,
remains fragmentary, especially in the case of an absorbing
host medium (see also Refs. [3,15,16]). Thus, gray zones exist,
where practical numerical simulations have been pursued, but
a rigorous mathematical analysis is still not available.

To fill these essential gaps, we present an accessible, self-
contained, and general derivation of the VIE from the differ-
ential Maxwell equations, transmission boundary conditions,
radiation condition at infinity, and locally-finite-energy condi-
tion with an explicit treatment of the kernel singularity. Our
derivation applies to a representative type of scattering object
such as a spatially finite group of multilayered particles with
piecewise-smooth (intersecting) boundaries and internal inter-
faces (with a smooth refractive index in between) immersed
in a passive unbounded host medium. To further demonstrate
the equivalence of the differential and integral formulations
of electromagnetic scattering, we derive the former from the
latter. We also generalize the results of existing mathematical
analyses of the VIE and formulate a conjecture about sufficient
conditions ensuring the existence and uniqueness of its solution
for this type of scatterer. Finally, we discuss an alternative way
of deriving the VIE for an arbitrary object with discontinuities
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by means of a continuous transformation of the everywhere
smooth refractive-index function into a discontinuous one.

II. FORMULATION OF THE SCATTERING PROBLEM

Following the lines of derivations in Chap. 4 of Ref. [4]
and in Ref. [17], we start with the Maxwell curl equations
for time-harmonic [with the implicit exp(−iωt) convention]
electric and magnetic fields E and H assuming nonmagnetic
isotropic materials throughout the entire space:

∇ × E(r) = iωμ0H(r)
∇ × H(r) = −iωε1E(r)

}
r ∈ Vext,

∇ × E(r) = iωμ0H(r)
∇ × H(r) = −iωε2(r)E(r)

}
r ∈ Vint,

(1)

where i = √−1, μ0 is the vacuum permeability, Vext is an
unbounded homogeneous external medium with a constant
electric permittivity ε1 �= 0, and Vint is the interior of a scatterer
with a coordinate-dependent permittivity ε2. The entire space
is assumed to be devoid of impressed (enforced) sources. Note
that, generally, both ε1 and ε2 are complex and depend on
the angular frequency ω. In particular, the external medium
can be absorbing (lossy), but not active, i.e., we require that
0 � arg ε1 < π discarding the nonphysical option of a negative
real ε1 (see Chap. 1 of Ref. [3]).

Equations (1) can be rewritten as a single differential
equation:

∇ × ∇ × E(r) − k2
1E(r) = j(r), r ∈ R3\Sint, (2)

j(r)
def= k2

1[m2(r) − 1]E(r), (3)

where k1 = ω
√

ε1μ0 with Re(k1) > 0 and Im(k1) � 0 is the
wave number of the exterior, m(r) and ε(r) are the complex
refractive index and permittivity relative to that of the external
medium:1

m(r) =
√

ε(r), ε(r)
def=

{
1, r ∈ Vext,

ε2(r)/ε1, r ∈ Vint,
(4)

and Sint = ∂Vint. The complex square root in Eq. (4) is poten-
tially ambiguous, but this is not a problem as long as we only
usem2. More generally, we assume that the support ofm(r) − 1
is bounded; Vext can be defined as the largest unbounded
open connected region with m(r) = 1; Vint is a union of open
bounded regions in which m(r) is smooth2 [including internal
voids with m(r) = 1]; and Sint is a closed surface containing all
discontinuities of m(r) or its derivatives, including the exterior
scatterer boundaries and internal interfaces. In particular, we
have the following partition in which the components are
pairwise disjoint:

R3 = Vext ∪ Vint ∪ Sint. (5)

1In the following discussion we will mostly employ m, as that is
more common in the light-scattering community.

2Hereinafter we use “smooth” in the sense “sufficiently smooth”
in an effort to keep the discussion relatively simple. However,
specific function spaces requiring boundedness or Hölder continuity
of derivatives up to a certain order are discussed in the referenced
mathematical literature.

This definition applies to a general finite multiparticle scatterer,
with potentially multilayered components. The particular com-
plex values of m that are physically viable and/or required for
well posedness of the mathematical problem are discussed in
Sec. VII.

An essential further assumption is that Sint consists of
several disjoint components:

Sint = ∪iSi, (6)

each of which is a connected smooth closed surface. Then we
have the standard boundary conditions:

n × [E1(r) − E2(r)] = 0

n × [H1(r) − H2(r)] = 0

}
r ∈ Sint, (7)

where 1 and 2 label different sides of the specific component
of the boundary (the corresponding limits are implied) and n
is the outward-pointing normal to Sint.

The total field [i.e., the solution of the inhomogeneous
differential equation (2)] can be separated into the incident
and scattered fields:

E(r) = Einc(r) + Esca(r), (8)

where Einc(r) is the solution of the corresponding homoge-
neous equation [Eq. (2) with a zero right-hand side], i.e., the
field when no scatterer is present. Mathematically, the latter
can be formulated using a Silver-Müller radiation condition
[2] to select a single specific solution of Eq. (2),

r × [∇ × Esca(r)] + ik1rEsca(r) →
r→∞ 0, (9)

uniformly over all directions r/r . Note however that even a
weaker condition (L2 convergence) is sufficient [18]:

lim
�→∞

1

�2

∮
S�

d2r|r × [∇ × Esca(r)] + ik1rEsca(r)|2 = 0,

(10)

where S� is the spherical surface with a radius � centered at
the origin (r = n�). The standard scattering problem consists
in finding Esca(r) satisfying Eqs. (2), (7), (8), and (10) given a
physically viable Einc(r), i.e., the one satisfying the free-space
Maxwell equations.

III. DYADIC GREEN’S FUNCTION AND THEOREM

Recall now the definition of the free-space dyadic Green’s
function (Cartesian Green’s tensor), e.g., from Appendix B of
Ref. [4]:

Ḡ(r,r′) def=
(

Ī + ∇ ⊗ ∇
k2

1

)
g(r,r′)

= exp(ik1R)

4πR

[(
Ī − R ⊗ R

R2

)

+ ik1R − 1

k2
1R

2

(
Ī − 3

R ⊗ R
R2

)]
, (11)

where R = r − r′, R = |R|, Ī is the unity dyadic, and g(r,r′)
is the scalar Green’s function:

g(r,r′) = g(R)
def= exp(ik1R)

4πR
(12)
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satisfying

(∇2 + k2
1

)
g(r,r′) = −δ(r − r′), (13)

where δ(R) is the three-dimensional delta function.
The essential property of the Green’s dyadic is that it

satisfies

∇ × ∇ × Ḡ(r,r′) − k2
1Ḡ(r,r′) = Īδ(r − r′). (14)

Also, it is symmetric with respect to both argument interchange
and dyadic transposition (superscript T),

Ḡ(r′,r) = Ḡ(r,r′) = [Ḡ(r,r′)]T, (15)

and satisfies the following radiation condition [cf. Eq. (9)]:

r × [∇ × Ḡ(r,0)] + ik1rḠ(r,0) →
r→∞ O(1/r). (16)

In particular, it converges to zero uniformly over all directions
r/r . In the limit of a very small R,

Ḡ(r,r′) →
R→0

Ḡst(r,r′) + O(1/R), (17)

where the static Green’s dyadic is

Ḡst(r,r′) = (∇ ⊗ ∇)
1

4πk2
1R

= − 1

4πk2
1R

3

(
Ī − 3

R ⊗ R
R2

)
.

(18)

Moreover,

∇ × Ḡ(r,r′) = (∇g) × Ī = R × Ī
4πR3

exp(ik1R)(ik1R − 1)

→
R→0

−R × Ī
4πR3

+ O(1). (19)

The Green’s dyadic and Eq. (14) are commonly used
together with the dyadic Green’s theorem (Eq. (A4.75) of
Ref. [9]):

∫
V

d3r[(∇ × ∇ × a) · Ā − a · (∇ × ∇ × Ā)]

=
∮

∂V

d2r{(n × a) · (∇ × Ā) + [n × (∇ × a)] · Ā}, (20)

where V is any bounded region, n is the outward surface
normal, and a and Ā are an arbitrary vector and a dyadic
varying smoothly with r (i.e., at least, having integrable second
derivatives).

