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Cavity quantum electrodynamics in the nonperturbative regime
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We study a generic cavity-QED system where a set of (artificial) two-level dipoles is coupled to the electric
field of a single-mode LC resonator. This setup is used to derive a minimal quantum mechanical model for
cavity QED, which accounts for both dipole-field and direct dipole-dipole interactions. The model is applicable
for arbitrary coupling strengths and allows us to extend the usual Dicke model into the nonperturbative regime
of QED, where the dipole-field interaction can be associated with an effective fine-structure constant of order
unity. In this regime, we identify three distinct classes of normal, superradiant, and subradiant vacuum states
and discuss their characteristic properties and the transitions between them. Our findings reconcile many of the
previous, often contradictory predictions in this field and establish a common theoretical framework to describe
ultrastrong-coupling phenomena in a diverse range of cavity-QED platforms.
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I. INTRODUCTION

Quantum electrodynamics (QED) is the fundamental theory
of charges and electromagnetic fields, which in its low-energy
limit describes the physics of photons interacting with atoms,
molecules, and solids. Cavity QED [1] is a minimal framework
within which such light-matter interactions are studied at the
quantum level in terms of two-level emitters coupled to a
single radiation mode. A hallmark of cavity QED is the strong
coupling between single atoms and single photons, which has
been the subject of many theoretical and experimental works
in this field. These strong interactions between excited atomic
and photonic states are, however, still perturbative in the sense
that the coupling is much smaller than the absolute atomic or
photonic energy scales involved. Indeed, it follows from basic
geometric considerations that the coupling strength g between
an elementary electric dipole and a cavity mode of frequency
ωc is limited to [1–3]

g

ωc

�
√

2παfs, (1)

where αfs � 1/137 is the fine-structure constant. As a conse-
quence, the vacuum of (cavity) QED is to a good approximation
represented by the trivial state with all atoms in their ground
state and no photons. This is in stark contrast to the theory of
quantum chromodynamics, where much more complex ground
states of strongly interacting quarks and gluons arise.

The interest in the physics of light-matter interactions
beyond this “weak-coupling” regime dates back to the early
days of cavity QED and is traditionally closely connected
to the Dicke model [4–6] describing the coupling of N

two-level atoms to a single optical mode. For a sufficiently
strong collective coupling, G = g

√
N , the ground state of this

model undergoes a quantum phase transition from the normal
vacuum into a so-called superradiant phase, where the atoms
spontaneously polarize and the field acquires a nonvanishing
expectation value [7–9]. Over the past decades the existence
of such a cavity-induced instability has been subject of many

controversial debates. Most notably, it has been argued [10]
that the superradiant phase does not occur in more realistic
models when the usually neglected diamagnetic “A2 term”
is correctly taken into account. This famous no-go-theorem
has been both confirmed and rejected by many subsequent
studies of various cavity-QED [11–26] and analogous circuit-
QED [27–33] setups, but despite its fundamental relevance,
this matter is still not fully resolved.

More recently, the development of various solid-state
cavity-QED platforms has led to a growing number of experi-
mental activities related to what is now quite generally called
the ultrastrong-coupling (USC) regime [34] of light-matter
interactions. By using, for example, organic materials [35–37],
intersubband transitions [38–42], or 2D electron gases [43–46],
the collective coupling of such dense dipolar ensembles to
optical or THz modes can reach a considerable fraction of the
bare photon frequency. In parallel, it has been demonstrated in
the context of circuit QED [47,48] that artificial atoms, such as
superconducting qubits [49] or quantum dots [50–53], can be
coupled very efficiently to microwave resonators, in which case
the USC regime becomes accessible even at the single-qubit
level [54–60]. In light of these experimental developments and
potential applications ranging from USC-assisted chemical
reactions [61–65] to ultrafast superconducting quantum infor-
mation processing schemes [66,67], a refined understanding of
the basic principles of USC cavity QED on the single-, few-,
and many-particle level becomes of uttermost importance.

In this work we analyze a generic cavity-QED setup where
multiple two-level dipoles are coupled to a single electro-
magnetic mode of a lumped-element LC resonator. In this
setup the limit on the interaction strength stated above can
be overcome by coupling (artificial) dipoles to the electric
field of a tailored circuit mode with an impedance much
higher than that of free space [2]. In view of Eq. (1), one
can then associate with this system an effective fine-structure
constant of order unity, meaning that already for a single dipole
a nonperturbative treatment of electromagnetic interactions
must be taken into account. The purpose of this study is, first of
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all, to derive a minimal consistent model for cavity QED, which
is applicable in this nonperturbative regime [68], and second, to
evaluate and describe the resulting vacuum states under various
conditions. In contrast to most previous studies on this subject,
we here focus explicitly on the long-wavelength and low-
frequency regime to avoid many of the complications related
to the quantization of the full electromagnetic field [70,71].
This approach still captures correctly the relevant low-energy
physics and allows us to rigorously separate the collective
coupling to a single dynamical field mode from all direct
dipole-dipole interactions. Thereby, most of the ambiguities
about the existence or nonexistence of superradiant instabilities
can be resolved and explained in terms of basic electrostatic
considerations. Our analysis also addresses several other subtle
issues, like the breakdown of gauge invariance, which results
in a unique extension of the Dicke model into the USC regime.

From the analysis of the ground states of this model we
identify three distinct classes of normal, superradiant, and
subradiant vacuum states, which arise from the competition
between direct dipole-dipole and cavity-mediated interactions.
Our study first of all shows that a superradiant phase tran-
sition (in the conventional sense) can exist for very specific
geometries, but must be understood as a ferroelectric instabil-
ity [12,17,26], which is essentially unaffected by the coupling
to the resonator mode. Nevertheless, this transition is still
associated with a characteristic kink in the vacuum fluctuations
of the gauge-invariant voltage and flux degrees of freedom. In
the nonperturbative regime significant corrections from this
classical picture arise due to a hybridization of individual
dipoles and photons. Most importantly, in this regime the cavity
induces a collective antiferroelectric interaction, which favors
subradiant ground states where the dipoles tend to antialign
and decouple from the field mode [31]. In this regime also a
transition between superradiant and subradiant ground states
becomes possible. These preliminary findings already show
that for very strong interactions the physics of cavity QED
can differ significantly from the usual picture conveyed by
discussions of Dicke or Hopfield-type [72] models and that
many surprising aspects of USC physics are still unexplored.

The remainder of the paper is structured as follows. After
introducing in Sec. II the setup and the quantities of interest,
we first discuss in Sec. III the polaritonic eigenmodes and
instabilities of classical systems of dipoles in a cavity. In
Sec. IV we then derive a minimal quantum mechanical model
for this system, which after some further simplifications is used
in Sec. V to investigate the different ground states of cavity
QED. We conclude our work in Sec. VII by connecting the
findings of this work to different experimental platforms.

II. CAVITY QED: A TOY MODEL

We consider a setup as shown in Fig. 1(a), where N dipoles
are coupled to the electric field of a lumped-element LC

resonator. The resonator has a bare resonance frequency ωc =√
1/LC, where C is the capacitance and L the inductance of

the circuit. This frequency is far separated from all higher-order
electromagnetic resonances such that the LC resonator is well
described by a single harmonic oscillator mode. The dipoles
are assumed to be fixed at positions �ri = (xi,yi,zi) and formed
by a pair of charges +q and −q, which are displaced by an

FIG. 1. (a) Sketch of the cavity-QED setup considered in this
work. (b) Different effective potentials V (ξ ) for the dipole variable ξ

are used to model either harmonic or two-level dipoles of frequency
ω0. (c) Illustration of the two different contributions to the total charge
Q = QU + Qin on the upper capacitor plate. See text for more details.

amount ξi in the direction perpendicular to the plates. The
dynamics of each dipole is modeled as an (effective) particle
of mass m moving in a potential V (ξ ), as indicated in Fig. 1(b).
This allows us to treat both harmonically bound dipoles as well
as two-level systems by changing from a quadratic to a double-
well potential. For all the following derivations it is assumed
that the dipole approximation is valid and that radiative effects
as well as magnetic interactions can be neglected.

The dynamics of the LC resonator is governed by the
circuit relations �̇ = U and Q̇ = −�/L, where U is the
voltage drop across the capacitor, Q is the total charge on
the upper capacitor plate, and � is the magnetic flux through
the inductor. In the following we write Q = QU + Qin, where
QU = CU is the charge in the absence of the dipoles and
Qin = ∫

A
dxdy σin(x,y) is the total charge induced by the

dipoles when U = 0 [cf. Fig. 1(c)]. The induced surface charge
density, σin(x,y), depends on the exact distribution of dipoles
and can vary strongly across the capacitor plate of total area
A. With these definitions we obtain the equation of motion for
the flux variable �,

C�̈ + �

L
= −Q̇in � q

d

∑
i

ξ̇i . (2)

In the last step we have used the fact that sufficiently far
away from the edges of the capacitor the total surface charge
induced by a single dipole is −qξi/d, where d is the distance
between the plates (see Appendix A). This approximation
is not essential, but results in a convenient homogeneous
dipole-resonator interaction.

