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Generation of three wide frequency bands within a single white-light cavity
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We theoretically investigate the double-� scheme inside a Fabry-Pérot cavity employing a weak probe beam and
two strong driving fields together with an incoherent pumping mechanism. By generating analytical expressions
for the susceptibility and applying the white-light cavity conditions, we devise a procedure that reaches the
white-light condition at a smaller gas density than the values typically cited in similar previous studies. Further,
when the intensities of the two driving fields are equal, a single giant white band is obtained, while for unequal
driving fields three white bands can be present in the cavity. Two additional techniques are then advanced for
generating three white bands and a method is described for displacing the center frequency of the bands. Finally,
some potential applications are suggested.
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I. INTRODUCTION

Optical switches have found numerous applications, includ-
ing gravitational waves in signal recycling mirrors (SRMs)
[1,2], Q-switched lasers [3,4], and control of entanglement
in trapped qubits [5], and in quantum circuits and quan-
tum networks [6–8]. Previously suggested optical switching
mechanisms based on controlling the transmission of light
in a cavity through the interaction of an atomic system with
the electromagnetic field include applying a driving field to
an two-level atomic gas [9], a � three-level atomic gas in
the presence of two coupling fields [10,11], and a low light
output confocal cavity containing a double-� four-level atom
system utilizing a rubidium atomic vapor cell [12]. Alternative
suggestions employ a microtoroidal resonator coupled to an
optical fiber [13] and electromagnetically induced gratings
(EIGs) [14–16]. However, most of these methods suffer from
mechanical instability and generally only operate within a
single narrow frequency band.

Accordingly, in a recent article, one of us (M.A.), together
with co-workers [17], instead investigated white-light cavities
(WLCs) based on � atomic gas. Unlike standard cavities
that resonate at discrete frequencies determined by the optical
round-trip length, WLCs resonate over a broad and continuous
range of frequencies [18–22] and have consequently already
been employed in data buffering [23–25] and measurement
[26–28] applications.

In the design of Ref. [17], a system of � gas atoms in an
optically pumped Fabry-Pérot cavity with a broad white-light
band was employed. By changing the intensity of the driving
fields and the atomic density, the frequency width of this
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band and the associated cavity reflection can be reduced to
zero. As a result, such a system can be potentially employed
as an optical switch. However, similar to the previous cited
methods, this procedure is limited to a single band with a center
frequency that is typically determined by system parameters
such as the atomic spacing and decay rates that cannot be
easily be controlled. In this article, we accordingly propose
three different procedures based on a four-level double-�
atomic gas within an optically pumped Fabry-Pérot cavity.
By appropriately tuning the driving fields, we realize three
independent procedures for generating up to three broad
frequency bands with tunable center frequencies in place of
a single band.

The article is organized as follows. First, in Sec. II, the
double-� model is described. Sections III and IV then present
the analytical formulation and derive appropriate formulas for
the electromagnetic susceptibility. In Sec. V, the white-light
cavity conditions are presented. Subsequently, the method
employed to generate a single white-light band follows in
Sec. VI while the three procedures (A, B, and C) for generating
three white bands follow in Secs. VII A and VII B. Section
VIII then describes a strategy for displacing the center of
broad white bands. In Sec. IX, we demonstrate some potential
applications for our results. Section X finally contains the
conclusions of the paper.

II. MODEL DESCRIPTION

Optical control of parameters such as the susceptibility and
the refractive index in an atomic gas can be employed to exploit
effects such as electromagnetically induced transparency (EIT)
[29,30], a negative refractive index [31,32], and reflective
index enhancement without absorption [33]. In this article, the
susceptibility of an atomic gas confined inside a Fabry-Pérot
cavity is engineered to produce several transmission bands
that can be controlled by modulating the intensity of external
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FIG. 1. The level structures, decay rates, and external fields of the
double-� scheme.

fields. That is, several fields are employed inside the cavity to
modify the susceptibility of the atomic gas which interacts with
electromagnetic radiation according to the four-level double-�
scheme of Fig. 1.

The scheme has four levels |a〉, |b〉, |c〉, and |d〉, where
|a〉 denotes the upper level. Two weak probe fields couple
three levels: levels |a〉 and |d〉 characterized by the Rabi
frequency �−

p , and levels |b〉–|d〉 with Rabi frequency �+
p .