IV. DERIVATION OF THE VIE FOR
A SIMPLE SCATTERER

We first consider a simple single-body scatterer Vint without
internal interfaces, i.e., the one having a connected boundary
Sint (or, equivalently, connected Vint, see Fig. 1). Proceeding
along the lines of Chap. 4.3 of Ref. [4] (but with an interchange
of r and r′), we scalar post-multiply Eq. (2) by Ḡ(r,r′) and

FIG. 1. A simple single-body scatterer with a smooth boundary
and without internal interfaces.

scalar premultiply Eq. (14) by Esca(r):

[∇ × ∇ × Esca(r)] · Ḡ(r,r′) − k2
1Esca(r) · Ḡ(r,r′)

= j(r) · Ḡ(r,r′), (21)

Esca(r) · [∇ × ∇ × Ḡ(r,r′)] − k2
1Esca(r) · Ḡ(r,r′)

= Esca(r)δ(r − r′). (22)

Subtracting Eq. (22) from Eq. (21) yields

[∇ × ∇ × Esca(r)] · Ḡ(r,r′) − Esca(r) · [∇ × ∇ × Ḡ(r,r′)]

= j(r) · Ḡ(r,r′) − Esca(r)δ(r − r′). (23)

A typical derivation of the VIE [4,10] would use Eq. (20) with
a = Esca,3 Ā = Ḡ, and V = Vint, to be further simplified using
Eq. (23). However, this path is not completely rigorous (leads
to ambiguous results) due to the strong singularity of Ḡ(r,r′)
at r = r′ [11]. Two different ways to address this problem
are mentioned in the footnote on p. 98 of Ref. [9]: rigorous
treatment of delta functions and their derivatives or exclusion
of the singularity.

We choose the second option and define Vδ (and Sδ = ∂Vδ)
as a small volume around r′ which shrinks to r′ when δ → 0
while keeping the same shape.4 Then we can apply the above
described combination of Eqs. (20) and (23) to V = Vint\Vδ

(assuming r′ ∈ Vint) and let δ → 0:

lim
δ→0

∫
Vint\Vδ

d3r[j(r) · Ḡ(r,r′) − Esca(r)δ(r − r′)]

=
(∮

Sint

− lim
δ→0

∮
Sδ

)
d2r([n × Esca(r)] · [∇ × Ḡ(r,r′)]

+{n × [∇ × Esca(r)]} · Ḡ(r,r′)). (24)

If r′ ∈ Vext, no exclusion of the singularity is needed and
Eq. (24) is valid with all the δ-related parts being removed
(as discussed below).

The δ-function term on the left-hand side of Eq. (24) always
vanishes, which may seem counterintuitive, but it would be
compensated by the additional terms on the right-hand side. To
evaluate the first term in the integral over Sδ, we use Eq. (19).
Since the latter has a R−2 singularity, we need to keep only the

3Smoothness of Esca(r) follows from smoothness of m(r), which is
further discussed in Sec. IX.

4This δ should not be confused with the delta function.
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zeroth order of Esca(r), which is Esca(r′). Thus,

lim
δ→0

∮
Sδ

d2r[n × Esca(r)] · [∇ × Ḡ(r,r′)]

= −Esca(r′) · lim
δ→0

∮
Sδ

d2r{n × [∇ × Ḡ(r,r′)]}

= Esca(r′) · lim
δ→0

∮
Sδ

d2r
n × (R × Ī)

4πR3

= Esca(r′) ·
(∮

Sδ

d2r
R ⊗ n
4πR3

− Ī tr(L̄)

)

= (L̄ − Ī) · Esca(r′), (25)

where the first and third transformations are based on the
dyadic identities

(a × b) · Ā = a · (b × Ā) and

a × (b × Ā) = b ⊗ (a · Ā) − Ā(a · b), (26)

respectively, while

L̄ def=
∮

Sδ

d2r
n ⊗ R
4πR3

(27)

is the self-term dyadic (the source term) [11] (a.k.a. depolar-
ization dyadic—see Chap. 3.9 of Ref. [9]) which depends on
the shape but not on the size of Sδ [the limit in the fourth part
of Eq. (25) was removed accordingly] and on the position of
r′ inside Sδ . Importantly, this dyadic is always real symmetric
with tr(L̄) = 1 [hence the last transformation in Eq. (25)]. For
a sphere or a cube centered at r′, it takes the simplest form
L̄ = Ī/3 [11].

In the second term of the integral over Sδ in Eq. (24), Ḡ(r,r′)
can be replaced by Ḡst(r,r′) [cf. Eq. (17)]. Then

lim
δ→0

∮
Sδ

d2r{n × [∇ × Esca(r)]} · Ḡ(r,r′)

= − 1

k2
1

lim
δ→0

∮
Sδ

d2r{n × [∇ × Esca(r)]} ·
(

∇ ⊗ R
4πR3

)

= − 1

k2
1

lim
δ→0

∮
Sδ

d2r[∇ × ∇ × Esca(r)] · n ⊗ R
4πR3

= −L̄ ·
(

j(r′)
k2

1

+ Esca(r′)
)

, (28)

where the last transformation keeps only the zeroth order of
∇ × ∇ × Esca(r) and uses Eqs. (2) and (27), while the second
one is based on∮

S

d2r(n × a) · (∇ ⊗ b)

=
∮

S

d2r n · [a × (∇ ⊗ b)]

= −
∮

S

d2r n · [∇ × (a ⊗ b)]︸ ︷︷ ︸
0̄

+
∮

S

d2r n · [(∇ × a) ⊗ b]

=
∮

S

d2r(∇ × a) · (n ⊗ b), (29)

where 0̄ is a zero dyadic, a(r) and b(r) are arbitrary smooth
on S vector fields [in our case ∇ × Esca(r) and R/(4πR3),
respectively], and the zeroing of the term in the middle follows
from the dyadic version of the Stokes theorem (Eq. (A4.70) of
Ref. [9]) and the absence of a boundary for a closed surface.

Before finalizing this derivation, let us define an auxiliary
vector function based on the right-hand side of Eq. (24):

X(r,r′) def= [n × Esca(r)] · [∇ × Ḡ(r,r′)]

+{n × [∇ × Esca(r)]} · Ḡ(r,r′), (30)

which also implicitly depends on the normal n of the inte-
gration surface S. Importantly, X(r,r′) is continuous when r
crosses S (if r′ /∈ S), owing to either the boundary conditions
(7) (and ∇ × E = iωμ0H) or the continuity of all constituent
functions ifm(r) is continuous across S. Thus, it does not matter
which side of the surface the X(r,r′) is integrated over, as
long as the same normal is used. In the following, we always
assume the outward normal n to any closed surface (considered
individually), and the orientation of this normal with respect
to an integration volume is accounted for by a sign before the
surface integral, as in Eq. (24).

Another property of X(r,r′) is

lim
�→∞

∮
S�

d2rX(r,0) = 0, (31)

which follows from Eq. (10) [18], as briefly discussed in the
following. First, Lemma 2 of Ref. [18] states that∮

S�

d�|rEsca(r)|2 = O(1). (32)

Second,∮
S�

d2rX(r,0)

=
∮

S�

d�{r × [∇ × Esca(r)] + ik1rEsca(r)} · rḠ(r,0)

−
∮

S�

d� rEsca(r) · {r × [∇ × Ḡ(r,0)]+ik1rḠ(r,0)}. (33)

Third, applying the Cauchy–Schwarz inequality to Eq. (33)
and using Eqs. (10), (11), (16), and (32), we obtain Eq. (31).
Note that nonzero absorption in the external medium would
only make the derivation easier, since it causes Ḡ(r,0) to decay
exponentially when r → ∞.

Next, we combine Eqs. (24), (25), and (28) and interchange
r and r′ to shift the focus from the integration variable and
conform to a common notation [4]. This yields

lim
δ→0

∫
Vint\Vδ

d3r′ j(r′) · Ḡ(r′,r) − χVint (r)

[
L̄ · j(r)

k2
1

+ Esca(r)

]

=
∮

Sint

d2r′ X(r′,r), (34)

where

χV (r)
def=

{
1, r ∈ V,

0, otherwise (35)

is the indicator function which allows for a single expression
for both the interior and the exterior of the scatterer. For the
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latter, Eq. (34) follows directly from Eq. (24) with the δ-related
parts being removed.