Based on the assumptions stated above, the equations of
motion for the dipole variables ξi are mξ̈i + V ′

i (ξi) = qE(�ri),
where E(�ri) is the total electric field at the position of the ith
dipole. We decompose this field into two parts,

qE(�ri) = −q

d
�̇ − mω2

p

∑
i,j

Dij ξj , (3)

where we introduced the plasma frequency,

ω2
p = q2

ε0mr3
0

, (4)
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as the characteristic frequency scale related to the interaction
between two neighboring dipoles separated by a distance r0.
The dimensionless coupling parameters Dij ∼ O(1) account
for the exact spatial dependence of dipole-dipole interactions.
In free space we would simply obtain

Dij = r3
0

4π

|�rij |2 − 3(�rij · �ez)2

|�rij |5 , (5)

where �rij = �ri − �rj , but the capacitor plates can strongly
modify this dependence due to the presence of additional
image charges [73]. The numerical evaluation of the Dij in
this confined geometry is detailed in Appendix A. Note that
each dipole also interacts with its own image charges and
Dii �= 0. In the following we absorb this self-interaction into
a redefinition of the potential, i.e., Vi(ξi) + mω2

pDiiξ
2
i /2 →

V ′
i (ξi) � V (ξi), which, for the sake of simplicity, is assumed

to be approximately the same for all dipoles.
In summary, we obtain the following equations of motion

for the dynamical variables ξi ,

mξ̈i + V ′(ξi) + mω2
p

∑
j �=i

Dij ξj = −q

d
�̇. (6)

Together with Eq. (2), this set of equations specifies a minimal
model for a cavity-QED system consisting of multiple electric
dipoles coupled to a single electromagnetic mode.

III. POLARITONS, INSTABILITIES, AND GEOMETRY

Before we proceed with the quantization of our model, it is
instructive to consider first a few basic properties of this system
in the limit of a large number of harmonically bound dipoles,
i.e., V (ξ ) = mω2

0ξ
2/2. For a sufficiently homogeneous system

the cavity will couple primarily to the collective variable Z =∑
i ξi/

√
N , where all dipoles oscillate in phase. By ignoring

for now the weak admixing of other excitation modes due to
dipole-dipole interactions, we arrive at a reduced set of two
coupled oscillator equations

Z̈ + (
ω2

0 + ηω2
p

)
Z = − q

dm

√
N�̇, (7)

�̈ + ω2
c� = qd

V ε0

√
NŻ. (8)

Here we have assumed a parallel plate capacitor with volume
V = Ad and capacitance C = ε0A/d and introduced the
dimensionless parameter

η = 1

N

∑
i �=j

Dij . (9)

This geometrical constant captures the average influence of
dipole-dipole interactions in a homogeneously polarized sam-
ple and is closely related (but not identical) to the usual depo-
larization factor of dielectric bodies [74]. Its value depends on
the lattice configuration, the shape of the dipole ensemble, and
the metallic boundaries, but for a fixed minimal distance r0, it
does not scale with the number of dipoles.

FIG. 2. The spectrum of the two bright polariton branches is
plotted as a function of ωp and for ωc = ω0. In (a) a positive value of
η ≈ 0.3 and in (b) a negative value of η ≈ −0.2 has been assumed.
In both plots the orange (lower) and the dark blue (upper) lines
represent the spectrum obtained from Eq. (10), while the shaded area
indicates the range of frequencies of all other dark polariton modes
obtained from the numerical solution of the full eigenvalue problem
(see Appendix B). (c) Sketch of an ensemble of N = 3 × N2

x dipoles,
which are arranged in three layers on a square lattice with spacing
r0 and placed between two capacitor plates. For this configuration
the resulting value of η is plotted in (d) for varying d � h and
different Nx . The values of η and the full coupling matrix Dij used
in the calculations of the polariton spectra in (a) and (b) have been
obtained for the case Nx = 10 and the values of h/d = ν ≈ 0.2 and
h/d = ν ≈ 0.9, respectively.

A. Polaritons and instabilities

From Eqs. (7) and (8) we readily obtain two polaritonic
eigenmodes with frequencies (see Appendix B)

�2
± =

ω2
d + ω2

c + νω2
p ±

√(
ω2

d + ω2
c + νω2

p

)2 − 4ω2
dω

2
c

2
,

(10)

where ωd =
√

ω2
0 + ηω2

p denotes the bare oscillation fre-

quency of the interacting ensemble of dipoles. In Eq. (10) we
have used the identity q2N/(mCd2) = q2N/(ε0V m) = νω2

p
to express the collective dipole-field coupling in terms of the
plasma frequency and the filling factor ν = Nr3

0 /V .
Figure 2 shows examples of polaritonic spectra plotted as

a function of increasing plasma frequency, i.e., increasing
density of dipoles, and for two different values of η. For
resonant interactions, ω0 ≈ ωc, and for small values of ωp,
we observe in both cases the expected normal mode splitting,
�� = �+ − �− ≈ √

νωp. For larger ωp and η > 0 the lower
branch approaches a finite value �− ≈ ωc

√
1 − ν/(ν + η)

and remains stable for all parameters. This behavior is well
known from the study of various solid-state cavity-QED sys-
tems [18,19,34,36,38,39,44,45], where the regime �� ∼ ωc

is experimentally accessible. In these systems, the observed
deviation from a linearly increasing mode splitting is usually
derived from the Hopfield model [72], where the A2 term is
taken into account. In the opposite case, η < 0, i.e., when
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dipole-dipole interactions are on average attractive, there exists
a critical density or critical plasma frequency, ωc

p = ω0/
√

η, at
which the frequency of the lower polariton mode vanishes.
Beyond this point the eigenfrequency �− is imaginary, which
means that any excitation of this mode will be exponentially
amplified. Therefore, the linear system becomes unstable and
a more accurate description of the dipoles must be taken
into account. As shown in more detail in Appendix B, the
critical density at which this instability occurs is determined
by a vanishing frequency of the interacting dipole ensemble,
i.e., ωd = 0, and is independent of the cavity frequency. An
experimental signature consistent with such an instability has
recently been reported for a 2D hole gas coupled to a THz
resonator [46].

In typical cavity-QED experiments the excitation spectrum
is inferred from the cavity output field and therefore only the
“bright” polariton modes, which are described by Eq. (10) and
involve a large photonic component, are observable. However,
there also exist N − 1 unobservable, i.e., “dark,” excitation
modes of the dipole ensemble, which due to their spatial profile
are almost decoupled from the cavity field (see Appendix B). In
the examples shown in Figs. 2(a) and 2(b) the frequency range
of these additional modes is indicated by the shaded area. We
see that even for η > 0 some of these modes become unstable at
high enough densities. Thus, the stability of the experimentally
observable bright polariton modes does not necessarily imply
the linear stability of the system as a whole.

B. Geometrical considerations

The shape dependence of macroscopic thermodynamic
properties is a peculiarity of systems interacting via long-range
dipole-dipole interactions and is well known from the study
of magnetic or ferroelectric systems. In the limit N 
 1
approximate expressions for η can be derived, for example, by
treating the dipoles as a continuous medium with polarization
density P (�r) and solving for the macroscopic electric field
EM (�r). The local field E(�r) can then be obtained from the
relation E(�r) = EM (�r) + Enear(�r) − EP (�r), where Enear is the
exact field and EP = −P/(3ε0) the average field from neigh-
boring dipoles inside a small Lorentz sphere centered around
�r [74]. In free space and for dipoles placed on a regular cubic
lattice, where Enear ≈ 0, one obtains η ≈ 2/3 for a disk-shaped
ensemble, η ≈ 0 for a spherical ensemble, and η ≈ −1/3 for
an elongated, cigar-like configuration [74]. Importantly, these
values are modified in the presence of the capacitor [73,75], as
illustrated in Figs. 2(c) and 2(d) for the case of a flat layer of
dipoles placed between two metallic plates. For this geometry
we obtain

η ≈ 2

3
− h

d
, (11)

where h is the thickness of the dipole layer. Therefore, the pres-
ence of the metallic boundaries can have a substantial effect
and bring the system from a stable to an unstable configuration
as the distance between the plates is decreased [76,77]. For a
single layer of dipoles placed on a triangular lattice and d 
 r0

we obtain η ≈ 0.88 [78,79], while the minimal possible value
of η = −Zeta(3)/π ≈ −0.38 is obtained for a line of dipoles
placed on top of each other.

In view of Eq. (11) it is important to keep in mind that
our definition of the potential V (ξ ) includes, apart from the
external confining potential, also the energy that it takes to
separate the charges +q and −q. When applying the current
analysis to the case of a free electron gas, the limit ω2

0 → ω2
p/3

must be taken to retain this local field contribution. In this limit
we recover the usual plasma oscillations, ωd ≈ ωp, for ν → 0
and ωd → 0+ for ν → 1.

C. Discussion

From the basic properties of polaritonic systems discussed
in this section we can already make the following important
observations. (i) Both the collective dipole-field coupling,
�� ∼ ωp, as well as the strength of direct dipole-dipole
interactions, ∼ω2

p, scale with the density and cannot be treated
as independent effects. In particular, in the USC regime, where
ωp ∼ ωc,ω0, the effect of dipole-dipole interactions plays a
dominant role and must be fully taken into account. (ii) A
cavity-QED system of dipoles coupled to a single electro-
magnetic mode can exhibit an instability. This instability is
induced by dipole-dipole interactions and therefore depends
on details such as the shape of the ensemble or the lattice
configuration. This explains why many no-go- and counter-no-
go-theorems for superradiant phase transitions, which either
completely omit dipole-dipole interactions or do not treat them
in all detail, come to very different conclusions. (iii) Most
importantly, if an instability exists, it is solely induced by
dipole-dipole interactions and not influenced by the frequency
or other properties of the resonator mode. This observation
contradicts the usual picture conveyed by discussions of the
Dicke model, where the transition into the superradiant phase
is commonly misinterpreted as being induced by the coupling
to a dynamical field mode. Of course, adding the metallic plates
in the first place can still substantially modify the properties of
the confined system of dipoles compared to its counterpart in
free space.

