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Fast-responding property of electromagnetically induced transparency in Rydberg atoms
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We investigate the transient optical response property of an electromagnetically induced transparency (EIT)
in a cold Rydberg atomic gas. We show that both the transient behavior and the steady-state EIT spectrum of
the system depend strongly on Rydberg interaction. Especially, the response speed of the Rydberg-EIT can be
five times faster (and even higher) than the conventional EIT without the Rydberg interaction. For comparison,
two different theoretical approaches (i.e., two-atom model and many-atom model) are considered, revealing that
Rydberg blockade effect plays a significant role for increasing the response speed of the Rydberg-EIT. The
fast-responding Rydberg-EIT by using the strong, tunable Rydberg interaction uncovered here is not only helpful
for enhancing the understanding of the many-body dynamics of Rydberg atoms but also useful for practical
applications in quantum information processing by using Rydberg atoms.
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I. INTRODUCTION

In the past two decades, much attention has been paid
to the research of cold Rydberg atomic gases [1–7], i.e.,
highly excited atoms with large principal quantum number
[8] working under an ultracold environment. Due to their
exaggerated properties, including long lifetime, large electric
dipole moment, and strong and controllable atom-atom inter-
action (called Rydberg interaction for short), Rydberg atoms
have promising applications in, among many areas, quantum
calculating and quantum information, precision spectroscopy
and precision measurement, and manipulation and simulation
of quantum many-body states [3–7].

Since the pioneering theoretical and experimental works
carried out by Friedler et al. [9] and by Mohapatra et al. [10],
in recent years considerable interest has been focused on the
electromagnetically induced transparency (EIT) in Rydberg
atomic gases (see Refs. [5–7] for details). EIT is a typical
quantum interference effect in three-level atoms induced by a
control laser field, by which the absorption of a probe field can
be significantly suppressed. Light propagation in EIT systems
displays many striking features, which include (in addition to
the significant suppression of light absorption) large reduction
of group velocity, giant enhancement of Kerr nonlinearity,
and the like [11]. Rydberg-EIT has important applications,
such as direct and nondestructive coherent optical detection
[10], design and fabrication of devices in quantum information
processing (e.g., all-optical switches and transistors) at the
single-photon level [12–18], and development of quantum
nonlinear optics in correlated quantum many-body systems
with strong driving and dissipation outside of equilibrium
[5–7,19,20].

However, up to now most studies on Rydberg-EIT have been
limited to the steady-state property or long-time behavior, in
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which the transient response process [appearing when the con-
trol (or probe) field is switched on] was not taken into account.
For many practical applications, such as the performance of
all-optical switches and transistors, the response speed of
Rydberg-EIT is vital. Thus it is very necessary to explore the
transient optical response of Rydberg-EIT, which is important
not only for the understanding of the physical property of EIT in
Rydberg atoms, but also for practical applications of all-optical
switches and transistors, and even general quantum memory
processes based on Rydberg-EIT [12–18].

In this work, we investigate, both analytically and numeri-
cally, the transient optical response property of an Rydberg-
EIT when the control field in the system is switched on
from zero into a finite value. We shall show that both the
transient-state behavior and the steady-state EIT spectrum of
the Rydberg atomic gas depend strongly on Rydberg inter-
action. In particular, the response speed of the Rydberg-EIT
can be five times faster than the conventional EIT without
the Rydberg interaction and may be increased further if the
system parameters are optimized. For comparison, two differ-
ent theoretical models are considered, i.e., a two-atom model
for which the equation of motion of the density matrix of the
system is solved exactly by using a numerical calculation, and
a many-atom model for which equations of motion of reduced
density matrix (i.e., many-body correlators) are solved by using
an approach beyond mean-field approximation. Two models
give consistent results, which show that the Rydberg blockade
effect plays a significant role in increasing the response speed
of the Rydberg-EIT. The fast-responding Rydberg-EIT by
using the strong, tunable Rydberg interaction found here
is not only helpful for enhancing the understanding of the
many-body dynamics of Rydberg atoms but also useful for
practical applications in quantum information processing by
using Rydberg atoms.

The paper is arranged as follows. In Sec. II we describe the
two-atom model and give numerical results of the transient
response and the estimation on the response time of the
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FIG. 1. (a) Level configuration and excitation scheme of the two-
atom model, which consists of two identical atoms, A and B, with
three internal states |1〉l , |2〉l , and |3〉l (Rydberg state), interacting via
van der Waals (Rydberg) interaction. �12 (�23): decay rate from |2〉l

to |1〉l (from |3〉l to |2〉l); �2 (�3): one- (two-) photon detuning; �p

(�c): half Rabi frequency of the probe (control) field coupling to the
transition |1〉l ↔ |2〉l (|2〉l ↔ |3〉l) (l = A,B). (b) Time sequence for
the probe (red dashed line) and the control (blue solid line) fields.
(c) Schematic of Rydberg blockade in the many-atom model. The
Rydberg interaction between atoms blocks the excitation of the atoms
within blockade spheres (i.e., the ones with the boundary marked by
the orange dashed lines). In each blocked sphere only one Rydberg
atom (small yellow sphere) is excited, and excitations of other atoms
(small blue spheres) to their Rydberg states are suppressed.

Rydberg-EIT. In Sec. III we introduce the many-atom model,
present analytical results of the transient response by using an
approach of reduced density approach, and make a comparison
with the result obtained from the two-atom model. Finally, in
Sec. IV we give a discussion and a summary of the results
obtained in this work. Information about calculation details of
the main text are presented in Appendixes.

II. TRANSIENT RESPONSE OF THE RYDBERG-EIT:
TWO-ATOM MODEL

A. Two-atom model

First, we consider a system consisting of only two identical
atoms, A and B, with three internal states driven by two laser
fields [Fig. 1(a)]. One of them is a probe field, which has the
center angular frequency ωp (half Rabi frequency �p) and
couples to the transition between ground state |1〉l and excited
(intermediate) state |2〉l ; another is a control field, which has
center angular frequency ωc (half Rabi frequency �c) and
couples to the transition between the state |2〉l and Rydberg
state |3〉l . �12 (�23) is the decay rate from the excited state to
the ground state (from the Rydberg state to the excited state),
�2 = ωp − (ω2 − ω1) [�3 = (ωp + ωc) − (ω3 − ω1)] is one-
photon (two-photon) detuning, with h̄ωα the eigenenergy of
the state |α〉. For simplicity, the Rydberg states |3〉l (l = A, B)
is assumed to be |nS1/2〉 (with n principle quantum number).
There is a long-range van der Waals (Rydberg) interaction
between the Rydberg states |3〉A and |3〉B .

Under electric-dipole approximation, the Hamiltonian of
the system is given by Ĥ = ĤA + ĤB + ĤAB . Here ĤA (ĤB) is
the single-atom Hamiltonian for atom A (atom B), and ĤAB is
the van der Waals (vdW) interaction between two atoms. Under

rotating-wave approximation, the Hamiltonian in interaction
picture reads

Ĥ = −h̄
∑

l=A,B

[
3∑

α=1

�ασ̂ l
αα + (

�pσ̂ l
21 + �cσ̂

l
32 + H.c.

)]

+ h̄σ̂ A
33VABσ̂B

33, (1)

where σ̂ l
αβ ≡ |α〉l l〈β| is the transition operator of atom l

(l = A,B), �p(c) = [ep(c) · p21(32)]Ep(c)/h̄ is the half Rabi
frequency of the probe (control) field (with pαβ the electric
dipole matrix element associated with the transition from |β〉
to |α〉), and VAB = −C6/r6

AB is the vdW interaction potential
(with rAB ≡ |rA − rB | the separation between atom A and
atom B and C6 the dispersion coefficient approximately scaling
as n11).