Repeating the derivation starting from Eq. (24) for Vext

instead of Vint and assuming ∂Vext = S� ∪ S−
int, where the

superscript “−” denotes the nonstandard direction of the
normal, we obtain

lim
δ→0

∫
Vext\Vδ

d3r′ j(r′) · Ḡ(r′,r) − χVext (r)

[
L̄ · j(r)

k2
1

+ Esca(r)

]

=
(

lim
�→∞

∮
S�

−
∮

Sint

)
d2r′ X(r′,r). (36)

Adding up Eqs. (34) and (36) and employing Eqs. (3), (4), (15),
and (31) along with χVext (r) + χVint (r) ≡ 1 (r ∈ R3\Sint) yields

Esca(r) = lim
δ→0

∫
Vint\Vδ

d3r′Ḡ(r,r′) · j(r′) − L̄ · j(r)

k2
1

, (37)

or equivalently

E(r) = Einc(r) + k2
1 lim

δ→0

∫
Vint\Vδ

d3r′[m2(r′) − 1]Ḡ(r,r′)

· E(r′) − [m2(r) − 1]L̄ · E(r), (38)

where r ∈ R3\Sint and Vint in the integrals can be replaced by
R3 (assuming that Sint has a zero volume and is isolated in the
actual integration). Note also that Eqs. (37) and (38) hold for
r ∈ R3 when m(r) is smooth in R3 but m2(r) − 1 has a finite
support; the latter effectively replaces Vint.

The main advantage of the above derivation in comparison
with the more common ones [2,4] is that it treats the singularity
of Ḡ rigorously and explicitly. In this respect it is similar
to the work by Yaghjian [11] and van Bladel (Chap. 7.9
of Ref. [9]), but applies to the general boundary conditions
(7) and is more explicit in the employment of the radiation
condition (10). The importance of a careful treatment of the
singularity was discussed in detail in Ref. [11]. More recently,
it was further exemplified by the use of rectangular cuboid
elementary volumes (dipoles) in the DDA [19]. In this case
the nonsymmetric shape of Sδ implicitly leads to ambiguities
which can only be settled through an explicit consideration.

We additionally note that the strong singularity can be
avoided by considering a different integrodifferential equation,
see, e.g., Chap. 12.5.2 of Ref. [9]:

E(r) = Einc(r) + (
k2

1 Ī + ∇ ⊗ ∇)
·
∫

Vint

d3r′[m2(r′) − 1]g(r,r′)E(r′). (39)

As noted in Ref. [11], the exclusion of Vδ and the L̄ term
in Eq. (38) appear exactly from the proper interchange of
differentiation and integration in Eq. (39) [cf. Eq. (11)]. Since
Eq. (39) is less commonly used as a basis of numerical methods,
we do not discuss it in detail. Most importantly, the equivalence
of Eqs. (38) and (39) holds as long as E(r) is smooth in Vint.

FIG. 2. An example of a complex multibody multilayered scat-
terer with smooth interfaces. Each closed surface separates exactly
two domains, one of which may be the external medium.

V. EXTENSION TO A SET OF SEVERAL
MULTILAYERED PARTICLES

We further consider a scatterer partitioned into several
disjoint components,

Vint = ∪jVj , (40)

each of which is a connected open region with a smooth
m(r). Then Eq. (6) implies that each Si separates exactly two
regions from the list Vext, V1, V2, . . . and contributes to their
boundaries with opposite signs of the surface normal (Fig. 2).

Using the results obtained in the preceding sections, it is
trivial to generalize the VIE to such a scatterer. We write down
Eq. (34) for each Vj and add them up together with Eq. (36).
Then the integrals over each of the Si will occur exactly twice
on the right-hand side and with opposite signs and thereby
will cancel each other. The left-hand side will lead exactly to
Eq. (37) if one makes use of

χVext (r) +
∑

j

χVj
(r) = 1 − χSint (r), (41)

which follows from Eqs. (5) and (40) as well as from χV (r)
being additive with respect to the union of disjoint sets. The
possibility of such an extension was mentioned in Chap. VI
of Müller [2], but we are unaware of any previous explicit
derivation.

VI. EQUIVALENCE OF VIE AND DIFFERENTIAL
EQUATIONS

The goal of this section is to prove the equivalence of the
boundary-value problem for the differential Maxwell equa-
tions and the VIE by explicitly deriving Eq. (2), the boundary
conditions (7), and the radiation condition (9) from Eq. (38). In
principle, one can analyze the invertibility of all intermediate
steps in the previous sections, but a direct derivation is both
simpler and more instructive.

The derivation of Eq. (2) is completely trivial for r ∈ Vext,
where the third term (with L̄) in Eq. (38) vanishes and Vδ

can be removed from the integral since Ḡ(r,r′) does not have
singularities in the integration domain (r′ ∈ Vint). Moreover,
differentiation and integration can be freely interchanged,
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leading to

∇ × ∇ × E(r) − k2
1E(r)

= ∇ × ∇ × Einc(r) − k2
1Einc(r)

+
∫

Vint

d3r′[∇ × ∇ × Ḡ(r,r′) − k2
1Ḡ(r,r′)

] · j(r′)

= 0, (42)

where we have used the homogeneous version of Eq. (2) for
Einc(r) and Eq. (14).

For r ∈ Vint the situation is more complicated owing to the
fact that the exclusion volume Vδ depends explicitly on the
differentiation variable r upon which ∇ × ∇× is acting. For-
tunately, this dependence is simple (amounts to a translation);
hence, the Reynolds transport theorem (or multidimensional
Leibnitz integral rule) implies

∇ ×
∫

Vint\Vδ(r)
d3r′ a(r,r′) =

∫
Vint\Vδ (r)

d3r′ [∇ × a(r,r′)]

−
∮

Sδ (r)
d2r′[n × a(r,r′)],

(43)

where the minus sign appears due to the natural normal
to Vint\Vδ pointing inside Sδ (in contrast to the used n).
Next, Eq. (38) itself implies that the limit δ → 0 is well
behaved (smooth over r); hence, it can be interchanged with
differentiation, which together with Eq. (43) implies

∇ × lim
δ→0

∫
Vint\Vδ

d3r′Ḡ(r,r′) · j(r′)

= lim
δ→0

∫
Vint\Vδ

d3r′ [∇ × Ḡ(r,r′)] · j(r′)

− lim
δ→0

∮
Sδ

d2r′{n × [G(r,r′) · j(r′)]}. (44)

The surface integral is transformed similarly to Eqs. (28) and
(29). Ḡ(r,r′) can be replaced by Ḡst(r,r′) [cf. Eq. (17)], leading
to

lim
δ→0

∮
Sδ

d2r′{n × [Ḡ(r,r′) · j(r′)]}

= − 1

k2
1

lim
δ→0

∮
Sδ

d2r′
{

n ×
[(

∇′ ⊗ R′

4πR3

)
· j(r′)

]}

= − 1

k2
1

lim
δ→0

∮
Sδ

d2r′
[
∇′

j ×
(

n ⊗ R′

4πR3
· j(r′)

)]

= −∇ ×
[

L̄ · j(r)

k2
1

]
, (45)

where R′ = r′ − r = −R; the subscript j indicates that ∇ acts
only on the corresponding function to the right of it; the last
transformation follows from Eq. (27) and leaves only the zeroth
order of derivatives of j(r′); and the middle transformation is

based on∮
S

d2r{n × [(∇ ⊗ b) · a]}

=
∮

S

d2r [n × ∇(a · b)]︸ ︷︷ ︸
0̄

−
∮

S

d2r {n × [(∇ ⊗ a) · b]}

=
∮

S

d2r{∇a × [(n ⊗ b) · a]}, (46)

where a(r) and b(r) are arbitrary smooth on S vector fields,
while the zeroing out of the term in the middle again follows
from the Stokes theorem (Eq. (A1.43) of Ref. [9]) and the
absence of a boundary for a closed surface. Note that the right-
hand side of Eq. (45) exactly cancels the curl of the last term in
Eq. (38). This is expected since the remaining volume integral
in Eq. (44) does not depend on the shape of Sδ , owing to the
weak (R−2) singularity of the integrand [cf. Eq. (19)].5

Adding another curl and using Eqs. (43)–(45), we get

∇ × ∇ × E(r) − k2
1E(r)

= lim
δ→0

∫
Vint\Vδ

d3r′ [∇ × ∇ × Ḡ(r,r′) − k2
1Ḡ(r,r′)] · j(r′)

− lim
δ→0

∮
Sδ

d2r′{n × [∇ × Ḡ(r,r′)]} · j(r′) + L̄ · j(r)

= (Ī − L̄) · j(r) + L̄ · j(r) = j(r), (47)

where the volume integral vanishes owing to Eq. (14) and the
surface integral is evaluated analogously to Eq. (25), but with
Esca(r′) multiplied from the left replaced by j(r) multiplied
from the right and with an extra minus sign due to the change
of the integration variable.