IV. CAVITY QED HAMILTONIAN

Our goal is now to derive a minimal quantum mechanical
model for the cavity-QED system described in Sec. II, which
is also applicable for highly nonlinear dipolar systems and
for arbitrary coupling strengths. As a starting point for this
derivation we consider the Lagrangian L ≡ L(�,�̇,{ξi},{ξ̇i})
of the form

L = C
�̇2

2
− �2

2L
+ �̇Qin

+
∑

i

[m

2
ξ̇ 2
i − V (ξi)

]
− mω2

p

2

∑
i,j

Di �=j ξiξj , (12)

from which the equations of motion (2) and (6) can be derived.
For this Lagrangian, the resulting canonical momenta are

� = ∂L
∂�̇

= C�̇ + Qin, πi = ∂L
∂ξ̇i

= mξ̇i = pi, (13)

and correspond to the total charge Q on the capacitor plate
and the kinetic momenta, respectively. By following the usual
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quantization procedure we obtain the Hamilton operator

H = (Q − Qin)2

2C
+ �2

2L
+

∑
i

H i
d + mω2

p

2

∑
i,j

Di �=j ξiξj ,

(14)

where Hi
d = p2

i /(2m) + V (ξi) and �, Q, ξi , and pi are now op-
erators obeying the commutation relations [�,Q] = [ξi,pj ] =
ih̄δij . Using Qin � −q

∑
i ξi/d, Hamiltonian (14) can further

be expanded in terms of the operators ξi ,

H = Q2

2C
+ �2

2L
+ q

Cd
Q

∑
i

ξi + q2

2Cd2

∑
i,j

ξiξj

+
∑

i

[
p2

i

2m
+ V (ξi)

]
+ mω2

p

2

∑
i �=j

Dij ξiξj . (15)

This result represents the full Hamilton operator for the model
cavity-QED system considered in this work.

Equation (15) shows that apart from the expected collective
coupling of all dipoles to the “charge” of the LC resonator,
there are two additional dipole-dipole interaction terms ∼ξiξj .
Since, by construction of our model, the term ∼Dij already
accounts for all direct interactions between the dipoles, the
additional presence of the last term in the first line of Eq. (15)
is very counterintuitive. However, as can be seen from Eq. (14),
this term simply arises from expressing the electrostatic energy
contribution, CU 2/2, in terms of the canonical charge Q. It is
thus merely an artifact of our choice of variables and should
not be associated with a physical interaction. The inclusion
of this term is nevertheless crucial to recover the correct
equations of motion (6) from the relation mξ̈i = i/h̄[H,pi].
This subtle difference between apparent interaction terms in the
Hamiltonian and real physical couplings is a common source
of confusion in the interpretation of cavity QED models.

A. The P2 term

In our model, the distribution of pointlike dipoles corre-
sponds to a polarization density

�P (�r) = q�ez

∑
i

ξiδ(�ri − �r). (16)

For a sufficiently dense and homogeneous ensemble, where
�P (�r) � �ezP , we can identify Qinε0/(Cd) � −P with the

polarization density and Qε0/(Cd) � ε0U/d − P = −D with
the displacement field �D(�r) � �ezD. With these identifications,
Hamiltonian (15) can be directly related to the Hopfield model
expressed in the electric dipole gauge [19,23,70,71],

HHM = Hmatter +
∫

d3r
[ �D(�r) − �P (�r)]2

2ε0
+

�B2(�r)

2μ0

= Hmatter +
∫

d3r
�D2(�r)

2ε0
+

�B2(�r)

2μ0

− 1

ε0

∫
d3r �D(�r) · �P (�r) + 1

2ε0

∫
d3r �P 2(�r). (17)

Here �B(�r) is the magnetic field and Hmatter = ∑
i H

i
d is

the Hamiltonian for the matter part. Therefore, the above-
discussed Q2

in contribution plays an equivalent role as the

polarization self-interaction or “P 2 term,” which appears in
the description of macroscopic polarizable media [19,38]. It
should be emphasized though that for a discrete polarization
density as in Eq. (16), this polarization self-interaction term
results in purely local interactions [20,22,70]∫

d3r �P 2(�r) −→
∑

i

ξ 2
i . (18)

The apparent discrepancy between such a local P 2 term and the
nonlocal coupling derived in Eq. (15) can be resolved by taking
into account that Hamiltonian HHM still contains the coupling
of the dipoles to all electromagnetic modes. As illustrated
in Appendix C for a basic geometry, the coupling to these
other high-frequency modes introduces effective interactions,
which restore the correct nonlocal P 2 and direct dipole-dipole
interaction terms. In other words, starting from the full model
HHM in the electric dipole gauge, a single-mode approximation
is—independently of the frequency separation—not permitted
and various approximate treatments of the P 2 term lead to very
different physical predictions [19,20,22,23]. Our derivation
avoids such complications by including the correct dipole-field
and dipole-dipole interactions before passing to a quantum
description.

B. Two-level approximation

Of primary interest in the field of cavity QED is the study
of nonlinear quantum phenomena, which arise from
the coupling of the harmonic field mode to nonlinear matter,
in the simplest case represented by two-level dipoles. In our
model we can describe this scenario by considering for each
dipole a double-well potential with eigenstates |ψn〉 of energy
h̄ωn [cf. Fig. 1(b)]. For an appropriate choice of parameters the
two lowest tunnel-coupled states |↓〉 ≡ |ψ1〉 and |↑〉 ≡ |ψ2〉
are energetically well separated from all higher excited states
and the dynamics of the dipoles can be restricted to this two-
level subspace. Under such conditions we can approximate

Hi
d ≈ h̄ω0

2
σ i

z , ξi ≈ ξ0

2
σ i

x, (19)

where the σk are the usual Pauli operators, ω0 = ω2 − ω1 is
the transition frequency between the two lowest states, and
ξ0 = 2〈↓|ξi |↑〉 is the separation between the wells. According
to Eq. (19), the definition of ω0 does not include a small renor-
malization of the potential from the additional term ∼ξ 2

i in
Eq. (15). This approximation is justified when νmω2

pξ
2
0 /N �

h̄|ω3 − ω2|, which can be achieved for a sufficiently nonlinear
potential. Note, however, that for weakly nonlinear systems,
for example, superconducting transmon qubits, this renormal-
ization term is highly relevant and constrains the resulting
coupling constant to g <

√
ωcω0 [31,60].

Within the validity of the two-level approximation and
by expressing the resonator variables in terms of annihila-
tion and creation operators, � = −i

√
h̄/(2Cωc)(a† − a) and

Q = √
h̄Cωc/2(a† + a), we finally obtain the cavity-QED

Hamiltonian

HcQED = h̄ωca
†a + h̄g

2
(a + a†)

∑
i

σ i
x + h̄ω0

2

∑
i

σ i
z

+ h̄g2

4ωc

∑
i,j

(
1 + N

ν
Dij

)
σ i

xσ
j
x . (20)
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In this expression we have adopted a notation more familiar
in the field of quantum optics and introduced the single-dipole
coupling constant

g = qξ0

Cdh̄

√
h̄Cωc

2
=

√
ωc

mω2
pξ

2
0

2h̄

ν

N
. (21)

For weak couplings, g → 0, the second line in Eq. (20) can be
neglected and HcQED reduces to the standard Dicke model with
a collective coupling constant G = g

√
N . When this coupling

becomes comparable to ωc, the Dicke model is no longer valid
and the effect of dipole-dipole interactions and the P 2 term
must be taken into account. Note that both contributions scale
as ∼G2/ωc, as will become more apparent in the discussion
below.

C. Coupling parameter

In Eq. (21) we have related the coupling constant g to the
cavity frequency ωc and the plasma frequency ωp such that
for a harmonic dipole, where ξ0/2 = ξHO = √

h̄/(2mω0), the
results of Sec. III are recovered, i.e., �� = G ≈ √

νωp, when
ω0 ≈ ωc. In the few-dipole, quantum regime the key quantity
of interest is the ratio g/ωc = √

2πα, which can be expressed
in terms of the dimensionless parameter (see also Ref. [2])

α = αfs

(
ξ0

d

)2(q

e

)2 Z

Z0
. (22)

Here e � 1.6 × 10−19 C is the elementary charge, Z =√
L/C the circuit impedance, and Z0 = μ0/ε0 ≈ 377 � the

impedance of free space. For an electromagnetic mode with
Z ≈ Z0 and elementary dipoles of charge q = e the maximal
value of α is set by the fine-structure constant αfs, which is
reached when the size of a dipole is comparable to the size of the
cavity, ∼d. This illustrates the natural bound on the coupling
parameter stated in Eq. (1), which can also be obtained for an
optical mode confined to a volume V ≈ ξ 3

0 , electric transitions
between Landau levels [18], etc. Equation (22) shows that this
bound can be reached or even overcome by using artificial
atoms such as superconducting qubits or quantum dots coupled
to tailored circuit resonances with Z 
 Z0 [51,60]. In view of
Eq. (1), one can then reinterpret such artificial setups as regular
cavity-QED systems with an effective fine-structure constant
α ∼ O(1). This analogy establishes an interesting connection
to the underlying theory of QED and motivates the study of
cavity-QED systems in the regime α � 1 (g/ωc � 2.5), where
the electromagnetic interaction can no longer be considered as
weak.