The state vector of the system in the interaction picture is
|	〉 = ∑3

α,μ=1 aαμ|αμ〉, with |αμ〉 ≡ |α〉A |μ〉B and aαν the
corresponding probability amplitude. The density matrix of
the system, defined by ρ̂ ≡ |	〉〈	|, reads

ρ̂ =
3∑

α,β=1

3∑
μ,ν=1

ραβ,μν |αμ〉〈βν| =
3∑

α,β=1

3∑
μ,ν=1

ραβ,μνσ̂
A
αβ σ̂ B

μν,

(2)

where ραβ,μν ≡ 〈αμ|ρ̂|βν〉 = aαμa∗
βν satisfying

∑3
αμ=1

ραα,μμ = 1 and ρ∗
αβ,μν = ρβα,νμ. The master equation

governing the evolution of the density matrix reads

ih̄
∂ρ̂

∂t
= [Ĥ ,ρ̂] + �ρ̂, (3)

where � is a 9 × 9 relaxation matrix representing the decay
rates due to spontaneous emission and dephasing in the system.
An explicit form of the master equation is presented in Eq. (A1)
in Appendix A.

The reduced one-atom density matrix ρA for atom A is given
by ρ̂A = TrB(ρ̂) [21], i.e., the partial trace of the density matrix
over atom B. Then it is easy to show that

ρA
αβ =

3∑
μ=1

ραβ,μμ. (4)

Similarly, the reduced one-atom density matrix ρB for atom
B is given by ρ̂B = TrA(ρ̂), and we have ρB

μν = ∑3
α=1 ραα,μν .

Note that, due to the symmetry of the Hamiltonian Eq. (1) by
exchanging atom A and atom B, one has numerically ρA

αβ =
ρB

αβ ; in addition, for very large atomic separation (rAB → ∞),
VAB → 0, and hence we have ραβ,μν = ρA

αβρB
μν . In this situa-

tion, the system is reduced into two independent atoms, and
hence the Rydberg-EIT becomes a conventional one without
atomic interaction.

The physical system described in the present work can
be easily realized by experiment. One of candidates is
87Rb atoms trapped in a microtrap, with the atomic states
[shown in Fig. 1(a)] assigned as |1〉 = |5s 2S1/2,F = 2〉, |2〉 =
|5p 2P3/2,F = 3〉, and |3〉 = |60s 2S1/2〉, with �12 = 2π ×
6 MHz, �23 = 1 kHz, C6 = −2π × 140 GHz × μm6 for n =
60 [22,23]. In this work, as done by Li and Xiao [24], we
consider the transient optical response of the Rydberg-EIT by
using the time sequence shown in Fig. 1(b). That is to say, when
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t < 0 the probe field is present but with no control field applied,
so the system has an optical response of a typical two-level
atomic system; at t = 0 the control field is rapidly switched
on; for t > 0 the system displays a transient optical response
process until the establishment of a steady-state Rydberg-EIT
at some time TR (i.e., the response time of the Rydberg-EIT;
see below).

B. Transient response property of the Rydberg-EIT in the
two-atom model

Since for t < 0 the control field is absent (i.e., �c = 0),
the Rydberg states are empty and the Rydberg interaction
plays no role. Thus the system performs as two independent
atoms with the ground and excited states coupled by the
probe field. Then, if taking t = 0 as an initial time, the initial
condition of the system is given by ραβ,μν(t)|t=0 ≡ ραβ,μν(0) =
ρA

αβ(0)ρB
μν(0) (α,β,μ,ν = 1,2), with other ραβ,μν(0) = 0.

Here ρA
11(0) = ρB

11(0) = [2γ21|�p|2 + �12|d21|2]/D, ρA
22(0) =

ρB
22(0) = �12|d21|2/D, ρA

21(0) = ρB
21(0) = −d∗

21�12�p/D,
with D = 4γ21|�p|2 + �12|d21|2, and d21 = �2 + iγ21

(γ21 = �12/2 is the dephasing rate between |1〉l and |2〉l ;
l = A,B). The dynamical behavior of the system when the
control field is switched on can be obtained through solving
the equation of motion of the two-atom density matrix Eq. (3)
by using the well-known standard Runge-Kutta method under
the initial condition given above.

We are interested in the transient optical response of the
Rydberg-EIT, which can be described by the time evolution of
the optical susceptibility χp(t) of the probe field, proportional
to the one-atom coherence ρA

21 (or ρB
21). From Eq. (4) we have

ρA
21(t) = ρ21,11(t) + ρ21,22(t) + ρ21,33(t), (5)

and similarly ρB
21(t) = ρ11,21(t) + ρ22,21(t) + ρ33,21(t), which

is equal to ρA
21(t).

Shown in Fig. 2(a) is the numerical result on the transient
response behavior of the Rydberg-EIT of the two-atom model
as a function of time t for �2 = �3 = 0, characterized by
the normalized absorption Im(ρ21), i.e., the imaginary part of
ρ21(t) [≡ ρA

21(t)], as a function of t for �p = 0.2�12. The green
dashed-dotted line is for the case �c = 2π × 4 MHz with
the Rydberg interaction [VAB = 1 GHz (rAB = 3.10 μm)]; the
brown dotted line is for the case �c = 2π × 4 MHz with no
Rydberg interaction (VAB = 0).

From the figure we see, first, that as the control field is
switched on at t = 0, both the absorption curves of the EIT
with and without the Rydberg interaction display a damped
oscillation. For large t , the absorption is increased and Im(ρ21)
reaches a small steady-state value. The small absorption at
the steady state is due to the quantum destructive interference
effect induced by the strong control field. Second, comparing
with the case with no Rydberg interaction where a transient
gain [i.e., Im(ρ21) < 0] may happen (the brown dotted line), the
oscillation amplitude for the case with the Rydberg interaction
is smaller (the green dashed-dotted line). The reason is that
the presence of the Rydberg interaction contributes an out-of-
phase impact on the EIT with no Rydberg interaction. This
point can be also seen from Eq. (8), obtained by using the
many-atom model in the next section. Finally, the oscillating
frequency of the response curve for large �c is larger than
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FIG. 2. Transient response behavior of the Rydberg-EIT as a
function of time t . (a) Normalized absorption of the two-atom model
for �p = 0.2�12, characterized by Im(ρ21) [ρ21(t) ≡ ρA

21(t)]. The
green dashed-dotted line is for �c = 2π × 4 MHz with the Rydberg
interaction [VAB = 1 GHz (rAB = 3.10 μm)]; the brown dotted line
is for �c = 2π × 4 MHz with no Rydberg interaction (VAB = 0).
(b) Im(ρ21) of the many-atom model for �p = 0.05�12 as a function
of t . The green dashed-dotted line is for �c = 2π × 4 MHz with a
high atomic density (Na = 1.2 × 1010 cm−3) and hence significant
Rydberg interaction; the brown dotted line is for �c = 2π × 4 MHz
with a low atomic density (Na = 1 × 108 cm−3) and hence negligible
Rydberg interaction. Results for a large control field, i.e., �c =
2π × 8 MHz, are also shown. In both panels, blue solid lines and
red dashed lines are for the case with significant Rydberg interaction
and the case with negligible Rydberg interaction, respectively.

that of small �c, regardless of the Rydberg interaction (the red
dashed and the blue solid lines). This is because the coherence
property of the system is enhanced when �c becomes larger,
resulting in an enhanced oscillation before reaching its steady-
state value.

In order to seek more information about the character of the
Rydberg-EIT, the transient response spectrum of the system
as a function of the probe-field detuning � (≡ �2 = �3) is
also calculated, with the result plotted in Fig. 3. Figure 3(a)
shows the normalized absorption spectrum Im(ρ21) for t = 0,
which, due to �c = 0, has only a single peak of Lorentz type,
typical for a two-level atom coupled with a laser field. Shown
in Figs. 3(b) and 3(c) are, respectively, results of Im(ρ21)
at t = 0.14 μs and t = 1.2 μs for �c = 2π × 4 MHz and
�p = 0.2�12, where the blue solid line is for the case with the
Rydberg interaction VAB = 1 GHz (rAB = 3.10 μm) and the
red dashed line is for the case without the Rydberg interaction
(VAB = 0).