An alternative option is to start with Eq. (39), leading to

∇ × ∇ × E(r) − k2
1E(r) = −(∇2 + k2

1

) ∫
Vint

d3r′g(r,r′)j(r′)

= j(r), (48)

where we have used Eq. (13) and

∇ × ∇ × a − (∇ ⊗ ∇) · a = ∇ × ∇ × a − ∇(∇ · a)

= −∇2a (49)

for an arbitrary smooth a(r). At first sight, the differentiation
and integration cannot be interchanged in Eq. (48), since the re-
sulting singularity will be of order R−3 and thus nonintegrable.
However, Appendix B of Ref. [20] shows that the interchange
can be done, albeit without an explicit treatment of some
intermediate surface integrals. This reference also explains
why a direct proof is important, and why many previous
derivations do not fully demonstrate the equivalence of the
differential and integral Maxwell equations.

To derive the boundary conditions (7), we first note that the
limit of δ → 0 in Eq. (37) can be replaced by the requirement
of a small enough exclusion volume V0 (not necessarily

5Note also that the R−2 term is linear in R and hence vanishes when
integrated over a small spherically symmetric volume.
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connected). In particular,

Esca(r) =
∫

Vint\V0

d3r′Ḡ(r,r′) · j(r′)

+
∫

V0

d3r′[Ḡ(r,r′) − Ḡst(r,r′)] · j(r′)

− L̄(∂V0,r) · j(r)

k2
1

, (50)

where

L̄(S,r)
def=

∮
S

d2r′ n ⊗ R′

4πR3
(51)

is a generalization of Eq. (27), and we have implicitly used∫
V

d3r′Ḡst(r,r′) = −L̄(∂V,r) (52)

as a consequence of the dyadic Stokes theorem. The integral
over V0 in Eq. (50) is regular, owing to Eq. (17) and the
smoothness of j(r) (up to the boundary). It is related to the
finite-size correction of the dipole polarizability (the so-called
M̄ term) in the DDA [5], and its magnitude is O[d2|j(r)|],
where d is the largest dimension (diameter) of V0.

Second, we consider r to be already very close to the
interface between the domains V1 and V2 (one of them can be
Vext), so that the boundary is locally flat. Then we choose V0 to
consist of two strongly oblate rectangular prisms on both sides
of the interface with dimensions h × d × d (h � d) and the
smallest dimension oriented along the normal n to the interface
(see Fig. 3). We also assume that d is much smaller than both
the wavelength in the outer medium 2π/Re(k1) and the inter-
face curvature. Next, consider the variation of r over the central
line of the prisms along n at a distance not larger than h/2 from
the interface (on either side of the interface, but not exactly on
it). The first volume integral in Eq. (50) is smooth over the
whole line and has no jump discontinuities over the interface,
owing to r − r′ � h/2. The second integral is negligibly small
and also smooth over r. The remaining L̄ term may have

FIG. 3. An exclusion domain for deriving the boundary condition
for E(r) consisting of two oblate rectangular prisms. The width per-
pendicular to the image (not shown) also equals d . Gaps between the
prisms and the locally flat interface are shown solely for convenience.
The dashed central line denotes the variation of r used to calculate
the limit when approaching the interface.

discontinuities due to either L̄(∂V0,r) or j(r). However, L̄ is the
sum of those for each prism; while for a strongly oblate prism
it equals n ⊗ n and 0̄ for an arbitrary r inside and outside the
prism, respectively [11]. Thus, L̄(∂V0,r) = n ⊗ n over the
whole line,6 and we finally obtain

E1(r) − E2(r) = n{n · [j2(r) − j1(r)]}, r ∈ Sint, (53)

where we have used the continuity of Einc(r) across the
interface. Equation (53) implies the continuity of both n × E(r)
and n · ε(r)E(r) across the interface. The above derivation is
yet another example of the advantage of using an arbitrary (not
necessarily spherical) exclusion volume.

The continuity of H(r) or, equivalently, of ∇ × Esca(r)
across the interface follows from Eqs. (37), (44), and (45) and
the regularity of the remaining volume integral as discussed
above. The radiation condition (9) immediately follows from
Eqs. (37) and (16) as a consequence of the regularity of the
integrals for r ∈ Vext, as discussed in the case of Eq. (42).

To conclude this section we note that the above derivations
can in principle be made shorter using the calculus of distri-
butions (generalized functions); see, e.g., Ref. [9]. But that
would not necessarily be clearer, since then the singularities
of the integrals would be handled implicitly. Moreover, the
above derivations apply automatically to the case of interfaces
with a finite number of vertices, edges, and even intersections,
except for points r approaching a surface singular point (since
then the fields are not necessarily bounded, but integrable).
The boundary conditions (7) are then valid at all points on the
surface except for the singular ones.

VII. EXISTENCE AND UNIQUENESS OF SOLUTION

A detailed discussion of existence and uniqueness requires
mathematical concepts that are beyond the scope of this
paper. Thus we mostly consider and generalize the previously
published results, which are somewhat fragmentary since each
publication imposes different limitations on the constitutive
parameters of the scatterer. And we switch to using ε (instead
of m) to simplify the discussion of those limitations. Also note
that owing to the equivalence shown in Sec. VI, we discuss the
scattering problem in general (Sec. II), that is, not limited to a
particular integral equation (38).

The analysis of the VIE is the easiest when ε(r) is smooth
in the whole R3, i.e., there is no sharp boundary [15,21];
then the classical Riesz-Fredholm theory of integral operators
can be applied to prove both existence and uniqueness of
solution. In Ref. [21], a positive Re(ε(r)) is assumed from
the outset [in addition to the assumption Im(ε(r)) � 0], while
Ref. [15] mentions without proof that a sufficient condition of
uniqueness is Im(ε2(r)) > 0 for any passive host medium.7 The
latter condition is physically reasonable, since any nontrivial

6One can also start with a shape other than the prism (e.g., a
hemisphere), as long as it contains a flat part of the boundary. Then
as r approaches this flat part from inside, L̄ would approach the same
limit.

7Note that here the absolute permittivity is used instead of the
relative one.
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solution of the homogeneous equation (38) (i.e., without Einc)
would lose energy inside the particle.

For particles with smooth (potentially nested) surfaces, both
the existence and the uniqueness of solution have also been
explicitly demonstrated [12,14], although those papers analyze
the integrodifferential equation (39). Moreover, Ref. [14] con-
siders only real positive k1 and ε(r), while Ref. [12] considers
an arbitrary passive host medium [Re(k1) > 0 and Im(k1) �
0] and Re(ε(r)) > c0 (an arbitrary positive constant)8 and
Im(ε(r)) � 0. If the latter inequality is strict almost everywhere
in Vint then ε(r) does not need to be smooth. Similar conditions
of smooth ε(r) with a strictly positive real part are used in
Chap. VI of Ref. [2]. Chapter 3.5 of Ref. [3] proves that the
scattering problem has a unique solution for Im(ε(r)) > c0

almost everywhere in Vint [with no limitations on Re(ε(r))],
but considers only a nonabsorbing host medium. Alternatively,
a simple proof of uniqueness has been given in Chap. 9.1 of
Ref. [16] using the Rellich lemma, but it applies only to a
positive real ε(r) and any passive host medium.

It is important to note that all of the above conditions
on constitutive parameters are sufficient, but not necessary
for both uniqueness and existence. That is why there is no
contradiction in the differences between those conditions. The
necessary conditions are intimately related to the spectrum of
the linear integral operator A defined by Eq. (38):

AE = Einc. (54)

Recall that the operator spectrum is a set of complex numbers
λ such that (A − λI) does not have a bounded inverse, where I
is the identity operator. This spectrum consists of a discrete
spectrum (isolated eigenvalues)9 for which there exists a
bounded solution of AE = λE , and an essential spectrum for
which (A − λI)−1 exists but is unbounded [15,22]. The lack
of uniqueness and existence of the scattering problem is, then,
equivalent to 0 belonging to the discrete and essential spectrum
of A, respectively.