Another interesting and in practice useful observation is that
the coupling strength is bounded by

g

ωc

� q

2Q0
, (23)

where Q0 = √
h̄Cωc/2 is the magnitude of the zero-point

charge fluctuations. The nonperturbative regime is thus equiv-
alent to the condition that the charge induced by a single dipole
exceeds the quantum fluctuations of the charge on the capacitor
plate. Note that similar bounds can also be obtained for other
cavity-QED implementations. For example, for a flux qubit
coupled inductively to a microwave cavity the coupling is

bounded by the ratio g/ωc � �q/(2�0), where �q is the flux
of a qubit state and �0 = √

h̄/(2Cωc) the magnitude of the
zero-point flux fluctuations of the cavity.

D. Gauge noninvariance

As discussed above, HamiltonianHcQED represents a cavity-
QED model in the electric dipole gauge, which is derived
from the Lagrangian L in Eq. (12). The quantization of the
electromagnetic field in free space is commonly performed
in the Coulomb gauge, where the so-called minimal-coupling
Hamiltonian emerges as the fundamental model for light-
matter interactions [70]. In the current setup, the Coulomb
gauge is represented by the Lagrangian,

LC = L − d

dt
(�Qin), (24)

which is related to L by a canonical transformation. In this
gauge the canonical momenta are

� = ∂L
∂�̇

= C�̇ ≡ QU, πi = ∂L
∂ξ̇i

= pi + q

d
�. (25)

The canonical charge is now proportional to the voltage across
the capacitor, while the canonical momenta of the dipoles
contain an additional magnetic component. The resulting
Hamilton operator reads

HC = Q2
U

2C
+ �2

2L
+

∑
i

[(
pi − q

d
�

)2

2m
+ V (ξi)

]

+ mω2
p

2

∑
i �=j

Dij ξiξj , (26)

and by identifying � with the magnetic vector potential �A,
it can be directly mapped on the minimal-coupling Hamil-
tonian of QED. In this representation there are no spurious
dipole-dipole interactions, but when expanding the kinetic
energy term, we obtain an additional contribution ∼�2. This
is the analog of the diamagnetic A2 term and leads to a
positive frequency renormalization of the cavity mode. Al-
though Hamiltonians (14) and (26) have a different structure,
the canonical transformation in Eq. (24) ensures that both
Hamiltonians represent the same physical system. Indeed, they
are related by the unitary transformation HC = UHU†, where

U = eiq
∑

i ξi�/(dh̄) = e−i�Qin/h̄, (27)

and for harmonic dipoles it can be explicitly shown that both
Hamiltonians reproduce the same spectra [19].

This gauge equivalence, however, is only guaranteed when
the full Hilbert spaces in each representation are considered.
By applying to HC the same two-level approximation as in
Sec. IV B, we obtain an alternative cavity-QED Hamiltonian

H ′
cQED = h̄ωca

†a + h̄ω0

2

∑
i

σ i
z − i

h̄gC

2
(a† − a)

∑
i

σ i
y

− ξ̄ 2 h̄g2
CN

4ω0
(a† − a)2 + h̄g2

4ωc

N

ν

∑
i,j

Dij σ
i
xσ

j
x ,

(28)
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where gC = gω0/ωc and ξ̄ = 2ξHO/ξ0 � 1. The last inequality
follows from the Thomas-Reiche-Kuhn sum rule [80].

By comparing Eq. (20) and Eq. (28) it can be readily shown,
for example, by setting Dij = 0 and ω0 = ωc, that after the
two-level approximation the unitary equivalence is lost, i.e.,
HcQED �= UH ′

cQEDU†. While the difference is negligible for
weakly coupled systems, the obvious question arises: Which
is the appropriate model for cavity-QED systems in the USC
regime? The answer is suggested by the following general
relation between the matrix elements of the position and the
momentum operator,

〈ψn|p|ψm〉 = Im(ωn − ωm)〈ψn|ξ |ψm〉. (29)

This relation shows that for the momentum operator, the cou-
pling to energetically higher states increases with the energy
gap. Therefore, for the (�

∑
i pi)-type coupling transitions

to states out of the two-level subspace are not systematically
suppressed by a large energy denominator and in the Coulomb
gauge a two-level approximation is in general not permitted.
This basic argument can be verified numerically for explicit
examples, which will be detailed elsewhere [81].

Note that this gauge noninvariance does not contradict
any of the previous models for QED systems with atoms,
molecules, or intersubband transitions. In these systems ξ̄ ≈
1 and the single-dipole coupling g is very weak such that
the equivalence between the dipole and the Coulomb gauge
still holds. However, once the regime g/ωc ∼ 1 is reached,
the effective cavity-QED Hamiltonians derived in different
gauges do no longer agree and lead to qualitatively different
predictions. From the analysis presented in this section we
conclude that HcQED given in Eq. (20) represents indeed the
correct effective model for two-level dipoles coupled to a single
cavity mode, which is valid both in the weak and USC regime.

V. THE VACUA OF CAVITY QED

Due to the presence of both short- and long-range dipole-
dipole interactions, the properties of Hamiltonian HcQED can
be very complex and will also depend in detail on the specific
configuration of dipoles. For a qualitative discussion of the
possible ground states of cavity QED it is thus preferential
to proceed with a further simplification and replace the ac-
tual dipole-dipole interactions by the corresponding all-to-all
coupling,

N

4

∑
i,j

Dij σ
i
xσ

j
x → ηS2

x . (30)

Here η is the dimensionless configuration parameter already
defined in Eq. (9) and we have introduced the collective angular
momentum operators Sk = ∑

i σ
i
k/2. This substitution maps

the full Hamiltonian HcQED onto the extended Dicke model
(h̄ = 1),

HEDM = ωca
†a + ω0Sz + g(a† + a)Sx + g2

ωc

(1 + ε)S2
x .

(31)

In this model, dipole-dipole interactions are treated in an
averaged way and can be described by a single parameter ε =
η/ν. The usual Dicke model is recovered as a specific instance

1 2 30.1 0.5

0.1

-0.1

0 “normal”

“superradiant”

“subradiant”

crossover

2nd order

1st order

FIG. 3. Ground-state phase diagram of the extend Dicke model
HEDM as a function of the effective fine-structure constant α =
g2/(2πω2

c ) (horizontal axis) and the average dipole-dipole interaction
strength ε = η/ν (vertical axis). For this plot ω0/ωc = 1 and N = 8.
The red dotted line indicates the value of the critical coupling strength
given in Eq. (34) and the other phase boundaries are defined in the text.
For each phase, the insets illustrate the reduced state of the dipoles,
ρd , in terms of a Bloch-sphere representation. The color shows the
value of the Q function Q(�n) = 〈�n|ρd |�n〉 ∈ [0,1], where �n is a unit
vector and |�n〉 the corresponding coherent spin state. Note that for a
better visibility, the three insets have been plotted with different color
scales.

of strong ferroelectric couplings, i.e., ε = −1, while the cases
of noninteracting (ε = 0) or repulsive (ε > 0) dipoles appear,
for example, in the description of intersubband transitions [82]
or certain circuit-QED settings [31,67]. Therefore, HEDM

interpolates between and extends various other collective
cavity-QED Hamiltonians and shows that each of these models
can be associated with a different arrangement of dipoles. We
emphasize though that the replacement in Eq. (30) is not a
systematic approximation and we will discuss some important
differences between collective spin models such as HEDM and
the full Hamiltonian HcQED in Sec. VI C below.

Figure 3 shows a diagram of the ground states of HEDM for
different parameters α and ε, which separates into three distinct
regimes. For weak couplings the system is in a normal phase,
where 〈a†a〉 ≈ 0 and 〈Sz〉 ≈ −N/2. For increasing α and
ε < 0 this phase becomes unstable and the system undergoes a
transition into a superradiant phase. This phase breaks the Z2

symmetry of HEDM and is characterized by a finite expectation
value 〈a〉 �= 0 and a finite polarization 〈Sx〉 �= 0. In the opposite
case, ε > 0, there is a smooth crossover into a subradiant
phase. This symmetry-preserving phase is characterized by
an antialigned spin configuration with vanishing polarization,
〈Sz〉 ≈ 〈Sx〉 ≈ 0, which decouples from the field and therefore
〈a†a〉 ≈ 0. For α > 1 the superradiant and subradiant phase
merge and an additional sharp transition between these two
phases appears.

A. “Normal phase”

In the limit g → 0 the ground state of a cavity-QED system
is the normal vacuum state with 〈a†a〉 = 0 and 〈Sz〉 = −N/2.
For finiteg, corrections to this state can be taken into account by
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a Holstein-Primakoff approximation [83], where the spins are
replaced by harmonic oscillators, i.e., Sz → b†b − N/2, Sx →√

N (b + b†)/2, and [b,b†] = 1. Under this approximation we
obtain the quadratic Hamiltonian

HHP = ωca
†a + ω0b

†b + G

2
(a + a†)(b + b†)+D

4
(b + b†)2,

(32)

where D = (1 + ε)G2/ωc. HHP can be diagonalized by a
Bogoliubov transformation and written in terms of a new set
of eigenmode operators d± as HHP = �+d

†
+d+ + �−d

†
−d−.

By identifying
√

νωp ↔ G
√

ω0/ωc, the eigenfrequencies �±
are the same as already obtained for the classical system in
Eq. (10). This shows that the vacuum state |G〉 in the normal
phase is simply the ground state of the two bright polariton
modes described in Sec. III. However, one should keep in mind
that HHP does not account for other dark polariton modes,
which in the presence of dipole-dipole interaction can lead to
important corrections and additional instabilities in the USC
regime.