From the figure we see, first, that when the control field
is switched on (t > 0), the original single-peak absorption
spectrum at t = 0 [Fig. 3(a)] evolves into a two-peak structure
(i.e., a EIT transparency window is opened near � = 0) and
the separation between the two peaks is gradually increased as
t increases [Figs. 3(b)–3(e)]; in addition, a transient gain [i.e.,
Im(ρ21) < 0] is observed at t = 0.14 μs before the absorption
spectrum reaches the final steady-state value [Figs. 3(b) and
3(c)]. Then, second, the depth of the EIT transparency window
for the case of the EIT with the Rydberg interaction (blue
solid line) is shallower than that of the EIT without Rydberg
interaction (red dashed line) [Figs. 3(b) and 3(c)], which means
that, comparing with the EIT with no Rydberg interaction, the
absorption in the EIT with the Rydberg interaction is stronger.
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FIG. 3. Transient response behavior of the Rydberg-EIT as a
function of the probe-field detuning � (≡ �2 = �3). (a) Normalized
absorption spectrum Im(ρ21) for t = 0, where �c = 0. (b) Im(ρ21)
at t = 0.14 μs for �c = 2π × 4 MHz. (c) Im(ρ21) at t = 1.2 μs for
�c = 2π × 4 MHz. Both panels (b) and (c) are obtained from the
two-atom model with �p = 0.2�12, where the blue solid line is the
EIT spectrum with the Rydberg interaction VAB = 1 GHz (rAB =
3.10 μm), while the red dashed line is the EIT spectrum without the
Rydberg interaction (VAB = 0). Panels (d) and (e) are, respectively,
the same with (a) and (b), but obtained by the many-atom model with
�p = 0.03�12, where the blue solid line is the EIT spectrum with
a high atomic density Na = 1.2 × 1010 cm−3 (significant Rydberg
interaction), and the red dashed line is the EIT spectrum with a low
atomic density Na = 1 × 108 cm−3 (negligible Rydberg interaction).

The dispersion spectrum of the system is described by
the real part of the atomic coherence ρ21, i.e., Re(ρ21), as
a function of �, which has been shown in panels (a)–(c) of
Fig. 6 in Appendix A. One sees that (1) when the control field
is switched on (t > 0), the dispersion spectrum at t = 0, which
displays an anomalous dispersion [Fig. 6(a)], evolves into one
with normal dispersion near � = 0, and (2) near � = 0, there
is a only small difference of the dispersion behavior between
the cases with and without the Rydberg interaction.

Based on the above results, we can deduce that the EIT
with the Rydberg interaction has a fast response time than the
EIT without Rydberg interaction. To support this conclusion,
we give a quantitative estimation on the response time of
the Rydberg-EIT. According to engineering control theory
[25,26], the response time TR of a transient response process
may be defined as the minimum time after which the temporal
variation of the response function of the transient response
process always keeps within a error range 2�err (�err is usually
set to 0.05 [25]). A simple mathematical illustration to explain
the concept of the response time of a transient response process
is given in Appendix A 3.

Based on the above definition, the response time TR of the
Rydberg-EIT is calculated. Shown in Table I is the result of TR

TABLE I. Response time TR of the Rydberg-EIT for �p = 0.3�12

obtained by using the two-atom model.

TR with TR with no
Rydberg interaction Rydberg interaction

�c (VAB = 1 GHz) (VAB = 0)

2π × 4 MHz 0.26 μs 1.40 μs
2π × 8 MHz 0.43 μs 1.57 μs

0       4        8       12  16      20

1.6

1.2

0.8

0.4

   0 

2 4 MHz

2 8 MHz

( m)ABr

(
s)

RT

FIG. 4. The response time TR of the Rydberg-EIT for as a function
of rAB , obtained with the two-atom model for �c = 2π × 4 MHz
(blue solid line) and �c = 2π × 8 MHz (red dashed line), with �p =
0.3�12.

for �p = 0.3�12, obtained by the two-atom model for different
�c. From Table I we have the following conclusions: (1) The
response speed of the Rydberg-EIT can be faster than that of
the EIT without Rydberg interaction. Especially, for a small
control field, the response time of the Rydberg-EIT can be five
times smaller than that of the EIT without Rydberg interaction.
The physical reason for the fast-responding property of the
Rydberg-EIT is due to the Rydberg blockade in the system,
where the strong Rydberg interaction shifts the Rydberg state
|3〉 out of resonance and then blocks its excitation. As a
result, atoms nearly remain in their initial two-level atomic
states, so that the steady state of EIT for the interacting
system can be achieved in an early time. (2) The response
time of EIT grows as �c increases. The physical reason is
that, as �c increases, the oscillation frequency of Im(ρ21)
increases due to the enhancement of the coherence of the
system. Thus a longer time is needed for ρ21 evolving into
steady state. This point can be clearly seen by the blue solid
line and the red dashed line in Fig. 2(a). Thus for shortening
the response time of EIT, one should make a moderate �c

(small but still satisfying the EIT condition, i.e., |�c|2 > γ21γ31

[11]).
Note that the response time of the Rydberg-EIT can be

changed as the Rydberg interaction is varied. Shown in Fig. 4 is
the response time TR as a function of rAB in the Rydberg-EIT
system obtained by the two-atom model. We see that TR is
shortened as rAB is reduced, which means that one can reduce
the Rydberg-EIT response time by increasing the atomic
density. However, TR is saturated for small rAB . This is due
to the effect of “soft core,” resulting from a strong Rydberg
blockade effect, where the excitation to Rydberg states is com-
pletely blockaded for very closed atoms. Additionally, from
the figure we know that, in general, the response time grows
as the control field is increased, regardless of the Rydberg
interaction.

III. TRANSIENT RESPONSE OF THE RYDBERG-EIT:
MANY-ATOM MODEL

A. Many-atom model and reduced density
matrix approach

In the last section we showed that the Rydberg-EIT has a
faster response speed than conventional EIT without Rydberg
interaction. But the result given there is obtained by using a
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two-atom model and thus cannot tell us how about the situation
if the system contains a large number of atoms. To answer this
question, in this section we investigate the transient response
behavior of a many-atom system with Rydberg interaction,
for which, however, the density matrix method used in the
last section is hard to apply even for a numerical approach
since the size of the Hilbert space is exponentially expanded
as the atomic number of the system increases. Alternatively,
here we employ an approach of a reduced density matrix
[27–30] beyond the mean-field approximation to solve ana-
lytically equations of motion of many-body correlators by a
method of multiple scales [31,32].

The Hamiltonian in a system with N atoms with Rydberg
interaction is given by ĤH(t) = Na

∫ +∞
−∞ d3rĤH(r,t), where

Na is atomic density, and ĤH(r,t) is the Hamiltonian density,
given by [29,30]

ĤH(r,t) = h̄

3∑
α=1

ωαŜαα(r,t) − h̄[�pŜ12(r,t)

+�cŜ23(r,t) + H.c.]

+Na

∫
r′ 
=r

d3r′Ŝ33(r′,t)h̄V (r′ − r)Ŝ33(r,t), (6)

where Ŝαβ(r,t) = |β〉〈α|ei[(kβ−kα )·r−(ωβ−ωα+�β−�α )t] (α,β =
1,2,3) is the transition operator related to the states |α〉 and
|β〉, and the last term on the right-hand side is the contribution
from the Rydberg interaction, with h̄V (r′ − r) the interaction
potential between the Rydberg atoms located at the positions
r and r′.