For an everywhere smooth ε(r) (and a passive host
medium), the essential spectrum exactly corresponds to the
image (set of all values) of the function ε(R3) [15], indepen-
dently of the size or shape of the scatterer. For homogeneous
scatterers with sharp boundaries, there are certain indications
that it spans a line from 1 to ε [15,23], as if there is a narrow
smooth transition at the boundary. This is equivalent to Eq. (38)
being not solvable for a negative real ε. Recently, Costabel et al.
[24] proved (by considering only a nonabsorbing host medium)
that the essential spectrum consists only of points 1, ε, and
(ε + 1)/2. Markkanen [22] generalized this result to a particle
with edges and vertices, adding intermediate values determined
by the corresponding solid angles. However, the essential
spectrum is not invariant to the pointwise multiplication [15],
e.g., by ε(r) − 1, which is used to transition between several
equivalent forms of the VIE, using the electric field, induced
current, or potential as the main variable [25]. Moreover,
the remainder of the line from 1 to ε contains eigenvalues

8This condition is used to prove the coerciveness of a certain
sesquilinear form.

9This may also contain a continuous part, but we do not discuss it
further.

corresponding to static (k1 → 0) shape resonances, which
follows from physical reasoning that a positive real ε cannot
support resonances [23]. For instance, a sphere much smaller
than the wavelength has a resonance for ε = −2, thus the
corresponding A has an eigenvalue for (ε + 2)/3 [22]. More
generally, Budko et al. [26] proved that the eigenvalues of
the static scattering operator are contained in the convex hull
of ε(R3), denoted hereinafter as Conv(ε(R3)).10 To conclude,
a practical solution of the VIE for a nonpositive real ε is at
least problematic, so one may prefer to avoid this region as a
necessary condition for a well-behaved solution.

Additional eigenvalues of A appear with increasing |k1|.
We are not aware of any general bounds on these “resonant”
eigenvalues for an arbitrary ε(r), apart from the uniqueness
conditions discussed at the beginning of this section. Thus, we
limit the discussion to a homogeneous scatterer with a relative
permittivity ε. Then the integral operatorA can be decomposed
as follows [cf. Eq. (38)]:

A = J + (ε − 1)G(k1), (55)

where G depends on the scatterer geometry and k1, but not on
ε. In particular, the spectrum of G(0) belongs to the interval
[0,1], as discussed above. Discrete eigenvalues for such a scat-
terer are directly related to so-called morphology-dependent
resonances, which are mostly studied in the framework of
the Lorenz-Mie theory for a single sphere [27]. The latter
reduces to finding the poles of the Mie coefficients an and
bn, or, equivalently, the zeroes of their denominators; this can
be summarized as

∃l ∈ N : ηl(m,x) = 0, (56)

where x = k1a is the complex size parameter (a > 0 is the
fixed sphere radius) and l numbers both the order and type
of the Mie coefficients. Each function ηl can be expressed
in spherical Bessel and Hankel functions; importantly, it is
an analytic function of two complex variables. Any solution
(m,x) of Eq. (56) is equivalent to −1/(m2 − 1) belonging to
the spectrum of G(x/a).

Many simulations have shown that resonant values of m are
in the fourth quadrant for x > 0 (real positive x) [23,28,29],11

which naturally corresponds to the condition Im(ε) < 0. In
this case the eigenvalues of G(k1) have a negative imaginary
part, which has been confirmed by direct calculations for the
discretized operator [23]. Alternatively, one may consider a
fixedm and search for zeroes ofηl as a function ofx. Form > 0,
they are located in the fourth quadrant of the complex plane,
which corresponds to Im(ε1) < 0 [30,31]. Both these special
cases imply that xm is in the fourth quadrant [or Im(ε2) < 0]
at a pole.

Only several papers consider x poles for complex m.
Hunter et al. [32] studied the shifting of these poles when
a small imaginary part is added to a real m, using the Taylor

10The original proof is for an everywhere smooth ε(r), but it can be
extended to a piecewise-smooth one.

11Some of the cited papers use the exp(iωt) notation, which
corresponds to a reverse sign of the imaginary parts of m, ε, k, etc.
When discussing their conclusions, we implicitly transform them to
conform to the notation used in this paper.
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(a) (b)

FIG. 4. Conjectured sufficient conditions for the existence and
uniqueness of the solution of the scattering problem in a passive host
medium, described as blank areas (Z2 and Z) in the complex plane
for (a) ε2 and (b) ε, respectively. The shaded areas contain different
kinds of resonances (see text). The dashed lines in (a) and (b) extend
from the origin through the values of ε1 and its complex conjugate,
respectively.

expansions. The calculations were performed for 12 specific
poles (resonances), all close to the real positive axis in the
complex plane of x (for an initial real m). Interestingly,
one can rewrite both the change of m and shifts of the
x poles as rotations (change of the complex arguments);
then the corresponding changes of the complex arguments
satisfy � arg(x) ≈ −� arg(m), implying arg(mx) ≈ const. In
particular, the value of the ratio � arg(x)/� arg(m) is between
0.90 and 0.98 for the resonances considered in Ref. [32]. This
value being slightly smaller than 1 is confirmed by formulas
for the resonance width given by Eq. (47) of Ref. [33], which
is directly related to arg(x) at the pole. Unfortunately, the
above first-order analysis cannot definitively answer whether
Im(mx) and Im(ε2) always stay negative (as they are for a real
m). Videen et al. [34] showed that the second order of the
Taylor expansions may be significant for very small values of
Im(m). Moreover, a direct calculation of the trajectory of a
single specific pole (Fig. 4(a) of Ref. [34]) was consistent with
Im(ε2) < 0.

Similar results [negative-imaginary-part eigenvalues of
G(k1) for k1 > 0] have been shown for cubes [15,35]. More-
over, a single simulation of a vacuum cube inside an absorbing
host medium with Re(ε1) = 1 led to the spectrum consistent
with both Im(ε2) < 0 and Im(ε) < 0 [15].

To conclude this section, we put forward a conjecture that
for any homogeneous scatterer inside a passive host medium
the “singular” values of ε2 (corresponding to the essential,
static, and dynamic spectra) satisfy either ε < 0 or both
Im(ε2) < 0 and Im(ε) < 0. This is equivalent to ε2 belonging
to the complex wedge: π + arg(ε1) � arg(ε2) < 2π , where we
assume the range of arg function to be [0,2π ) for convenience.
Thus, the sufficient conditions for uniqueness and existence of
solution (for arbitrary size and shape) are conjectured to be

0 � arg(ε2) < π + arg(ε1), |ε2| > 0. (57)

Equation (57) is illustrated in Fig. 4, separately for ε2 and
ε, defining the allowed regions Z2 and Z, respectivly. The
negative real ε2 are nonphysical for the material properties,
but the VIE causes no issues with that if the host medium is
absorbing.

For inhomogeneous scatterers, an additional condition is
that the corresponding singular domains be not approached by

ε or ε2 infinitely close, i.e.,

∃c0 > 0 : ∀r ∈ R3,

0 � arg(ε2(r)) < π + arg(ε1) − c0 and |ε2(r)| > c0 (58)

or, equivalently, that the closure12 of the set of all values
of ε2(r), denoted ε2(Vint), satisfy Eq. (57) pointwise, i.e.,
ε2(Vint) ⊂ Z2. Consistent with the abovementioned results
of Budko et al. [26], we also require that Conv(ε2(Vint))
not contain the origin, which is equivalent to ε2(Vint) being
contained in the ring sector centered at the origin of the
complex plane (a circular sector excluding the neighborhood
of the origin) with an opening angle smaller than π , or to

∃c0 > 0 : ∀r,r′ ∈ Vint, |arg(ε2(r)) − arg(ε2(r′))| < π − c0.

(59)

Moreover, Eqs. (58) and (59) can be combined into the
single condition

Conv(ε2(Vint)) ⊂ Z2 ⇔ Conv(ε(R3\Sint)) ⊂ Z (60)

where we have made use of the fact that in the first part ε2(Vint)
may be augmented by ε1,13 so that the equivalence follows
from the rotation and scaling of the complex plane. We have
also excluded all discontinuities from the image of ε, since the
corresponding values ε(Sint) are not relevant for the scattering
problem and can be arbitrary. This is further discussed in
Sec. IX.

It cannot be overstressed that the above is only a conjecture.
While it conforms to all the conclusions of the above-discussed
literature, and somewhat generalizes them, we are not aware of
any general proof. That should be the topic of future research.
As an additional note, when the size and shape of a scatterer
are fixed, only a set of discrete points and, possibly, a line
in the shaded domain of ε [Fig. 4(b)] are actually singular.
Thus, for most of the points in this domain the scattering
problem has a unique solution. However, if the shape and size
of the scatterer are arbitrarily varied, these discrete points will
move through the whole singular domain and probably cover
it entirely. Thus, an additional hypothesis is that Eq. (57) is
also a necessary condition if the uniqueness and existence of
solution are required for scatterers of all sizes and shapes.