The presence of excitation number nonconserving terms
∼b†a† and ∼(b†)2 in HHP implies that the ground state in
the normal phase still exhibits many nontrivial properties
when expressed in terms of the original field and matter
modes [84,85]. A quantity of interest for the discussion below
is the ground-state “photon number” 〈a†a〉, which for moderate
couplings is approximately given by

〈a†a〉 � Ng2ω0

4(ωc + ω0)2(ω0 + εNg2/ωc)
. (33)

Many other ground-state properties of light-matter systems
in the linearized regime have been extensively studied in the
literature and will not be further elaborated here.

B. “Superradiant phase”

For increasing coupling g and ε < 0 the normal phase even-
tually becomes unstable and for N 
 1 a second-order phase
transition into a superradiant phase occurs. This superradiant
phase exists for

g � gc =
√

ωcω0

−εN
, (34)

and is characterized by a finite polarization of the spins, 〈Sx〉,
and a finite expectation value of the field mode 〈a〉. For g close
to gc we obtain [86]

〈a〉 � ± Ng

2ωc

√
1 −

(
gc

g

)4

, 〈Sx〉 � ∓N

2

√
1 −

(
gc

g

)4

,

(35)

and 〈a〉 � ±gN/(2ωc) and 〈Sx〉 � ∓N/2 for very large cou-
plings. As shown in Fig. 4(a), the transition into the super-
radiant phase is indicated by a sharp peak in the fluctuations
of the polarization, �S2

x = 〈S2
x 〉 − 〈Sx〉2, and the field, �a2 =

〈a†a〉 − |〈a〉|2, and a continuous increase of the order parame-
ter, 〈a〉 ∼ (g − gc)

1
2 . Note that in all our numerical simulations

we have added a small symmetry-breaking bias field, which is
necessary to deterministically pick one of the two degenerate

FIG. 4. Superradiant phase transition. (a) Dependence of the
mean value 〈a〉 and the spin and field fluctuations across the su-
perradiant phase transition point. (b) Illustration of the two possible
superradiant ground states in terms of polarized dipoles and the
corresponding induced charges. (c) Comparison of the spin fluctu-
ations �Sx evaluated with the extended Dicke model and the Lipkin-
Meshkov-Glick (LMG) Hamiltonian for two different numbers of
dipoles. The value of αc, where the fluctuations reach their maximum,
as well as the width of the fluctuations at half of the maximum, δα,
are plotted in (d) for varying N . (e) Plot of the fluctuations of the
voltage operator U (solid lines) and flux operator � (dashed lines)
for different numbers of dipoles. The horizontal dashed line marks the
approximate analytic result given in Eq. (39). In all plots ω0 = ωc and
a value of ε = −0.1 have been assumed and the vertical dotted lines
indicate the analytic phase transition point given in Eq. (34). In all
numerical simulations a symmetry-breaking bias field, Hbias = λSx ,
where λ/ωc = 10−3, has been added to the bare Hamiltonians HEDM

and HLMG.

ground states in the symmetry-broken regime. In Fig. 3 the
maximum of �S2

x is used to mark the boundary between the
normal and the superradiant phase, which even for moderate N

agrees reasonably well with the value of gc obtained from the
divergence of 〈a†a〉 in the Holstein-Primakoff approximation.
Thus, the described transition is identical to the conventional
superradiant phase transitions discussed within the framework
of the Dicke model, but generalized to arbitrary negative values
of the interaction parameter ε.

In Eq. (34) the phase boundary between the normal and
the superradiant phase is expressed as usual in terms of the
dipole-field coupling and the cavity frequency. This form can
be very deceiving for identifying the physical origin of this
phase transition. By reexpressing g instead in terms of the
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original system parameters, Eq. (34) can be rewritten as

h̄ωd = h̄ω0 + ηmω2
pξ

2
0

2
� 0, (36)

and all cavity-related parameters disappear. While the same
is true for the phase transition point of the original Dicke
model [10,17,24], Eq. (36) shows that the cancellation of ωc

is not simply a coincidence. By setting η = 0, the dipole-field
coupling can still be arbitrarily strong, but no instability occurs.
This confirms our observation from above, namely that the
superradiant instability is in essence a ferroelectric instability
and not related to the coupling to the dynamical field mode.

We can further elaborate this point by looking more closely
at the physical properties of the superradiant phase. In the
current setup a finite expectation value 〈a〉 ∈ R corresponds to
a finite expectation value of the total charge 〈Q〉 ∼ 〈a + a†〉,
which includes charges induced by the dipoles. Therefore, as
illustrated in Fig. 4(b), the superradiant ground state simply
corresponds to a state of polarized dipoles and the correspond-
ing induced image charge on the capacitor plate. Since the total
charge Q is not directly accessible, the more relevant resonator
variables to consider are the magnetic flux � and the voltage
drop U . The latter can be expressed as

U = U0

[
a + a† + 2g

ωc

Sx

]
, (37)

where U0 = Q0/C. Importantly, the expectation values of the
flux and voltage operators are unaffected by the phase transition
and we have 〈�〉 = 〈U 〉 = 0 in the normal as well as in the
superradiant phase. This can be seen directly from Eq. (35),
or more generally from the fact that for any stationary state
〈�̇〉 = 〈U 〉 = 0 and L〈Q̇〉 = −〈�〉 = 0. Therefore, although
the superradiant phase is conventionally characterized by a
finite “field” expectation value 〈a〉 �= 0, the transition affects
the displacement field, D ∼ Q, and not the electric field, E ∼
U [17]. On the mean-field level the actual physical properties
of the cavity do not change when transitioning between the
normal and the superradiant phase. This example illustrates
that the imprecise notion of a “photon” annihilation operator a

can be very misleading, since depending on the choice of gauge
and the setup under consideration this operator can represent
very different physical quantities.

Given this interpretation in terms a ferroelectric phase
transition, where the “radiation mode” does not play a role,
it would seem natural to abandon notions of a superradiant
transitions and phases all together. It should be kept in mind
though that this analogy only concerns average quantities and
strictly holds only in the limit of N 
 1 and α � 1. When
finite-size and strong-coupling effects are taken into account,
the presence of the electromagnetic mode can substantially
influence the transition as well as all thermodynamic prop-
erties, where excitations on top of the ground state must be
taken into account. As an example, we compare in Figs. 4(c)
and 4(d), the predictions from the extended Dicke model with
the predictions from the corresponding Lipkin-Meshkov-Glick
(LMG) Hamiltonian [87]

HLMG = ω0Sz + ε
g2

ωc

S2
x . (38)

For ε < 0 this Hamiltonian represents a model for ferroelec-
tricity with infinite-range interactions and can be obtained from
HEDM by taking the limit ν → 0, but keeping g2/ν fixed.
We see that for values of |ε|N � 1, i.e., when the transition
already happens at rather large values of gc/ωc, the range of
fluctuations of �S2

x as well as the transition point itself are still
considerably different. Only for larger numbers, |ε|N 
 1,
the two models start to agree better. Overall we find that
the coupling to the cavity mode suppresses fluctuations and
generates a sharper transition even for small N . This can be
in part explained by a dressing of the dipoles with photons, as
explained further below.

Finally, a unique signature of a superradiant transition can
be obtained by looking at cavity observables, which do not have
a counterpart in ferroelectric models. As an example, we plot in
Fig. 4(e) the behavior of the voltage fluctuations, 〈U 2〉, across
the transition point. While the gauge noninvariant photon
number 〈a†a〉 diverges at the transition point, the voltage
fluctuations remain finite and show a characteristic kink. For
N 
 1 the position of this kink coincides with the classical
transition point gc and the maximal value of the fluctuations
scales approximately as

〈U 2〉
U 2

0

∣∣∣∣
g=gc

≈
√

1 + 1

|ε|
(

ω0

ωc

)2

. (39)

Interestingly, this maximum scales neither with N nor the
coupling parameter α, but the kink vanishes for an interaction-
dominated system, ε → ∞. It thus represents a quantum
mechanical signature of a superradiant phase transition, which
involves the dynamical cavity mode. Note that the maximum
of 〈U 2〉 is accompanied by a corresponding minimum of the
flux fluctuations, 〈�2〉g=gc

� h̄2/(4C2〈U 2〉), as expected for a
minimum uncertainty squeezed state.

C. “Subradiant phase”

For repulsive dipole-dipole interactions, i.e., η > 0, the
linearized Hamiltonian HHP predicts that the normal phase
remains stable for arbitrary interaction strengths. For this
reason the parameter regime η � 0 and g � ωc has received
little attention in the discussion of USC cavity QED so far.
However, although there is indeed no sharp phase transition,
Fig. 5(a) clearly shows that the properties of the ground state
change significantly when we go beyond the validity of the
Holstein-Primakoff approximation into the nonperturbative
regime α � 1. In stark contrast to the superradiant phase, the
ground-state photon number in this regime decreases with
increasing coupling strength and approaches zero for very
large couplings. This behavior has recently been described in
the context of circuit QED [31] and explained in terms of an
antiferroelectric alignment of the dipoles, which then decouple
from the cavity mode. For N even, the resulting ground state
is approximately of the form

|G〉 � |0〉 ⊗ |D0〉, (40)

where |D0〉 = |s = N/2,mx = 0〉 is the fully symmetric
Dicke state with vanishing projection along Sx (see Fig. 3),
i.e., Sx |D0〉 = 0. For an odd number of dipoles a perfect
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FIG. 5. Subradiant phase. (a) Plot of the ground-state photon
number as a function of the coupling parameter α for an even and
an odd number of dipoles. (b) Dependence of the voltage (solid lines)
and flux (dashed lines) fluctuations on the coupling strength g. In both
plots the parameters ε = 0.05 and ωc = ω0 = 1 have been assumed
and the dotted lines show the corresponding results for 〈a†a〉 and
〈U 2〉 obtained from the ground state of the Holstein-Primakoff (HP)
Hamiltonian HHP for N = 10. (c) Plot of the residual single-spin
entropy �S of the ground state of HEDM for ω0 = ωc and N = 4.
(d) The entanglement entropies for a single dipole and for all dipoles
are plotted for a fixed g/ωc = 2 and otherwise the same parameters
as in (c). In all numerical simulations a symmetry-breaking bias
field, Hbias = λSx , where λ/ωc = 10−4, has been added to the bare
Hamiltonians HEDM.

antialignment is not possible and, as shown in Fig. 5(a), the
dipoles and the cavity remain coupled.