Due to the Rydberg interaction, the Rydberg excitation
of one atom would block the Rydberg excitation of all sur-
rounding atoms for V (R) � δEIT, where δEIT = |�c|2/γ21 is
the line width of EIT transmission window. Therefore, the
blockade sphere [33] has a radius of Rb = (C6/δEIT)1/6 ≈
5.45 μm for �c = 2π × 4 MHz and thus has a volume of
Vb = (4/3)πR3

b ≈ 678.66 μm3. Comparing this to the aver-
age interatomic separation obtained by R̄ = (5/9)N−1/3

a ≈
2.42 μm for Na = 1.2 × 10−10 cm−3 [22], we see that the
blockade effect can be obviously observed, and the number
of atoms inside the blockade radius can be evaluated by
Nb = NaVb ≈ 8.2, as shown in Fig. 1(c). The system can
be divided into many blockade spheres [represented by the
spheres with the boundary indicated by yellow dashed line
in Fig. 1(c)], and each blockade sphere contains only one
Rydberg atom [represented by the small yellow sphere in
Fig. 1(c)].

The Heisenberg equation of motion for Ŝαβ (r,t) is given
by [i∂/∂t + (ωα − ωβ + �α − �β)]Ŝαβ = (1/h̄)[Ŝαβ,ĤH ].
Based on this, we can obtain the equation of the one-body
correlators (or called one-body density matrix elements)
ραβ(r,t) ≡ 〈Ŝαβ(r,t)〉 [34]:

i
∂

∂t
ρ11 − i�12ρ22 − �pρ12 + �∗

pρ21 = 0, (7a)

i

(
∂

∂t
+ �12

)
ρ22 − i�23ρ33 + �pρ12

−�∗
pρ21 − �cρ23 + �∗

cρ32 = 0, (7b)

i

(
∂

∂t
+ �23

)
ρ33 + �cρ23 − �∗

cρ32 = 0, (7c)

(
i

∂

∂t
+ d21

)
ρ21 + �p(ρ11 − ρ22) + �∗

cρ31 = 0, (7d)

(
i

∂

∂t
+ d31

)
ρ31 − �pρ32 + �cρ21 − Na

×
∫

r′ 
=r
d3r′V (r′ − r)ρ33,31(r′,r,t) = 0, (7e)

(
i

∂

∂t
+ d32

)
ρ32 − �∗

pρ31 + �c(ρ22 − ρ33) − Na

×
∫

r′ 
=r
d3r′V (r′ − r)ρ33,32(r′,r,t) = 0, (7f)

where dαβ = �α − �β + iγαβ (α,β = 1,2,3; α 
= β), and
γαβ = (�α + �β)/2 + γ

dep
αβ with �β = ∑

α<β �αβ . Here �αβ

denotes the spontaneous emission decay rate from the state
|β〉 to the state |α〉, and γ

dep
αβ denotes the dephasing (including

those from atomic motion and the interaction between
ground-state and Rydberg-state atoms) rate between |α〉 and
|β〉.

From Eq. (7), we see that for solving the equations of motion
of the one-body correlators, we need to know the two-body cor-
relators (two-body density matrix elements) ρ33,3α(r′,r,t) ≡
〈Ŝ33(r′,t)Ŝ3α(r,t)〉 (α = 1,2). It is easy to show that for solving
the equations of motion of the two-body correlators, we need
to know three-body correlators, defined by ραβ,μν,ζη(r′′,r′,t) ≡
〈Ŝαβ (r′′,t)Ŝμν(r′,t)Ŝζη(r,t)〉, etc. As a result, we obtain an
infinite hierarchy of equations of motion for the correlators
of one-body, two-body, three-body, and so on.

B. Transient response of the Rydberg-EIT
in the many-atom model

The equations of motion of the one-body correlators are
given in Eq. (7). Equations of motion of two-body correlators
are not listed here since there are 27 independent equations and
each of them is long. In fact, these equations have almost the
same forms as those of the two-atom density matrix elements
derived in the two-atom model [see Eq. (A1) in Appendix
A], but with additional three-body correlators and correspond-
ing spatial integrals [related to vdW potential h̄V (r′ − r)]
involved. Because these equations are nonlinearly coupled with
each other, it is difficult to solve them by using conventional
techniques. Fortunately, since in our consideration the probe-
field intensity is relatively small, hence we can employ the
method of reduction perturbation, widely applied in nonlinear
oscillation and wave theory [32], to solve them. Because our
calculation is exact to third order (i.e., up to �3

p), the equations
of motion for the n-body correlators (n � 3) are not needed.
In principle, one can go to higher orders of �p, valid for large
probe field [30], but this will, however, involve a large number
of calculations.

1. Solutions of one- and two-body correlators using
a method of multiple scales

By inspection on the order of magnitude in the equations of
the one-body correlators ραβ ≡ 〈Ŝαβ〉 and the two-body
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correlators ραβ,μν ≡ 〈Ŝαβ Ŝμν〉, we make
the following expansions: �p = ε�(1)

p ,

ρα1 = ∑
m=0 ε2m+1ρ

(2m+1)
α1 , ραβ = ∑

m=1 ε2m

ρ
(2m)
αβ , ρ11 = 1 + ∑

m=1 ε2mρ
(2m)
11 , ρα1,β1 = ∑

m=1 ε2mρ
(2m)
α1,β1,

ρα1,1β = ∑
m=1 ε2mρ

(2m)
α1,1β , ραβ,μ1 = ∑

m=1 ε2m+1ρ
(2m+1)
αβ,μ1 ,

and ραβ,μν = ∑
m=2 ε2mρ

(2m)
αβ,μν (α,β,μ,ν = 2,3). Here ε is

a small expansion parameter, introduced for characterizing
the magnitude of the amplitude of the probe-field Rabi
frequency.

To obtain divergence-free solutions for the one- and two-
body correlators, all the quantities on the right-hand side of
the expansions given above are considered as functions of the
fast time variable t0 = t and the slow time variable t2 = ε2t

[31,32]. Then we obtain a set of linear but inhomogeneous
differential equations for each of the equations of the one- and
two-body correlators, which can be solved analytically order
by order up to third-order approximation.

At the first [i.e., O(ε)] order, only the equations for
one-body correlators are to be solved. By using the initial
condition ρ

(1)
21 (0) = −�(1)

p /d21, ρ
(1)
31 (0) = 0, we obtain the

solution for ρ
(1)
α1 , which has a damped fast oscillation (as a

function of t0) modulated by two envelopes f
(1)
1 and f

(1)
2

(as a function of t2) [see Eq. (B2) of Appendix B]. At
the second [i.e., O(ε2)] order, we obtain the lowest-order
solution of the two-body correlators with the given set of initial
conditions is ρ

(2)
21,21(0) = (�(1)

p /d21)2, ρ
(2)
21,12(0) = |�(1)

p /d21|2,

and other ρ
(2)
α1,β1(0) = ρ

(2)
α1,1β (0) = 0. The second-order solu-

tion for the one-body correlators ρ
(2)
αβ can also be gained

simultaneously with the set of initial conditions ρ
(2)
22 (0) =

2γ21|�(1)
p |2/(�12|d21|2) and other ρ

(2)
αβ (0) = 0. With these re-

sults, we proceed to the third [i.e., O(ε3)] order approximation.
Solutions of ρ

(3)
αβ,μ1 and ρ

(3)
α1 at this order are to be obtained. A

solvability condition (i.e., to cancel the secular term appeared
in the third-order equation) is used to get the envelopes f

(1)
1 and

f
(1)
2 appeared in the first-order solution. Steps for obtaining

the second-order and third-order approximated solutions for
the equations of the one- and two-body correlators by using
the method of multiple scales are described in detail in
Appendix B.