VIII. PARTICLES WITH EDGES AND VERTICES

In this section we further generalize the particle geometry
by allowing a finite number of edges and vertices, both as
singularities of an otherwise regular surface and as intersec-
tions of several regular surfaces. An example of such irregular
geometry is shown in Fig. 5, where sharp corners of the 2D
image can be interpreted both as point vertices and as sharp
edges of the 3D particle shape. Importantly, we still define Si

as maximal connected components of Sint, keeping Eqs. (5)
and (6) valid.

12The set plus all its limiting points (the boundary), further denoted
by the overline (not to be confused with the dyadics).

13In other words, the condition is equivalent to the same but with
ε2(Vint) ∪ {ε1}, since the line from ε1 to any point in Z2 is always
entirely within Z2.
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FIG. 5. An example of a multibody multilayered scatterer with
piecewise-smooth boundaries and interfaces (having a finite number
of edges and vertices). Each Si is a closed connected surface, but not
necessarily a regular one; it separates at least two domains, one of
which may be the external medium.

The boundary conditions (7) are still valid for all parts
of Sint, except for singularities, but alone they are no longer
sufficient to make the problem unambiguous. Additional as-
sumptions must be invoked, e.g., that the charges and currents
localized at shape singularities are zero, i.e., they do not radiate
any energy (Chap. 9.2 of Ref. [16]):

lim
δ→0

∮
Sδ

d2r n · Re[E(r) × H(r)∗] = 0, (61)

where the closed surface Sδ contracts around the edge or vertex,
e.g., having the shape of a capped curved cylinder and sphere,
respectively. This has also been stated to be equivalent to the
physically reasonable requirement of locally finite energy of
the electromagnetic field (i.e., the energy is finite inside any
bounded volume) or that E(r) and H(r) are locally square
integrable [3,16], and guarantees finite charge and currents on
the whole Sint. Unfortunately, we are not aware of a detailed
discussion of this equivalence in the literature. Thus, we further
consider the locally square integrability of the fields as a
primary assumption and note that Eq. (61) follows from it and
the Poynting theorem [4]:∮

∂V

d2r n · [E(r) × H(r)∗]

= −iω

∫
V

d3r [ε(r)∗|E(r)|2 − μ0|H(r)|2]. (62)

Importantly, Eq. (62) can be applied to surfaces ∂V crossing
the scatterer interfaces, since Eq. (7) implies the continuity of
the integrand over the interfaces14 and the integration surface
can be deformed to circumvent the interfaces (Fig. 6). The
integrability of the integrand on the right-hand side of Eq. (62)
implies that it can be considered both over the finite volume
enclosing the shape singularity (V ) and over the same volume
with the singularity excluded (V \Vδ), and the result is the
same in the limit δ → 0. But the difference between these two
approaches on the left-hand side of Eq. (62) is exactly Eq. (61)
before taking the real part.15

14n · (E × H∗) = −(n × E) · [n × (n × H∗)].
15Proving the reverse implication [from Eq. (61) to square integra-

bility of the fields] is substantially more involved. The real part of

(a) (b)

FIG. 6. An example of the deformation of the integration surface
to circumvent the scatterer interfaces (shown by dashed curves), from
(a) to (b). The surface integral does not change for any integrand that
is continuous across the interfaces, while the volume integral is the
same for any integrable function.

Stronger conditions have also been proposed, e.g., the “tip
condition” that singularities of E and H be weaker than R−1

has been proven sufficient for an infinite cone [36]. Evidently,
the tip condition also implies Eq. (61) and square integrability
of the fields. To summarize, the fields can be unbounded when
approaching shape singularities, but only weakly so in the sense
specified above.

In discussing the VIE in the presence of edges and vertices,
we first note that the above condition of locally square-
integrable fields is convenient to have anyway, since otherwise
the whole application of the VIE (the calculation of the inte-
grals involved) is ambiguous. Although we avoided function
spaces from the outset, any mathematically rigorous discussion
of the VIE includes a specific function space in which the
solution is searched for. In terms of E(r) alone, it is typically the
space in which both the function and its curl are locally square
integrable [13,14,37]. Thus, given this physical assumption,
the VIE seems to be directly applicable to particles with edges
without any changes. In particular, this conclusion is supported
by the successful numerical application of the DDA to a cube,
exhibiting even better accuracy than that for smooth shapes [6].
However, the above derivations connecting the VIE with the
differential Maxwell equations do require some modifications.

First, we denote the δ neighborhoods of the shape singular-
ities as V δ

1 , V δ
2 , . . . , bounded by closed surfaces Sδ

1, Sδ
2, . . . ,

respectively [cf. Eq. (61)]. Some complications arise from the
fact that shape singularities may intersect (e.g., edges end up
at vertices); in such cases we define the corresponding Sδ

i to
enclose the whole combined singularity, so that the minimum
distance from any point on the surface to the singularity equals
δ. For instance, a cube will require only a single such surface,
being a union of 8 incomplete spheres and 12 side surfaces
of a cylinder. We further define the total volume around the
singularities Vs and singularity-excluded domains V ′

i and V ′
ext,

Vs
def= ∪iV

δ
i , V ′

i

def= Vi\Vs, V ′
ext

def= Vext\Vs, (63)

Eq. (62) directly implies only integrability of Im(ε(r))|E(r)|2, which
is not helpful if the medium is neither absorbing nor active in the
neighborhood of the shape singularity. In this case, one may assume
that Eq. (61) is valid before taking the real part, but that is unjustified
unless one relates the regularity of the real and imaginary parts of
Eq. (61) using general properties of the electromagnetic field, e.g.,
through the VIE. We leave the latter for future research.
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FIG. 7. An example of the exclusion of shape singularities from
the interfaces and volume domains. See the main text for an explana-
tion of the symbols; the dashed lines denote the parts of the original
irregular surfaces Si (cf. Fig. 5) falling inside the neighborhood of
singularities. Each Sr

j is a regular connected surface separating exactly
two domains, one of which may be the external medium.

and partition each interface with excluded singularities Si\Vs

into several pairwise disjoint regular parts Sr
j (the latter

are numbered sequentially throughout the whole scatterer).
Moreover, each Sδ

i is partitioned into two or more segments
Sδ

i,1, Sδ
i,2, … belonging to different domains (out of Vext, V1,

V2, …). Any two of these segments touch only on one of
Sr

j (if at all), which together with Eq. (7) implies that both
n × E(r) and n × H(r) are continuous across the whole Sδ

i .
An example of the described singularity exclusion is shown in
Fig. 7, illustrating the newly introduced definitions. To avoid
ambiguity, we take the default orientation of the normal to
Sδ

i,j to coincide with the outward-pointing normal to Sδ
i , while

the orientation of the normal to Sr
j is not relevant for further

discussion.
To derive the VIE from the differential Maxwell equations,

we proceed analogously to Sec. V. We write down Eq. (34)
for each V ′

i and add them up together with Eq. (36) for V ′
ext.

16

Each ∂V ′
i is a union of one or more Sr

j and zero or more Sδ
j,l ,

while ∂V ′
ext additionally includes S� (in the limit � → ∞). In

the final sum, each Sr
j occurs exactly twice and with opposite

signs canceling each other, while each Sδ
i,j occurs only once.

Applying additionally Eq. (31) and

χV ′
ext

(r) +
∑

j

χV ′
j
(r) = 1 − χSint∪Vs

(r) (64)

[cf. Eq. (41)], where Vs
def= Vs ∪ ∂Vs, we obtain

Esca(r) = lim
δ→0

∫
Vint\(Vδ∪Vs)

d3r′Ḡ(r,r′) · j(r′)

− L̄ · j(r)

k2
1

+
∑

i

∮
Sδ

i

d2r′ X(r′,r) (65)

for r ∈ R3\(Sint ∪ Vs).

16Strictly speaking, the entire boundaries ∂V ′
i and ∂V ′

ext must be
smooth, which does not hold at junctions between Sr

j and Sδ
j,l .

However, the corresponding junctions can be locally smoothed (at
a scale much smaller than δ) without changing any relevant integrals
due to the boundedness of the fields in a small neighborhood of a
junction.