The current analysis and further studies of the full model
HcQED below show that the formation of such subradiant
ground states is not a peculiarity of superconducting circuits,
but rather a general property of nonperturbative cavity QED.
For an even number of dipoles, a possible way to characterize
these states is via the decoupling condition

∂

∂g
〈a†a〉 < 0, (41)

which is used in Fig. 3 to mark the boundary between the
normal and the subradiant phase. It should be pointed out that
such a light-matter decoupling can already be predicted within
the Holstein-Primakoff approximation, as originally discussed
in Ref. [21] for a multimode cavity-QED system. However,
for the present single-mode scenario, such linear decoupling
effects are not observable for the considered parameter range
[see, for example, Fig. 5(a)]. More specifically, for the current
setting and within the Holstein-Primakoff approximation the
ground-state photon number,

lim
g→∞〈a†a〉∣∣HP = 1 + 2ε − 2

√
ε(ε + 1)

4
√

ε(ε + 1)
> 0, (42)

remains finite for very large couplings. Therefore, the sup-
pression of the photon number below this bound signifies the
formation of highly entangled antiferroelectric states, which

decouple much more efficiently from the cavity than the
corresponding squeezed states of the linearized theory.

In Fig. 5(b) we plot the fluctuations of the observable
voltage and flux variables and find a qualitative behavior very
similar to that for the superradiant transition. The voltage
fluctuations show again a characteristic peak, which, however,
is much smoother and does not sharpen when the number
N is increased. Also the position of the maximum does
not vary significantly as a function of N or ε and always
occurs around α ≈ 1. The absence of any significant even-odd
effects make this peak in 〈U 2〉 a robust signature for entering
the nonperturbative coupling regime. Interestingly, while the
subradiant phase is characterized by a strong decoupling of
the dipoles from the cavity operator a, we find that the level
of voltage fluctuations is even higher than in the superradiant
phase and also the flux variance 〈�2〉 is substantially larger
than for a minimal uncertainty state.

Finally, a very interesting property which distinguishes
the subradiant from the normal and the superradiant phase
is the high degree of entanglement between the dipoles,
while being almost completely disentangled from the cavity
mode. This property can be visualized by introducing the two
entanglement entropies

S1 = −Tr{ρ1 log2(ρ1)}, Sd = −Tr{ρd log2(ρd )}. (43)

Here ρd = Trc{|G〉〈G|} is the reduced density operator of the
dipoles, and ρ1 = TrN−1{ρd} is the reduced density operator
of a single dipole. Therefore, Sd quantifies the entanglement
between the dipoles and the cavity and S1 the entanglement
between a single dipole and the remaining system. In Figs. 5(c)
and 5(d) we plot the difference �S = S1 − Sd and the indi-
vidual entanglement entropies for different parameter regimes.
The plots show that a significant amount of ground-state
entanglement occurs near the superradiant phase transition, but
also that this entanglement is established mainly between the
cavity and the dipoles. In contrast, when entering the subradiant
phase, Sd is strongly reduced, while the dipoles still remain
highly entangled among each other.

VI. NONPERTURBATIVE CAVITY QED

The analysis in the previous section showed that for most
parameter regimes the ground state of HEDM is either a
normal vacuum state or a state dictated by strong dipole-dipole
interactions. From the perspective of cavity QED, it is thus
most interesting to consider the regime η ≈ 0 and α � 1,
where dipole-dipole interactions play a minor role and the
influence of the cavity mode becomes important. As indicated
in Fig. 3, in this regime the superradiant and subradiant phases
approach each other and a sharp transition between these two
very different phases emerges.

A. Strong-coupling theory

For the following discussion we return to the full cavity
QED Hamiltonian HcQED and focus on the regime ω0 ∼ ωc

and α � 1. In this case the coupling to the cavity ∼g and the
dipole-dipole interactions ∼g2 dominate over the bare energy
splitting of dipoles. It is thus useful to transform into a new
basis, which diagonalizes these two terms. This is achieved by
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a polaron transformation H̃cQED = UHcQEDU†, where [31,88]

U = e
g

ωc
Sx (a†−a). (44)

As a result we obtain

H̃cQED = ωca
†a + g2

4ωc

N

ν

∑
i,j

Dij σ
i
xσ

j
x

+ω0

2

(
e

g

ωc
(a†−a)S̃− + e− g

ωc
(a†−a)S̃+

)
, (45)

where S̃± = Sz ± iSy are collective ladder operators with
respect to Sx . Note that U is just the gauge transformation (27)
restricted to the two-level subspace. Therefore, Hamiltonian
H̃cQED represents the appropriate USC cavity-QED Hamilto-
nian in the Coulomb gauge. By expanding the exponentials in
the second line in Eq. (45) up to first order in α, we obtain

H̃cQED ≈ ωca
†a + ω0Sz − ig

ω0

ωc

(a† − a)Sy

+ g2

2ω2
c

ω0(a† − a)2Sz + g2

4ωc

N

ν

∑
i,j

Dij σ
i
xσ

j
x , (46)

which resembles very closely H ′
cQED given in Eq. (28) in

the limit of low excitation numbers. This correspondence is
lost when highly excited states or higher-order terms in the
coupling parameter are taken into account.

In the limit ω0 → 0, the first line of Eq. (45) is diagonal
in the photon number states |n〉 and the spin states |si = ±1〉,
where σ i

x |si〉 = si |si〉. Therefore, we obtain a set of eigenstates
|n,{si}〉 with energies

E0
n,{si } = nωc + g2

4ωc

N

ν

∑
i,j

Dij sisj . (47)

Note that in the original basis the eigenstates represent dis-
placed photon number states,

|�〉n,{si } = e− g

ωc
Sx (a†−a)|n,{si}〉, (48)

with a displacement amplitude β = g/ωc

∑
i s

i
x proportional

to the total spin projection along the x axis.
For finite ω0 quantum fluctuations of the dipoles induce

finite couplings between different spin projections and dif-
ferent photon number states. For α � 1 these couplings can
be included in second-order perturbation theory following
Ref. [31]. In the presence of dipole-dipole interactions the
result of such a calculation would still be very involved,
since the bare energy levels E0

n,{si } depend explicitly on the
spin configuration. For the purpose of this work we restrict
ourselves to |Dij |N/ν < g2/ωc, where this dependence can
be neglected. By projecting onto the n = 0 submanifold we
then obtain the effective spin Hamiltonian

HS = ω0e
− g2

2ω2
c Sz − ω2

0ωc

2g2

(�S2 − S2
x

) + g2N

4ωcν

∑
i,j

Dij σ
i
xσ

j
x .

(49)

From this approximate model we see that the coupling to the
cavity mode has two main effects. First, due to the polaronic
nature of the eigenstates |�〉n,{si }, which contain both dipole
and photonic components, the transition frequency ω0 becomes

exponentially suppressed. Second, virtual excitations of higher
photon number states result in collective dipole-dipole inter-
actions, which favor states of maximal total spin S = N/2, but
minimal spin projection along x.

B. Subradiant-to-superradiant phase transition

Given the effective spin Hamiltonian HS we can now
investigate in more detail the transition between the super- and
the subradiant phase, which exist for α � 1. In a first step we
will consider again a collective spin model where Dij = η/N .
In this case the total spin is conserved and we can restrict
our analysis to states with S = N/2. In terms of the effective
fine-structure constant we then obtain the LMG model,

HS = ω0e
−παSz +

(
2παεωc + ω2

0

4παωc

)
S2

x , (50)

with a renormalized frequency and a modified coupling term.
By changing ε from positive to negative values, the expected
transition from the sub- into the superradiant phase can be
determined from a Holstein-Primakoff approximation for HS

and we obtain the phase transition point

ω0e
−πα + N

(
2παεωc + ω2

0

4παωc

)
= 0. (51)

By omitting the second term in the parentheses we obtain
a condition for the critical coupling parameter αc, which is
analogous to Eq. (34), but with a reduced dipole frequency.
This shows why for small ε and small N the transition into
the superradiant phase occurs at much smaller couplings than
predicted by the linearized theory (cf. Fig. 3). For α > 1 the
dipole frequency is fully suppressed and the ground-state phase
is only determined by the sign of the S2

x term. The resulting
critical interaction parameter εc is independent of N and
given by

εc � − ω2
0

8π2α2ω2
c

. (52)

This result shows that cavity fluctuations stabilize the sub-
radiant phase even beyond ε = 0 and that a small but finite
attraction between the dipoles is required to push the system
into the superradiant phase.