2. Transient response of the Rydberg-EIT in the many-atom
model and a comparison with the two-atom model

Combining the solutions gained from the first- to the
third-order approximations described above, after returning
to the original variables we obtain the transient optical re-
sponse function of the Rydberg-EIT in the many-atom model,
given by

ρ21(t) ≈ a
(1)
21 (t)�p +

[
Na

∫
d3r′V (r′ − r)a(3),RR

21 (r′ − r,t)

+ a
(3),LA
21 (t)

]
|�p|2�p. (8)

Here the first (second) term on the right-hand side is the
linear (nonlinear) optical response of the system. The nonlinear
response includes two parts. One is a nonlocal nonlinear

response, described by Na

∫
d3r′V (r′ − r)a(3),RR

21 (r′ − r,t)
|�p|2�p, which is contributed from the Rydberg interaction;
another one is a local nonlinear response, described by the
a

(3),LA
21 (t) |�p|2�p, which is contributed from the photon-

atom interaction. For detailed expressions of a
(1)
21 , a

(3),RR
21 , and

a
(3),LA
21 , see Eqs. (B2a), (B9a), and (B9b) of Appendix B. Note

that the local nonlinear response is much smaller than the
nonlocal one and towards zero if the two-photon detuning
�3 = 0.

Shown in Fig. 2(b) is the normalized absorption Im(ρ21)
as a function of t for the many-atom model by taking �p =
0.05�12. In the figure, the green dashed-dotted line is for the
case �c = 2π × 4 MHz with a high atomic density (Na =
1.2 × 1010 cm−3) and hence significant Rydberg interaction;
the brown dotted line is for the case �c = 2π × 4 MHz with a
low atomic density (Na = 1 × 108 cm−3) and hence negligible
Rydberg interaction. Results for a large control field, i.e.,
�c = 2π × 8 MHz, are also shown, with the blue solid and
red dashed lines being for the presence and absence of the
Rydberg interaction, respectively.

From the figure, we see, first, that similarly to the numerical
result obtained from the two-atom model, both the absorption
curves of the EIT with and without the Rydberg interaction
display a damped oscillation before reaching a small steady-
state value as the control field is switched on. Second, the
oscillation amplitude for the case with the Rydberg interaction
is smaller (the green dashed-dotted line) compared with the
case with no Rydberg interaction (the brown dotted line), the
same as that of the numerical result obtained from the two-atom
model. However, the decrease of the oscillation amplitude by
the Rydberg interaction here is smaller than that in the two-
atom model because we have selected a smaller probe field
(�p = 0.05�12) in order to make the perturbation calculation
valid. We speculate that the oscillation amplitude will increase
if �p is taken as a larger value.

Shown in Figs. 3(d) and 3(e) are numerical results of
normalized absorption spectrum Im(ρ21) as a function of
probe-field detuning � at t = 0.14 μs and t = 1.2 μs for �c =
2π × 4 MHz and �p = 0.03�12, respectively, where the blue
solid line is the EIT spectrum with a high atomic density Na =
1.2 × 1010 cm−3 (significant Rydberg interaction), while the
red dashed line is the EIT spectrum with a low atomic density
Na = 1 × 108 cm−3 (negligible Rydberg interaction). From
the figure, we see the following: (1) Similarly to the result
obtained from the two-atom model, the original single-peak
absorption spectrum at t = 0 [Fig. 3(a)] evolves into a structure
with two peaks (i.e., a EIT transparency window is opened
near � = 0) after the control field is switched on, and the final
steady state in the EIT with the Rydberg interaction is stronger
compared with the EIT with no Rydberg interaction. (2) Differ-
ently from the symmetric two-peak structure obtained with the
two-atom model [red dashed lines in Fig. 3(d) and Fig. 3(e)],
the Rydberg-EIT spectrum calculated with the many-atom
model always displays asymmetric profiles [blue solid lines
in Fig. 3(d) and Fig. 3(e)] during the time evolution, because
the Rydberg interaction may give rise to slight deviation of
the two-photon resonance, contributed from the (nonlocal)
integration that involves all surrounding atoms, as indicated
at the expression of the response function (8).
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FIG. 5. Response time TR of the EIT as a function of the probe-
field Rabi frequency �p . Line 1 (line 2): TR for the EIT with the
Rydberg interaction obtained in the many-atom (two-atom) model.
Line 3 (line 4): TR for the EIT with no Rydberg interaction obtained
in the many-atom (two-atom) model. Three blue points along the
decreasing direction of line 1 indicate the tendency of the response
time of the EIT with the Rydberg interaction as �p is increased, which
means that TR will be decreased further for larger probe field.

In order to make a comparison between the results obtained
by the many-atom model here and by the two-atom model in the
last section, in Fig. 5 we show the response time TR of the EIT
as a function of the probe-field Rabi frequency �p. Lines 1 and
2 are for the case with the Rydberg interaction, obtained in the
many-atom model and the two-atom model, respectively; lines
3 and 4 are for the case with no Rydberg interaction obtained
in the many-atom and two-atom models, respectively. When
plotting the figure, parameters for the two-atom model are
�c = 2π × 4 MHz, VAB = 1.0 GHz (rAB ≈ 3.10 μm) for the
EIT with Rydberg interaction, and VAB = 0 for the EIT without
Rydberg interaction. Parameters for the many-atom model are
given by �c = 2π × 4 MHz, Na = 1.2 × 1010 cm−3 for the
EIT with the Rydberg interaction (adopted from the experiment
[22]), Na = 1 × 108 cm−3 for the EIT with negligible Rydberg
interaction.

From Fig. 5 we can arrive the following conclusions: (1) The
response time of the EIT with the Rydberg interaction is much
faster than that of the EIT without the Rydberg interaction. (2)
For a given probe-field Rabi frequency �p, the response time
of the Rydberg-EIT (line 1) obtained by the many-atom model
is faster than that obtained by the two-atom model (line 2).
(3) As the probe-field Rabi frequency �p is increased, the
response time of the EIT with the Rydberg interaction (lines
1 and 2) is reduced rapidly. However, the response time of
the EIT without the Rydberg interaction displays no obvious
tendency of reduction when �p increases (lines 3 and 4).

The physical reason for the fast-responding property of the
Rydberg-EIT in the many-atom system is mainly due to the
Rydberg blockade effect. Due to this effect, in each blockade
sphere only one atom is excited to the Rydberg state |3〉; other
atoms can be excited only to the state |2〉. Thus in the Rydberg-
EIT system, most atoms behave practically like two-level ones,
and the system has a larger relaxation rate compared with
the EIT system without the Rydberg interaction. As a result,
the dissipation of the system is enhanced (with relaxation rate
scaled with ≈ Nb), giving rise to a decreased response time for
the Rydberg-EIT system.

Comparing with the two-atom system, in the many-atom
system the Rydberg blockade effect is much enhanced, and

hence the response speed of the EIT is faster than that of the
two-atom one. Note that the perturbation calculation presented
above, though attained under a weak probe-field approximation
(Na is fixed), can be in principle extended to high orders
when �p (or Na) becomes larger. One expects that the result
on the optical response of the Rydberg-EIT given above can
be extended to the case of large probe-field intensity. One
can make a prediction on the variation tendency of TR when
�p becomes large. Three blue points along the decreasing
direction of line 1 indicate the tendency of TR of the EIT with
the Rydberg interaction as �p grows, which means that the
EIT response time can be decreased further as the probe field
is increased.