When we take the limit of Vs contracting to the shape
singularities, the volume integral in Eq. (65) behaves regularly
owing to E(r), and hence j(r), being square integrable inside
Vint . Therefore, the limiting result is the integral over Vint\Vδ

exactly as in Eq. (37). The only remaining proposition to prove
is that

lim
δ→0

∮
Sδ

i

d2r′ X(r′,r) = 0, (66)

where δ should not be mistaken for the parameter of the volume
integral in Eq. (65). For a fixed r, Eq. (66) follows from
the trivial analysis of singularity orders. In particular, square
integrability of E and H inside Vs implies that

|E|,|H| =
{
o(δ−1), near edge,
o(δ−3/2), near vertex,

(67)

where δ denotes the distance from the edge or vertex, re-
spectively. Note that Eq. (67) is a weaker condition than the
abovementioned tip condition; still it implies∣∣∣∣∣

∮
Sδ

i

d2r′ X(r′,r)

∣∣∣∣∣ =
{
o(1), near edge,

o(δ1/2), near vertex,

}
→
δ→0

0. (68)

For a combined shape singularity with edges and vertices,
Eq. (68) is valid for each simple part of Sδ

i , while there is
only finite number of such parts.

To finalize the equivalence we note that the reverse path
from the VIE (with a locally square-integrable solution) to
the differential Maxwell equations and boundary conditions
remains exactly the same as in Sec. VI.

The published literature on the existence and uniqueness of
the solution for particles with irregular boundaries is scarce
and was partly mentioned in Sec. VII. In particular, Chap. 9.2
of Ref. [16] proves uniqueness for a positive real ε(r) and any
passive host medium, while Chap. 3.5 of Ref. [3] proves the
uniqueness for a nonabsorbing host medium and Im(ε(r)) > c0

almost everywhere in Vint. van Beurden and van Eijndhoven
[13] also considered a nonabsorbing host medium and assumed
both Re(ε(r)) and Im(ε(r)) to be nonnegative and at least
one of them positive almost everywhere in Vint .17 Thus, the
entire Sec. VII and its concluding conjecture [Fig. 4 and
Eq. (60)] remain plausible for general scatterers with irregular
boundaries.

To conclude this section, let us reiterate that the VIE
is directly applicable to particles with edges and vertices
without any modification, and thus can be thought of as being
superior to the differential formulation which requires extra
assumptions. However, this is not a fundamental difference
between the integral and differential formulations, but rather a
consequence of a specific problem in which a natural assump-
tion of local square integrability of the VIE solution (a choice
of the solution space) is sufficient to eliminate the spurious
solutions of the original differential problem. Moreover, not

17There seems to be a minor error in their derivation: the absolute
value in Eq. (16) of Ref. [13] should be replaced by the real part
for coerciveness to hold. This implies that ε(r) should not be purely
imaginary as well. However, this is not essential, since this case is
covered by Cessenat [3] anyway.
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every possible VIE for electromagnetic scattering has this
desirable property. It holds if Eq. (38) or (39) is reformulated

in terms of j(r) or D(r)
def= ε(r)E(r), requiring only that ε(r)

be nonzero almost everywhere [13]. However, it is not so for
the so-called potential VIE (with scalar and vector potentials
as unknowns). In particular, when applied to a homogeneous
cube with ε close to certain negative real values, it leads to
spurious solutions localized at edges and vertices [22]. Those
solutions seem to have nonzero charges/currents on edges and
vertices that should be avoided according to Eq. (61). This
can be explained by the fact that square integrability of the
potentials (naturally occurring for the discretized solution of
the integral equation) does not imply square integrability of
the fields (due to the extra differentiation). Hopefully, this can
be alleviated by a more careful choice of the testing functions
for the discretization of the integral operator, as mentioned in
Ref. [22].

IX. CONTINUITY WITH RESPECT TO m(r)

All previous sections vividly demonstrate how complex-
ities of the scatterer morphology result in complications of
the differential scattering problem (extra assumptions) and
derivations of its equivalence to the VIE. In the following,
we draft an alternative approach which mostly deals with the
simplest case of an everywhere smooth m(r), more specifically,
a Hölder-continuous one. In this case the VIE is equivalent to
the differential Maxwell equations (without boundary or any
additional conditions)—see the discussion following Eq. (38).
The corresponding operator is well behaved [15,21], as dis-
cussed in Sec. VII, and the solution is smooth. So the main
idea is to replace the solution for an arbitrary scatterer (with
sharp and irregular interfaces) by the limit of solutions for a
smooth m(r).

This idea has been mentioned in various forms in the
literature. For instance, Chap. 9.1 of Ref. [16] mentions that the
result for an edge can be defined as a limit of the results for a
smooth boundary, when the latter is transformed into an edge.
Kline [38] proposed a general way to generalize the differential
Maxwell equations to encompass discontinuous fields and/or
material properties, based on the postulation that the integral
representation (not necessarily a VIE) derived for the smooth
case directly applies to the discontinuous case. Moreover, it is
postulated that the limit of solutions for the continuous case
is the proper solution for the discontinuous case, provided
the latter allows several solutions. The boundary conditions
(7) naturally appear in this approach as an implication of the
VIE (see Sec. VI), which has been mentioned specifically in
Ref. [14] as a consequence of assuming that the Maxwell
equations are satisfied in R3 in the generalized-function sense.
However, we are not aware of any detailed description of this
approach, not to mention a rigorous proof. Thus, we start filling
this gap in the following, although we may pose more questions
than we are currently able to answer.

First, a wide class of discontinuous functions m(r) can be
approximated by a sequence of everywhere smooth (Hölder
continuous) {mn(r)} in some functional, e.g., L2, norm, i.e.,

lim
n→∞ mn = m, (69)

where handwritten symbols denote functions in contrast to
their values at a particular point [cf. Eq. (54)]. We do not
give rigorous definitions here, but that is related to the space
of smooth functions being dense inside L2(R3\Vext) or a
similar space—a standard topic of functional analysis. At
a minimum, all scatterers with a finite number of irregular
interfaces discussed above can be represented in this way.

Second, we note that the operator A in Eq. (54) implicitly
depends on m, hence the solution of this equation is given by

E = A−1(m)Einc. (70)

The most important part of the whole derivation is the depen-
dence of E on m for a fixed Einc, in particular, whether this
dependence can be assumed continuous. The conjecture is that

lim
n→∞A−1(mn)Einc = A−1(m)Einc (71)

in some domain of m, where we additionally assume that A−1

is well defined for m and each of mn, i.e., the solution of each
respective scattering problem exists and is unique (as discussed
below). While the continuity seems reasonable for a smooth
resulting m, it is not at all evident for discontinuous ones which
represent our main interest. The potential failure of Eq. (71)
may be caused by several factors: the limit may (i) not exist,

(ii) be unbounded [i.e., each En
def=A−1(mn)Einc is locally square

integrable, but its limit is not], or (iii) be not equal to the right-
hand side.

The detailed rigorous analysis of the continuity conjecture
in proper functional (Sobolev) space remains the subject of fu-
ture research. On one hand, it is further complicated by the fact
that the dependence ofA on m is of the form “identity + linear”
[cf. Eq. (55)], which makesA−1 nonlinear with respect to m. On
the other hand, the nature of this dependence is multiplicative
[cf. Eq. (3)], thus making it easily invertible. Moreover, the VIE
is probably less sensitive to shape features than surface-integral
formulations (see, e.g., Chap. 5 of Ref. [39]). However, it is
for the latter that certain continuity has actually been proven,
albeit only for perfect conductors with smooth surfaces (see
Chap. 7.2 of Ref. [21]).

Third, if limn→∞ En exists, it is natural to postulate it as
the definition for the solution of the scattering problem for an
irregular m. If, additionally, this limit equals E from Eq. (70)
(i.e., the continuity conjecture holds) then this solution can be
obtained from the VIE with no modifications.

While this concludes the template of a proof, we further
discuss three related issues which give some additional confi-
dence in the continuity conjecture.