Figure 6(a) illustrates the subradiant-to-superradiant phase
transition in terms of the adiabatic Born-Oppenheimer poten-
tials Vad(X) = X2/2 + E0(X). Here X = (a + a†)/

√
2 is the

normalized position quadrature of the cavity mode and E0(X)
is the ground-state energy of the spin part of the extended Dicke
model,

HEDM(X) = ω0Sz +
√

2gXSx + g2

ωc

(1 + ε)S2
x , (53)

obtained for different values of X. The resulting potentials
clearly show the displaced quadratic lobes expected from the
displaced oscillator states given in Eq. (48) as well as the
overall quadratic shift from the S2

x term in Eq. (50). This shift
stabilized the subradiant state with X ≈ 0 for ε > εc, while
in the superradiant phase two minima at X ≈ ±Ng/

√
2ωc

emerge. As shown in Fig. 6(b) the transition point is indicated
by a jump in 〈a〉 as well as in the voltage fluctuations 〈U 2〉. This
behavior is reminiscent of a first-order phase transition, with
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FIG. 6. Subradiant-to-superradiant phase transition. (a) The adia-
batic potential Vad(X) = X2/2 + E0(X) for the cavity mode is plotted
together with the resulting ground-state wave function for different
values of the interaction parameter ε. (b) Dependence of the mean
cavity field and the voltage and spin fluctuations as a function of ε

for α = 2. (c) Zoom of the ground-state phase diagram in the region
|ε| ≈ 0. The color scale shows the ground-state photon number and
the red solid lines indicate the same phase boundaries as in Fig. 3.
The dashed line is the critical value εc given Eq. (51) and the dotted
line indicates the value of εc obtained from the classical transition
point in Eq. (34). In (a) we have used N = 4 qubits and in (b) and
(c) N = 8. In all plots ω0 = ωc and a symmetry-breaking bias field,
Hbias = λSx , where λ/ωc = 10−3, has been assumed.

the additional peculiarity that at the transition point all the lobes
in Vad(X) become energetically degenerate. Finally, Fig. 6(c)
shows a zoom of the phase diagram in Fig. 3 with the strongly
modified phase boundaries in the nonperturbative regime.

C. Beyond the collective spin approximation

In our analysis so far we have primarily focused on the
collective spin model where only the averaged dipole-dipole
interaction strength appears. For certain cavity-QED imple-
mentation, in particular in the context of circuit QED, this
collective coupling arises naturally from the circuit design [31],
in which case also HEDM becomes exact. However, it is clear
that in general the approximation of an arbitrary coupling
matrix Dij by a single parameter η can lead to qualitatively
very different results. In the following we illustrate the relation
between the exact short-range and the collective spin model for
two different settings.

In the first scenario shown in Fig. 7(a) the dipoles are
arranged in a line along the x direction, but tilted by an angle
θ with respect to the z axis. This slightly reduces the coupling
to the cavity field, but changes the dipole-dipole interactions
from repulsive to attractive at a tilting angle of about θ ≈
0.6. In this case the short-range nature of the interactions is
taken into account, but the sign of all the nearest-neighbor
interactions is the same. For this configuration we evaluate the
exact coupling matrix Dij (θ ) (including image charges) and
simulate the resulting full Hamiltonian HcQED for different θ .
We also construct the corresponding extended Dicke model
by replacing g �−→ g cos(θ ) and η �−→ η(θ )/ cos2(θ ), where
η(θ ) is plotted in Fig. 7(b). In Fig. 7(c) we compare the results

FIG. 7. Comparison between the EDM and full cavity QED
Hamiltonian HcQED. (a) Sketch of a setup with N = 4 dipoles, where
the sign of the dipole-dipole interactions is varied by tilting the dipoles
by an angle θ . The resulting averaged interaction parameter η entering
in HEDM is plotted in (b) as a function of θ . (c) The dipole fluctuations
�S2

x and the photon number 〈a†a〉 are evaluated for the ground state
of the full Hamiltonian and for ground state of the corresponding
EDM for different θ . In this plot g/ωc = 2, ωc = ω0, d = 3r0, and
ν = 1/(4π ). (d) Sketch of a setup, where two pairs of dipoles are
separated by �x. For this configuration the parameter η entering the
EDM is plotted in (e) as a function of �x. The sign of η changes at a
value of around �x/r0 ≈ 0.7. (f) Plot of the ground-state correlations
〈σ i

xσ
j
x 〉 evaluated for the configuration shown in (d) using the EDM

and the full model. In all numerical simulations a symmetry-breaking
bias field, Hbias = λSx , where λ/ωc = 10−4, has been added to the
bare Hamiltonians HEDM and HcQED.

from the full model and the corresponding HEDM as we tune the
system from repulsive to attractive dipole-dipole interactions.
We see that apart from small quantitative differences, the
qualitative features of the subradiant-to-superradiant transition
are in very good agreement.

In a second scenario shown in Fig. 7(d) we consider two
pairs of dipoles placed on top of each other at a fixed distance
r0, but with a varying separation �x along the x direction.
In this case there is a certain distance, �x ≈ 0.7r0, where the
attractive interactions along z balance the repulsive interactions
along x and the parameter η changes from a positive to a
negative value [cf. Fig. 7(e)]. From a naive application of
the collective spin model HEDM we would obtain around
this point a transition into a superradiant phase. However,
as shown in Fig. 7(f), for the ground state of the full cavity
QED Hamiltonian HcQED this is not the case and it remains
subradiant. As indicated by the values of the dipole correlators
〈σ i

xσ
j
x 〉, this can be understood from the fact that the two

dipoles on top of each other align and simply form a collective
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spin-1 particle. The two effective spin-1 dipoles then antialign
in order to minimize the remaining attractive dipole-dipole
interactions as well as the collective coupling terms. From
this basic example we expect that in general the formation
of subradiant rather than superradiant ground states is more
likely to occur.

VII. CONCLUSIONS

In summary, we derived a minimal model for cavity QED,
which is applicable in the regime where the coupling between
a single dipole and the field mode is comparable to the bare
photon energy. We discussed the physical parameters which
are required to achieve this condition in a generic setup of
dipoles coupled to the electric field of a lumped element
resonator. This setting also permits a natural reinterpretation
of the resulting dipole-field interactions in terms an enhanced
fine-structure constant α. For α � 1 our model differs from
other commonly used cavity-QED models mainly by the full
treatment of direct dipole-dipole interactions, which, however,
is most crucial for the correct prediction and interpretation
of superradiant instabilities. For α � 1 the hybridization of
individual dipoles and photons becomes relevant and leads to
strong renormalization of the dipole frequency and a cavity-
induced antiferromagnetic ordering. This mechanism favors
highly entangled subradiant ground states, where the dipoles
are almost decoupled from the field.

While the analysis in this work was deliberately based on
many idealizations and approximations, the general findings
are applicable for a large range of different physical realizations
of cavity-QED systems. In traditional settings with atoms
in optical cavities the effects described in this work are
not directly accessible, since α � 1 and also the required
densities for superradiant instabilities are so high that the
cavity-QED physics is masked by solidification and other
short-range interaction effects [26]. For organic molecules or
intersubband transitions in quantum wells the value of α is still
small, but ultrastrong collective couplings, G ∼ ωc,ω0, and
dipole-dipole interactions of similar strength become possible.
In these systems the interplay between dipole-field and direct
dipole-dipole interactions could be explored in more detail
by using differently structured samples, which either favor
or suppress ferroelectric order. This creates an interesting
connection between traditional studies of ferroelectric systems
in confined geometries [76] and the dynamical USC effects
explored in cavity QED.

A value of α ∼ 1 can in principle be reached with supercon-
ducting Cooper pair boxes or electrons in gate-defined quantum
dots when coupled to an LC circuit with high impedance
Z 
 Z0 [2,31,60,89]. Such values are possible using superin-
ductors [90], where Z ∼ RQ ≈ 26 k� can become comparable
to the resistance quantum RQ. Even higher values of α > 1 can
be achieved with flux-coupled circuit-QED systems, where
a more favorable scaling g/ωc ∼ √

RQ/Z is obtained [2].
While our analysis has been restricted to electric systems,
also the underlying equations of motion for such flux-coupled
circuits can be cast into the form of Eqs. (2) and (6) and
studied within the same theoretical framework. For example,
a serial coupling of flux qubits as considered in Ref. [31]
corresponds to Dij = 0 and a subradiant ground state is found.

For the parallel coupling considered in Ref. [32] we obtain
Dij = D < 0 and a superradiant ground state is expected. By
using 3D arrangements of superconducting qubits as proposed
in Ref. [91], also more complex interaction patterns, similar
to dipoles in free space, can be engineered. Therefore, most
circuit geometries permit a direct reinterpretation in terms of
interacting dipoles and can be described by HcQED.

Finally, let us emphasize that there are already many
quantum simulation platforms available where HcQED or HEDM

could potentially be implemented as effective models [86].
For example, Rabi and Dicke models are currently studied
with cold atoms [92–94] and trapped ions [95,96], or using
digital quantum simulation schemes with superconducting
qubits [97]. Similar techniques can be used to engineer the
additional S2

x terms required for the simulation of HEDM. In
Ref. [94] it has been discussed that such a collective spin
term even appears for a single trapped rubidium atom, when
its motion is coupled to Zeeman sublevels of the hyperfine
manifold via fictitious magnetic fields. For such effective
models there are in principle no constraints on the achievable
parameter range and all the different regimes of cavity QED
can be explored.
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APPENDIX A: DIPOLE-DIPOLE INTERACTIONS IN THE
PRESENCE OF METALLIC PLATES

To calculate dipole-dipole interactions in the presence of
the capacitor plates we follow a standard approach [75] and
solve the Poisson equation ∇2φ(�r) = −ρ(�r)/ε0, where φ(�r)
is the potential and ρ(�r) is the charge distribution of the
dipole ensemble, for metallic boundaries at z = 0 and z = d

and with periodic boundary conditions in the (x,y) plane
(with small differences, the same calculation also holds in the
case of a planar capacitor of infinite size). This allows us to
account for the overall dependence of system parameters on
the area A = L2 and separation d, while avoiding a detailed
numerical simulation of the field distribution near the edges of
the capacitor.