IV. DISCUSSION AND SUMMARY

We noticed that the transient many-body dynamics of
Rydberg atoms has attracted much attention in recent years,
including, e.g., coherent Rydberg excitations [35,36], collec-
tively enhanced Rabi oscillations [37,38], and suppression of
multiple Rydberg excitations [39,40]. However, our work is
very different from Refs. [35–40]. First, the transient dynamics
considered in Refs. [35–40] is outside of EIT regime, whereas
what we considered here is inside an EIT regime. Second,
the atomic model used in Refs. [35–40] is either a two- or a
three-level one with a very large one-photon detuning, whereas
in our model no constraint on the one-photon detuning is used.
Third, light fields used in Refs. [35–40] must be assumed to
be strong enough so that they can be taken to be undepleted
during Rydberg excitations and transient response processes,
whereas in our work the probe field used is weak, and thus
the optical susceptibilities of the system during the Rydberg
excitation and the transient response process can be obtained
both analytically and numerically.

In conclusion, we have studied the transient optical response
property of the EIT in a cold Rydberg atomic gas with the
Rydberg interaction. We have demonstrated that both the tran-
sient behavior and the steady-state EIT spectrum of the system
depend on the Rydberg interaction strongly. In particular, the
response speed of the Rydberg-EIT may be five times faster
than the conventional EIT without the Rydberg interaction and
can be increased further by increasing the probe-field intensity.
For comparison, two different models (i.e., two-atom model
and many-atom model) are solved. The results reveal that
Rydberg blockade effect plays a significant role for increasing
the response speed of the Rydberg-EIT. The fast-responding
Rydberg-EIT by using the strong, tunable Rydberg interaction
found here is useful not only for a deep understanding of
the nonequilibrium many-body dynamics of Rydberg atoms,
but also for practical applications in quantum information
processing (including all-optical switching and transistors,
quantum phase gates, etc.) based on Rydberg atoms.
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APPENDIX A: TWO-ATOM MODEL

1. Equations of motion for two-atom density matrix elements

The explicit form of the master equation (3) reads

i
∂

∂t
ρ11,11 − 2i�12ρ11,22 − 2�pρ12,11 + 2�∗

pρ21,11 = 0,

i

(
∂

∂t
+ �12

)
ρ22,11 − i�12ρ22,22 − i�23ρ11,33 + �pρ12,11 − �pρ22,12 − �∗

pρ21,11 + �∗
pρ22,21 − �cρ23,11 + �∗

cρ32,11 = 0,

i

(
∂

∂t
+ �23

)
ρ33,11 − i�12ρ33,22 + �cρ23,11 − �∗

cρ32,11 − �pρ33,12 + �∗
pρ33,21 = 0,

(
i

∂

∂t
+ d21

)
ρ21,11 − i�12ρ21,22 + �p(ρ11,11 − ρ22,11) + �∗

cρ31,11 − �pρ21,12 + �∗
pρ21,21 = 0,

(
i

∂

∂t
+ d31

)
ρ31,11 − i�12ρ31,22 + �cρ21,11 − �pρ32,11 − �pρ31,12 + �∗

pρ31,21 = 0,

(
i

∂

∂t
+ d32

)
ρ32,11 − i�12ρ32,22 + �c(ρ22,11 − ρ33,11) − �pρ32,12 + �∗

pρ32,21 − �∗
pρ31,11 = 0,

(
i

∂

∂t
+ 2d21

)
ρ21,21 − 2�p(ρ22,21 − ρ11,21) + 2�∗

cρ31,21 = 0,

(
i

∂

∂t
+ d21 + d12

)
ρ21,12 + �p(ρ11,12 − ρ22,12) + �∗

p(ρ22,21 − ρ11,21) − �cρ21,13 + �∗
cρ31,12 = 0,

(
i

∂

∂t
+ d21 + d31

)
ρ21,31 + �cρ21,21 + �∗

cρ31,31 − �p(ρ21,32 + 2ρ22,31 + ρ33,31 − ρ31) = 0,

(
i

∂

∂t
+ d21 + d13

)
ρ21,13 + �∗

c (ρ31,13 − ρ21,12) − �p(2ρ22,13 + ρ33,13 − ρ13) + �∗
pρ21,23 = 0,

(
i

∂

∂t
+ 2d31 − V12

)
ρ31,31 − 2�pρ32,31 + 2�cρ21,31 = 0,

(
i

∂

∂t
+ d31 + d13

)
ρ31,13 − �pρ32,13 + �∗

pρ31,23 + �cρ21,13 − �∗
cρ31,12 = 0,

(
i

∂

∂t
+ i�12 + d21

)
ρ22,21 − i�23ρ33,21 − �cρ23,21 + �∗

c (ρ32,21 + ρ22,31) − �∗
pρ21,21 − �p(ρ22,22 − ρ22,11 − ρ12,21) = 0,

(
i

∂

∂t
+ i�12 + d31

)
ρ22,31 − i�23ρ33,31 + �c(ρ22,21 − ρ23,31) + �∗

cρ32,31 + �p(ρ12,31 − ρ22,32) − �∗
pρ21,31 = 0,

(
i

∂

∂t
+ i�23 + d21

)
ρ33,21 + �cρ23,21 + �∗

c

(
ρ33,31 − ρ32,21

) − �p(ρ33,22 − ρ33,11) = 0,

(
i

∂

∂t
+ i�23 + d31 − V12

)
ρ33,31 − �∗

cρ32,31 + �c(ρ33,21 + ρ23,31) − �pρ33,32 = 0,

(
i

∂

∂t
+ d32 + d21

)
ρ32,21 − �c(ρ33,21 − ρ22,21) + �∗

cρ32,31 − �∗
pρ31,21 − �p(ρ32,22 − ρ32,11) = 0,

(
i

∂

∂t
+ d32 + d31 − V12

)
ρ32,31 − �∗

pρ31,31 − �pρ32,32 − �c(ρ33,31 − ρ22,31 − ρ32,21) = 0,

(
i

∂

∂t
+ d23 + d21

)
ρ23,21 − �p(ρ23,22 − ρ23,11 − ρ13,21) + �∗

c (ρ33,21 − ρ22,21 + ρ23,31) = 0,

(
i

∂

∂t
+ d23 + d31

)
ρ23,31 + �pρ13,31 + �∗

c (ρ33,31 − ρ22,31) + �cρ23,21 − �pρ23,32 = 0,

i

(
∂

∂t
+ 2�12

)
ρ22,22 − 2i�23ρ22,33 + 2�pρ22,12 − 2�∗

pρ22,21 + 2�∗
cρ32,22 − 2�cρ22,23 = 0,
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i

(
∂

∂t
+ �23 + �12

)
ρ22,33 − i�23ρ33,33 + �pρ12,33 − �∗

pρ21,33 − �cρ23,33 + �∗
cρ32,33 + �cρ22,23 − �∗

cρ22,32 = 0,

i

(
∂

∂t
+ 2�23

)
ρ33,33 + 2�cρ23,33 − 2�∗

cρ32,33 = 0,

(
i

∂

∂t
+ i�12 + d32

)
ρ22,32 − i�23ρ33,32 + �pρ12,32 − �∗

pρ21,32 − �cρ23,32 + �∗
cρ32,32 + �c(ρ22,22 − ρ22,33) − �∗

pρ22,31 = 0,

(
i

∂

∂t
+ i�23 + d32 − V12

)
ρ33,32 + �cρ23,32 − �∗

cρ32,32 − �∗
pρ33,31 + �c(ρ33,22 − ρ33,33) = 0,

(
i

∂

∂t
+ 2d32 − V12

)
ρ32,32 + 2�c(ρ22,32 − ρ33,32) − 2�∗

pρ31,32 = 0,

(
i

∂

∂t
+ d32 + d23

)
ρ32,23 + �c(ρ22,23 − ρ33,23) − �∗

c (ρ22,32 − ρ33,32) + �pρ32,13 − �∗
pρ31,23 = 0,

where dαβ = �α − �β + iγαβ with γαβ = (�α + �β)/2 +
γ

dep
αβ and �β = ∑

α<β �αβ . Here �αβ denotes the spontaneous

emission decay rate from the state |β〉 to the state α〉, and γ
dep
αβ

represents the dephasing rate, resulting, e.g., from the atomic
motion and the interaction between the atoms in the ground
state and the atoms in the Rydberg state. With the initial con-
dition ραβ,μν(0) = ρA

αβ(0)ρB
μν(0) (for their expressions, see Sec.