We start with a discussion of the existence and uniqueness,
i.e., whether A−1(m) exists and is bounded and whether it
follows from the regularity of A−1(mn). Most of the results
from Sec. VII apply but require minor modifications to account
for taking a limit. To this end, we analyze the general, albeit
hypothetical condition (60). On one hand, whenever m is
smooth, the L2 convergence of Eq. (69) implies a pointwise
convergence, at least for a subsequence of mn(r); hence,

m(R3\Sint) ⊂ ∪nmn(R3). (72)

On the other hand, for any piecewise-smooth m, as considered
in Sec. VIII, we can construct mn to have only the same
values as those of m and “in between.” Specifically, we set
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mn(r) = m(r) for all r, except in a small neighborhood Un

of Sint (Un →
n→∞ Sint). Inside this neighborhood, mn(r) changes

smoothly from the value of m(r) on one side of the boundary
to that on the other. A particular S-shaped function to use is
not important, but the corresponding intermediate values of
εn(r) = m2

n(r) should all be on the line in the complex plane
between the two values of ε.18 Near the interface intersections
(see, e.g., Fig. 5), mn(r) should smoothly connect three or more
values of m(r) on different sides of the shape singularity with
the corresponding intermediate values of εn(r) limited to the
convex hull of the corresponding values of ε. Thus,19

ε(R3\Un) ⊂ εn(R3) ⊂ Conv(ε(R3\Un))

⊂ Conv(ε(R3\Sint)). (73)

Equations (72) and (73) imply the “continuity” of the
condition (60). If it is satisfied for all mn simultaneously
and with limiting points, i.e., Conv(∪nεn(R3)) ⊂ Z, then the
limiting scattering problem is well defined. Conversely, for any
piecewise-smooth m satisfying Eq. (60), one can construct a
converging sequence of smooth functions mn, for each of which
the scattering problem is well defined. The latter supports the
validity of using the VIE for such an m.

Let us further consider the convergence of the spectrum
of A(mn). On one hand, Sec. VII presents some controversial
evidence against such convergence. While considering the
simplest case of a homogeneous sphere in a vacuum, different
authors suggest that the essential spectrum is either a line from
1 to ε [15] or only three points: 1, ε, and (1 + ε)/2 [24].
However, for any smooth approximation mn constructed above,
the essential spectrum is a line from 1 to ε [15]; hence, so
is its limit.20 This apparent difference remains for the whole
spectrum of the operator as well, since the latter differs from
the essential spectrum only at a discrete set of points.

On the other hand, all these differences disappear if we
take the convex hull of the spectrum. Moreover, according
to Ref. [26] for an arbitrary piecewise-smooth scatterer the
convex hull of the essential spectrum Conv(ε(R3\Sint)) con-
tains the discrete spectrum in the static limit, and, thus, equals
the convex hull of the whole spectrum for the static operator

Ast
def=Ak1=0. At the same time, Eq. (73) implies

Conv(εn(R3)) = Conv(ε(R3\Un)) →
n→∞ Conv(ε(R3\Sint)).

(74)

So we have a convergence of the convex hull of the spectrum of
Ast. This does not tell us anything about the discrete spectrum
of the operator for k1 �= 0, but we may expect the continuity to

18εn(r) should not be confused with ε2(r); the former is used only
with the subscript n.

19The presented proof can be made rigorous for a piecewise-smooth
m by explicitly (and tediously) constructing the described smooth
junctions. However, we are not certain that this can be done for an
arbitrary m satisfying Eq. (69).

20The intermediate values on this line are thinned out in the sense
that they correspond to Un whose volume shrinks to zero. Hence, the
effect of this part of the essential spectrum on the solution of the VIE
in the L2 space is unclear.

hold for those discrete eigenvalues, since the most problematic
part of Ḡ, and hence of A, is the strongly singular static part
Ḡst which fully manifests itself in Ast. The continuity of the
convex hull of the spectrum is much weaker than that implied
by Eq. (71), but does show some similarity of its left- and right-
hand sides, e.g., in terms of their numerical computation.21

Thus, we arrive at the convergence of the discretization
schemes for the numerical solution of the VIE. The latter can
be the topic of a separate review (see, e.g., Refs. [5,22]); here
we only note that discretization effectively replaces the integral
operator A with an operator AN having a finite rank N. It is
typically assumed that

lim
N→∞

A−1
N (m)Einc = A−1(m)Einc, (75)

which is a manifestation of so-called numerically exact solu-
tions [37,40] and is realized in practice for the VIE discretized
with proper basis and testing functions. Importantly, any
bounded finite-rank linear operator is equivalent to the matrix
and, thus, is continuous:

lim
n→∞A−1

N (mn)Einc = A−1
N (m)Einc. (76)

We may even choose a sequence of smooth functions mn such
that22

AN (mn) ≡ AN (m), n � N, (77)

but this is not required for the following.
An important hypothesis is the uniform convergence of the

limiting sequence in Eq. (75) for all scatterer functions in the
neighborhood of m, or at least for the sequence {mn}. It implies
the possibility to interchange the limits leading, along with
Eq. (76), to

lim
n→∞ En = lim

n→∞ lim
N→∞

A−1
N (mn)Einc = lim

N→∞
A−1

N (m)Einc = E,

(78)

which is exactly the continuity conjecture (71). It is not clear,
however, whether proving the uniform convergence of Eq. (75)
is fundamentally easier. Conversely, a proof of Eq. (71) would
actually justify the use of the discussed numerical methods for
a discontinuous m, which may seem questionable since they
make no distinction between m and mn (for a large enough n

for a fixed N ). The latter has been discussed and practically
justified in the DDA simulations of light scattering by a cube
[6]. Moreover, Eq. (78) can be generalized to describe the
convergence of the spectrum of the discretized operator which
has been analyzed numerically for a few examples in the
framework of the DDA [19,41].

21The convergence of an iterative solver is determined by the
envelope of the spectrum [23], which is not necessarily the convex
hull, but rather a simply connected superset of the spectrum. However,
the construction of smooth approximations before Eq. (73) can be
modified such that εn(R3) lies within this envelope.

22For instance, in the simplest case of the DDA with a cubical
discretization and pointwise testing (the collocation method) only
the values of m(r) in the centers of the cubes matter. Any smoothing
of m between these nodes does not change the discretized operator,
e.g., as discussed before Eq. (73).
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To finalize this section, we stress once again that the rigorous
proof of the continuity conjecture (71) or, more specifically, the
evaluation of specific conditions on the underlying functions
that make it valid, remains to be done. However, there exists
additional supporting physical reasoning. Since the physical
properties of the materials are discontinuous at atomic scales,
the macroscopic Maxwell equations (1) are typically derived
from the microscopic ones by averaging over some finite size δ

[40]. Hence, Eq. (1) is valid only down to the scale of δ, and any
variation of m at a smaller scale should not affect the solution.
In other words, when using Eq. (1) we implicitly assume
that any such variation of m has negligible effect for large
enough scatterers, which is similar to assuming the uniform
convergence of Eq. (75). The only other option is to rigorously
average the microscopic Maxwell equations near the material
discontinuities, considering a realistic placement of atoms, the
interaction of electrons, etc., which will be entirely daunting
near the intersection of several interfaces. Surely this physical
reasoning is not a substitute for a rigorous mathematical proof,
but it helps achieve a certain level of mental comfort.

X. CONCLUSION

Consistent with the objectives formulated in the Introduc-
tion, we have presented a general derivation of the VIE for
a very general type of scatterer in the form of an arbitrary
spatially finite group of particles, including those with edges,
corners, and intersecting internal interfaces, immersed in a pas-
sive host medium. We have thoroughly discussed the existence
and uniqueness of the VIE solution related to the spectrum of
the corresponding integral operator. Moreover, we have shown
that the conjectured continuity of the inverse integral operator
with respect to the refractive-index function leads to an even
simpler derivation of the VIE. Whenever possible, we have
closely followed previously published derivations and con-
structed a new derivation and new conjectures to fill the existing

gaps. Importantly, we believe that the resulting description
is reasonably self-contained and complete, covering the VIE
from all possible conceptual perspectives. As such, our paper
could also be considered a review of the current state-of-the-art
of this subject.

Yet a lot of work remains to be done. First, in order to
make the derivations widely accessible, we have refrained from
complete mathematical rigor in certain places, e.g., in terms of
specific smoothness requirements for the fields and constitutive
parameters. This issue seems to be a rather technical one and
should be resolvable along the lines of the referenced rigorous
accounts. Second, we formulated two important conjectures:
(i) the general condition on the electric permittivity of the
scatterer and the host medium to guarantee the existence
and uniqueness of solution, and (ii) the continuity of the
VIE solution with respect to the refractive-index function. To
attain the full predictive power, these conjectures need to be
rigorously proved with a specification of the function spaces in
which they are satisfied. Third, it is highly desirable to extend
this complete analysis to anisotropic and magnetic materials.
Accounting for material anisotropy is straightforward and
mostly amounts to replacing the scalar electric permittivity (or
refractive index) by a dyadic one and tracing it appropriately
through all the derivations. The consideration of magnetic
materials should result in replacing a single VIE with a system
of two coupled VIEs, for the electric and magnetic fields,
respectively. The derivation of such VIEs can be expected to
be lengthier, but not fundamentally more involved. However,
the existence and uniqueness conditions will require a separate
analysis.
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