Here we consider the more general case in which all the
dipoles are tilted by an angle θ with respect to the z axis.
The dipole displacement is thus given by �ξi = ξi �ud , where
�ud = (sin(θ ),0, cos(θ )). For the evaluation of the Dij we need
to calculate the field along the direction of each dipole E(�ri) =
−∇φ(�ri) · �ud produced by a single dipole located at position
�rj with charge distribution ρ(�r) = qξj �ud · ∇δ(�r − �rj ). The
general result can be written as

E(�r) = − q

ε0
∇[�ξj · ∇j (G(�r, �rj ))] · �ud, (A1)

where G(�r,�r ′) is the Green’s function satisfying
∇2G(�r,�r ′) = −δ(3)(�r − �r ′). This equation can be solved
by introducing the Fourier transform G�k(z,z′) =
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1/(2π )2
∫

G(�r,�r ′)ei(kxx+kyy)dxdy, where �k = (kx,ky). For
the boundary conditions specified above we obtain

G�k(z,z′) = gk(z,z′)�(z − z′) + gk(z′,z)�(z′ − z). (A2)

Here k = |�k|, �(z) is the Heaviside step function, and

gk(z,z′) = e−k(z−z′)

2k

− sinh(kz)e−k(d−z′) + sinh[k(d − z)]e−kz′

2k sinh(kd)
. (A3)

From this result we can immediately evaluate the
total induced charge on the capacitor plates Qin =∫
A

dxdyσin(x,y) = ∫
A

dxdyε0�ez · �E(x,y,z = d). It follows
that Qin = −q

∑N
i=1 ξi cos(θ )∂z∂zi

Gk=0(z = d,zi). To
evaluate Gk=0 we use

lim
k→0

Gk(z,zi) = (z + zi − |z − zi |)
2

− zzi

d
, (A4)

and we obtain Qin = −q cos(θ )
∑

i ξi/d.
The full electric field in real space can be reconstructed by an

inverse Fourier transform of Eq. (A3) (which can be performed
in the cases of finite size and periodic boundary conditions or
infinite plane with the field vanishing fast enough at infinity).
The explicit expression of the local field in the case of a finite
system with periodic boundary conditions is

�E(�r) = − q

4πε0

∑
�m∈Z3

∇ · ∇j

( �ξj

|�r − �rj − �h|+
�ξ∗j

|�r−�r∗j−�h|

)
,

(A5)

where �h = (Lmx,Lmy,2dmz), �ξ∗j = (−ξx
j , − ξ

y

j ,ξ z
j ), and

�r∗j = (xj ,yj , − zj ). This compact expression is nothing else
than the field generated by the j th dipole, plus the field
generated by the infinite images of each dipole reflected by
the metallic boundaries along z, plus the field generated by the
infinite copies of the system because of the periodic boundaries
along (x,y). The same result holds for the infinite capacitor,
with the only difference that the summation over infinite copies
of the system disappears. Using the above definition of the
tilted dipole moment, and considering the case of an infinite
planar size capacitor, we obtain

Dij = D0
ij +

∑
n�=0

(
F

n,S
ij + F

n,O
ij

)
. (A6)

Here D0
ij is the result given in Eq. (5) in the absence of

boundaries and

F
n,S
i,j = r3

0

(
1

|�ri − �r∗j − �hn|3

− 3[(zi − zj + 2dn) cos(θ ) + (xi − xj ) sin(θ )]2

|�ri − �r∗j − �hn|5

)
,

F
n,O
i,j = r3

0

(
1

|�ri − �r∗j − �hn|3

− 3[(zi+zj+2dn)2 cos(θ )2−(xi−xj )2 sin(θ )2]

|�ri − �r∗j − �hn|5

)
,

(A7)

where �hn = (0,0,2dn).

APPENDIX B: POLARITON MODES

For harmonically bound dipoles the general set of
equations (2) and (6) can be solved by decomposing the
dipole variables as ξi = ∑

n cn(i)Zn, where the cn(i) are
normalized eigenmodes of the dipole-dipole interaction
matrix, which obey

ηncn(i) −
∑

j

Dij cn(j ) = 0. (B1)

By introducing dimensionless variables �̃ = �/�̄ and
Z̃n = Z/Z̄ , where �̄2 = √

L/Cmω0Z̄2 and Z̄ is an arbitrary
length scale, we obtain the set of coupled equations

¨̃Zn + (
ω2

0 + ηnω
2
p

)
Z̃n = −ωp

√
ω0

ωc

νn
˙̃�,

(B2)
¨̃� + ω2

c �̃ =
∑

n

ωp

√
ωc

ω0
νn

˙̃Zn.

Here we defined the parameters νn = r3
0 [

∑
i cn(i)]2

/V ,
which characterize the relative coupling strength between
the resonator and each dipole mode. In the limit where the
resonator is dominantly coupled to a single collective mode,
i.e., ν0 � ν and νn�=0 � 0, we recover Eqs. (7) and (8). The
resulting eigenvalue equation is given by(
�2−ω2

c

)∏
n

(
�2−ω2

n

)[
1−

∑
n

νnω
2
p�

2(
�2 − ω2

c

)
(�2 − ω2

n)

]
= 0,

(B3)

where ω2
n = ω2

0 + ηnω
2
p. Since we are interested in the

spectrum of coupled modes, we can assume � �= ωc,ωn and
look for the solutions of∑

n

ω2
pνn

�2 − ω2
n

= 1 − ω2
c

�2
. (B4)

The appearance of an unstable mode is indicated by a solution
of this equation for which � → 0. This is only possible if one
of the mode frequencies of the dipole ensemble vanishes, i.e.,
for ωn → 0.

APPENDIX C: SINGLE-MODE APPROXIMATION
IN THE ELECTRIC DIPOLE GAUGE

Starting from Hamiltonian (17) in the electric dipole gauge,
we can decompose the operator for the displacement field into
a set of orthogonal modes,

�D(�r) =
∑

k

√
h̄ωkε0

2
[ak

�fk(�r) + �f ∗
k (�r)a†

k], (C1)

where the ak (a†
k) are annihilation (creation) operators for a

mode of frequency ωk and mode function �fk(�r). The �fk(�r) are
solutions of the Helmholtz equation for the geometry under
consideration and they are normalized to

∫
d3r �f ∗

k (�r) �fk′(�r) =
δk,k′ . Using this decomposition the Hamiltonian reads

HHM =
∑

k

h̄ωka
†
kak + Hmatter + 1

2ε0

∫
d3rP 2(�r)

+
∑

k

∫
d3r

√
h̄ωk

2ε0
[ak

�fk(�r) · �P (�r) + H.c.], (C2)

which at this stage is still exact.
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We are now interested in the situation where only the lowest
frequency mode is resonant with the dipoles, i.e., ωk0 ≡ ωc ≈
ω0, while all other modes are far separated in frequency, ωk 

ω0. By looking, for example, at the Heisenberg equations of
motion for these modes,

∂tak = −iωkak − i

√
ωk

2h̄ε0

∫
d3r �fk(�r) · �P (�r), (C3)

we can adiabatically eliminate their dynamics by approxi-

mating ak �=k0 (t) � −
√

1
2h̄ωkε0

∫
d3r �fk(�r) · �P (�r,t). The result-

ing dynamics for the dipoles and the remaining cavity mode can
then be modeled by an effective low-frequency Hamiltonian

HSMH = h̄ωca
†
cac + Hmatter + Hdd

+
√

h̄ωc

2ε0
(ac + a†

c)
∫

d3r �fc(�r) · �P (�r)

+ 1

2ε0

[∫
d3r �fc(�r) · �P (�r)

]2

, (C4)

where we replaced the index k0 by the index c to be consistent
with the notation used in the main text. Here we have intro-
duced the dipole-dipole interaction term

Hdd = 1

2ε0

∑
i,j

∫
d3rd3r ′Pi(�r)Kij (�r,�r ′)Pj (�r ′), (C5)

where Kij (�r,�r ′) = δij δ(�r − �r ′) − ∑
k fk,i(�r)fk,j (�r ′). Note that

the sum in Kij runs over all modes. To compensate for the k0

term, which has not been adiabatically eliminated, the nonlocal
P 2 term in Eq. (C4) has been introduced.

Equation (C4) represents a generic single-mode version
of the Hopfield model in the dipole gauge (for a similar
calculation in the Coulomb gauge see Ref. [25]). It shows
that high-frequency modes cannot be just omitted, but they
contribute in second-order perturbation theory to relevant
interactions terms between the dipoles. To illustrate this point
let us consider the limiting case V → ∞, where the mode
functions are plane waves,

�f�k,λ(�r) = �ελ(k)
1√
V

ei�k·�r , (C6)

labeled by the wave vector �k and the polarization vector
�ελ=1,2 ⊥ �k. The kernel matrix for the complex mode functions
gives us the dipole-dipole interaction

Kij (�r,�r ′) = δij δ(�r − �r ′) − 1

V

∑
�k,λ

ελ
i (�k)ελ

j (�k)ei�k·(�r−�r ′)

= 1

4π

[
δi,j

|�r − �r ′|3 − 3(�r − �r ′)i(�r − �r ′)j
|�r − �r ′|5

]

− 1

3
δ(�r − �r ′), (C7)

where we made use of the transversality of the electromagnetic
field [70] and replaced the sums over the k vectors by integrals.
For a finite volume and metallic boundaries, a similar calcu-
lation would reproduce the modified dipole-dipole couplings
∼Dij , as used in our model.
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