II B), the above motion equations can be solved numerically
by using Runge-Kutta method.

2. Dispersion property of the system

The dispersion property of the system is described by the
real part of the atomic coherence ρ21, i.e., Re(ρ21), as a function
of the detuning �(≡ �2 = �3). Shown in Fig. 6 are results of
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FIG. 6. Transient response behavior of the Rydberg-EIT as a
function of the probe-field detuning � (≡ �2 = �3). (a) Normalized
dispersion spectrum Re(ρ21) for t = 0, where �c = 0. (b) Re(ρ21)
at t = 0.14 μs for �c = 2π × 4 MHz. (c) Re(ρ21) at t = 1.2 μs
for �c = 2π × 4 MHz. Both panels (b) and (c) are obtained from
the two-atom model with �p = 0.2�12, where the blue solid line
is the EIT spectrum with the Rydberg interaction VAB = 1 GHz
(rAB = 3.10 μm), and the red dashed line is the EIT spectrum without
the Rydberg interaction (VAB = 0). Panels (d) and (e) are respectively
the same with (a) and (b), but obtained by the many-atom model with
�p = 0.03�12, where the blue solid line is the EIT spectrum with
a high atomic density Na = 1.2 × 1010 cm−3 (significant Rydberg
interaction), and the red dashed line is the EIT spectrum with a low
atomic density Na = 1 × 108 cm−3 (negligible Rydberg interaction)

normalized dispersion spectrum Re(ρ21), obtained by using
the two-atom model and the many-atom model, respectively.
From the figure we have the following conclusions: (1) When
the control field is switched on (t > 0), the dispersion spectrum
at t = 0, which displays an anomalous dispersion [Fig. 6(a)],
evolves into the one with a normal dispersion near � = 0. (2)
For both the two-atom model [Figs. 6(b) and 6(c)] and the
many-atom model [Figs. 6(d) and 6(e)], near � = 0 there is
only a small difference of the dispersion behavior between the
case with (blue solid lines) and without the Rydberg interaction
(red dashed lines). Thus, one can obtain slow group velocity by
using the Rydberg-EIT, useful for the slowdown and memory
of optical pulses.

3. Definition of the response time for a transient
response process

To quantitatively determine the response time of a transient
response process, one must have a working definition on it.
According to engineering control theory (see Refs. [25,26]
for detail), the response (or settling) time TR of a transient
response process is usually defined to be the minimum time
after which the temporal change of the response function
describing the transient response process always remains
within a small error range 2�err around the steady-state value
of the response. Usually �err is set to be 0.05 without loss of
generality [25]. A simple example for the definition of the
response time of a response function (denoted by the blue
point) is shown in Fig. 7, where the normalized response
function is f (τ ) = e−τ sin(3τ + 0.4π ) + 0.001, with τ the
dimensionless time. The blue rectangle in Fig. 7(a) means
that the variation of f (τ ) has reached the stage where the
variation of f (τ ) is within the range 2�err|f (∞)| around
the steady-state value of the response function, i.e., f (∞) =
0.001. The blue point indicates the position of the response
time. Figure 7(b) is the amplification of the blue rectangle
shown in Fig. 7(a). The region in green is the permitted relative
error range for determining the response time, marked by the
upper boundary f (∞) + |f (∞)|�err and the lower boundary
f (∞) − |f (∞)|�err, with �err = 0.05. Thus the blue point
is, by definition, the response time of the transient response
process.
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FIG. 7. Definition of the response time of a transient response
process, described by a response function f (τ ), τ is dimensionless
time. (a) Example: f (τ ) = e−τ sin(3τ + 0.4π ) + 0.001. The blue
rectangle indicates that the variation of f (τ ) reaches within the range
2�err around the steady-state value f (∞) = 0.001. The blue point
denotes the response time. (b) Amplification of the blue rectangle
shown in (a). The region with green color is the permitted relative
error range for defining response time, marked by the upper boundary
f (∞) + |f (∞)|�err and the lower boundary f (∞) − |f (∞)|�err ,
with �err = 0.05. The blue point is the response time of the transient
response process.

APPENDIX B: MANY-ATOM MODEL

Steps for solving the equations of motion for one- and two-
body correlators in the many-atom model are the following:

First-order approximation: At this order, we need to obtain
the one-body correlators ρ

(1)
α1 ≡ a

(1)
α1 �(1)

p (α = 2,3) only, which
satisfy the equation

−i
∂

∂t0

[
a

(1)
21

a
(1)
31

]
=

[
d21 �∗

c

�c d31

][
a

(1)
21

a
(1)
31

]
+

[
1
0

]
, (B1)

with the initial condition a
(1)
21 (0) = −1/d21, a

(1)
31 (0) = 0. Here

t0 = t is fast time variable. Solution of Eq. (B1), which

can be obtained by using constant-variation method [32],
reads

a
(1)
21 =

2∑
m=1

v1mf (1)
m g(1)

m eiλmt0 + a
(1)
21 (∞), (B2a)

a
(1)
31 =

2∑
m=1

v2mf (1)
m g(1)

m eiλmt0 + a
(1)
31 (∞). (B2b)

Here a
(1)
21 (∞) = d31/D and a

(1)
31 (∞) = −�c/D are the

corresponding steady-state solution [30], with D =
|�c|2 − d21d31; g(1)

m are determined from the initial condition,
given by g

(1)
1 = {v22[a(1)

21 (0) − a
(1)
21 (∞)] − v12[a(1)

31 (0) −
a

(1)
31 (∞)]}/(v11v22 − v21v12) and g

(1)
2 = {v11[a(1)

31 (0) −
a

(1)
31 (∞)] − v21[a(1)

21 (0) − a
(1)
21 (∞)]}/(v11v22 − v21v12); v1m =

�∗
c and v2m = λm − d21, with

λ1 = d21 + d31 +
√

4|�c|2 + (d21 − d31)2

2
, (B3a)

λ2 = d21 + d31 −
√

4|�c|2 + (d21 − d31)2

2
; (B3b)

and f (1)
m (m = 1,2) are slowly varying envelopes (i.e., func-

tions of the slow time variable t2), yet to be determined in the
next orders.

Second-order approximation: We shall obtain the lowest-
order solution of the two-body correlators that start at this order.
The first set of equations governing the two-body correlators
ρ

(2)
α1,β1 ≡ a

(2)
α1,β1[�(1)

p ]2 (α,β = 2,3) is given by

−i
∂

∂t0

⎡
⎢⎢⎣

a
(2)
21,21

a
(2)
21,31

a
(2)
31,31

⎤
⎥⎥⎦ =

⎡
⎢⎣

2d21 2�∗
c 0

�c d21 + d31 �∗
c

0 2�c 2d31 − V

⎤
⎥⎦

⎡
⎢⎢⎣

a
(2)
21,21

a
(2)
21,31

a
(2)
31,31

⎤
⎥⎥⎦ +

⎡
⎢⎣

2a
(1)
21

a
(1)
31
0

⎤
⎥⎦, (B4)

with the initial condition a
(2)
21,21(0) = 1/d2

21, a
(2)
21,31(0) = a

(2)
31,31(0) = 0.

The second set of equations governing the two-body correlators ρ
(2)
α1,1β ≡ a

(2)
α1,1β |�(1)

p |2 (α,β = 2,3) reads

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎣

a
(2)
21,12

a
(2)
31,13

a
(2)
31,12

a
(2)
21,13

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

2iγ21 0 �∗
c −�c

0 2iγ31 −�∗
c �c

�c −�c D32 0

−�∗
c �∗

c 0 D23

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a
(2)
21,12

a
(2)
31,13

a
(2)
31,12

a
(2)
21,13

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

a
(1)∗
21 − a

(1)
21

0

a
(1)∗
31

−a
(1)
31

⎤
⎥⎥⎥⎥⎥⎦, (B5)

with Dαβ = dα1 + d1β , where the initial condition is a
(2)
21,12(0) = 1/|d21|2, a

(2)
21,13(0) = a

(2)
31,12(0) = a

(2)
31,13(0) = 0.

The equation of the one-body correlators ρ
(2)
αβ ≡ a

(2)
αβ |�(1)

p |2 (α,β = 2,3) at this order is

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎣

a
(2)
22

a
(2)
33

a
(2)
32

a
(2)
23

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

i�12 −i�23 �∗
c −�c

0 i�23 −�∗
c �c

�c −�c d32 0

−�∗
c �∗

c 0 d23

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a
(2)
22

a
(2)
33

a
(2)
32

a
(2)
23

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

a
(1)∗
21 − a

(1)
21

0

a
(1)∗
31

−a
(1)
31

⎤
⎥⎥⎥⎥⎥⎦, (B6)
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with the initial condition a
(2)
22 (0) = 2γ21/(�12|d21|2), a

(2)
32 (0) = a

(2)
23 (0) = a

(2)
33 (0) = 0. The solution of ρ

(2)
11 is given by ρ

(2)
11 =

−ρ
(2)
22 − ρ

(2)
33 .

Using Eq. (B2), Eqs. (B4)–(B6) can be solved by employing the constant-variation method [32]. The first term on the right-hand
side (RHS) of these equations contributes solutions from corresponding homogeneous equations (i.e., in the absence of the second
term), and the second term yields inhomogeneous particular solutions.

Third-order approximation: At this order, equations governing the two-body correlators ρ
(3)
αβ,μ1 ≡ a

(3)
αβ,μ1|�(1)

p |2�(1)
p (α,β,μ =

2,3) are given by

−i
∂

∂t0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(3)
22,21

a
(3)
22,31

a
(3)
33,21

a
(3)
33,31

a
(3)
32,21

a
(3)
32,31

a
(3)
23,21

a
(3)
23,31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M51 �∗
c −i�23 0 �∗

c 0 −�c 0

�c M52 0 −i�23 0 �∗
c 0 −�c

0 0 M53 �∗
c −�∗

c 0 �c 0

0 0 �c M54 0 −�∗
c 0 �c

�c 0 −�c 0 M55 �∗
c 0 0

0 �c 0 −�c �c M56 0 0

−�∗
c 0 �∗

c 0 0 0 M57 �∗
c

0 −�∗
c 0 �∗

c 0 0 �c M58

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(3)
22,21

a
(3)
22,31

a
(3)
33,21

a
(3)
33,31

a
(3)
32,21

a
(3)
32,31

a
(3)
23,21

a
(3)
23,31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(2)
22 + a

(2)
21,12 − a

(2)
21,21

a
(2)
31,12 − a

(2)
21,31

a
(2)
33

0

a
(2)
32 − a

(2)
21,31

−a
(2)
31,31

a
(2)
23 + a

(2)
21,13

a
(2)
31,13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B7)

with M51 = i�12 + d21, M52 = i�12 + d31, M53 = i�23 +
d21, M54 = i�23 + d31 − V , M55 = d32 + d21, M56 = d32 +
d31 − V , M57 = d23 + d21, and M58 = d23 + d31. Here the
initial condition is given by a

(3)
22,21(0) = a

(2)
22 (0)a(1)

21 (0), and

other a
(3)
αβ,μ1(0) = 0. With the solutions obtained at the second-

order approximation, solutions of these equations also can be
obtained analytically.

With the results obtained above, we can proceed to the
equations of the one-body correlators at the third-order ap-
proximation, ρ

(3)
α1 ≡ a

(3)
α1 |�(1)

p |2�(1)
p , given by

− i
∂

∂t0

[
a

(3)
21

a
(3)
31

]

=
[
d21 �∗

c

�c d31

][
a

(3)
21

a
(3)
31

]
+ i

|�(1)
p |2

∂

∂t2

[
a

(1)
21

a
(1)
31

]

+
[ −2a

(2)
22 − a

(2)
33

−a
(2)
32 − Na

∫
d3r′V

(
r′ − r

)
a

(3)
33,31

]
. (B8)

The solution of this equation can be obtained by using the
constant-variation method [32], which includes the solution of
the corresponding homogeneous equation and the particular
solution contributed by the inhomogeneous terms (i.e., the
second and third terms on the RHS in the equation). Note
that the homogeneous equation [i.e., without the second and
the third terms on the RHS] has the same eigenvalues and
eigenfunctions as those of Eq. (B1); the third term on the RHS
contributes a similar eigen-oscillation (i.e., resonant drive) to
the system, which will result in a secular term in the equation
and hence a singularity in its solution. The aim introducing the
slow variable t2 and the slow-varying envelopes f (1)

m (m = 1,2)
is for canceling such a singularity, which is reflected by the
second term on the RHS of the above equation. Then by
a solvablilty condition [i.e., canceling the secular term in

Eq. (B8)] yields closed equations for f
(1)
1 and f

(1)
2 , which can

be solved analytically [41].
The general expression of a

(3)
21 is given by a

(3)
21 ≡ a

(3),LA
21 +

Na

∫
d3r′V (r′ − r)a(3),RR

21 , contributed by two parts:

a
(3),LA
21 =

2∑
m=1

v1mg(3),LA
m eiλmt0 +

∑
l

wLA
1l eiμl t0 + a

(3),LA
21 (∞),

(B9a)

a
(3),RR
21 =

2∑
m=1

v1mg(3),RR
m eiλmt0 +

∑
l

wRR
1l eiμl t0 + a

(3),RR
21 (∞).

(B9b)

Here a
(3),LA
21 (∞) and a

(3),RR
21 (∞) are corresponding

steady-state solutions, given in Ref. [30]; w
LA(RR)
1l and

μl are coefficients obtained when calculating the particular
solutions stemming from the inhomogeneous terms; g(3),LA(RR)

m

are determined from the initial condition, given as g
(3),LA
1 =

{v22[a(3),LA(RR)
21 (0) − a

(3),LA(RR)
21 (∞) − ∑

l w
LA(RR)
1l ] −

v12[a(3),LA(RR)
31 (0) − a

(3),LA(RR)
31 (∞) − ∑

l w
LA(RR)
1l ]}/(v11v22 −

v21v12), g
(3),LA
2 = {v11[a(3),LA(RR)

31 (0) − a
(3),LA(RR)
31 (∞) −

break
∑

l w
LA(RR)
1l ] − v21[a(3),LA(RR)

21 (0) − a
(3),LA(RR)
21 (∞) −∑

l w
LA(RR)
1l ]}/(v11v22 − v21v12), where a

(3),LA
21 (0) =

4γ21/(�12|d21|2), a
(3),LA
31 (0) = a

(3),RR
21 (0) = a

(3),RR
31 (0) = 0.

After returning to the original variables, we obtain

ρ21(t) ≈ a
(1)
21 (t)�p +

[
a

(3),LA
21 (t) + Na

∫
d3r′V (r′ − r)

× a
(3),RR
21 (r′ − r,t)

]
|�p|2�p, (B10)

which is just Eq. (8). Because the optical susceptibility of
the system is given by χp(t) = [Na|p12|2/(ε0h̄�p)]ρ21(t), the
transient optical response of the Rydberg-EIT can be described
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by the atomic coherence ρ21(t). The dispersion property of the
system, described by Re(ρ21), is shown in Figs. 6(d) and 6(e),

which is similar to the result solved with the two-atom model
shown in Figs. 6(b) and 6(c).
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