One strong driving field additionally couples |a〉 and |c〉 with
Rabi frequency �−

μ while a second applies |b〉 and |c〉 with
Rabi frequency �+

μ . Two incoherent pumping mechanisms
additionally couple levels |a〉 and |d〉 and |b〉 and |d〉 with
a pumping rate denoted by r . The decay rates from the exited
states equal γa from |a〉 to |d〉, γb from |b〉 to |d〉, γA from |a〉
to |c〉, and, finally, γB from |b〉 to |c〉. The decay rates from |c〉
and |d〉 are assumed to be zero.

Various experimental implementations of the above double-
� scheme exist [34–36]. For example, in the rubidium [37] or
sodium [38] gas two hyperfine ground levels with F = 1 and
F = 2 are present, and the states |d〉 and |c〉 then correspond
to the MF = −1 and MF = 1 magnetic sublevels of the F =
1 hyperfine ground level, while the upper states |a〉 and |b〉
in our notation are the MF = 0,F = 1 and MF = 0,F = 2
excited states. In this case, two oppositely circularly polarized
counterpropagating fields σ± must be employed for the drive
and probe fields.

III. ANALYTIC FORMULATION

After applying the dipole approximation and the rotating
wave approximation (RWA) the Hamiltonian of the double-�
scheme becomes

Ĥ = h̄

[ a,b,c,d∑
i

ωi |i〉〈i| − �−
p

2
ei�1t |a〉〈d| − �+

p

2
ei�2t |b〉〈d|

− �+
μ

2
ei�3t |b〉〈c| − �−

μ

2
ei�4t |a〉〈c| + H.c.

]
, (1)

in which h̄ωi is the energy of the level |i〉 and the Rabi
frequencies of the probe fields are �−

p = |dad |E/h̄ and �+
p =

|dbd |E/h̄, in which E is the electric field of the probe field
and the driving field Rabi frequencies are �+

μ = |dbc|E+
μ /h̄,

�−
μ = |dac|E−

μ /h̄. The detuning parameters �i are given by
�1 = ωad − ω−

p , �2 = ωbd − ω+
p , �3 = ωbc − ω+

μ , and �4 =

ωac − ω−
μ . Here, ωij = ωj − ωi while ω±

p and ω±
μ denote the

frequencies of the probe and driving fields, respectively.
A stable steady state only exists in the double-� scheme if

the frequencies of the interacting beams satisfy the condition

ω−
p − ω+

p = ω−
μ − ω+

μ (2)

[39,40], as is easily verified by applying the Hamiltonian of
Eq. (1) to the master equation below. In the following analysis,
the frequencies of the probe and driving beams are set to
ω−

p = ω+
p = ω, and ω+

μ = ω−
μ = ωμ. Accordingly, only one

probe field with frequency ω is present while the frequency
of both driving fields equals ωμ. The detuning parameters �i

are then �1 = ωad − ω, �2 = ωbd − ω, �3 = ωbc − ωμ, and
�4 = ωac − ωμ. The master equation then takes the form

˙̂ρ = − i

h̄
[Ĥ ,ρ̂], (3)

in terms of the density-matrix operator ρ̂. After applying the
Hamiltonian of Eq. (1) to the master equation, inserting the
expressions for the decay rates and the pumping rates, and
transforming in standard fashion, one obtains

ρ̇aa = −(γa + γA)ρaa + rρdd + i

2
(ρ̃ac�

−∗
μ − ρ̃ad�

−∗
p +H.c.),

(4)

ρ̇bb = −(γb + γB)ρbb + rρdd

+ i

2
(ρ̃bd�

+∗
p − ρ̃bc�

+∗
μ + H.c.), (5)

ρ̇cc = γAρaa + γBρbb + i

2
(ρ̃bc�

+∗
μ + ρ̃ac�

−∗
μ + H.c.), (6)

ρ̇dd = −2rρdd + γaρaa + γbρbb

+ i

2
(ρ̃ad�

−∗
p + ρ̃bd�

+∗
p + H.c.), (7)

˙̃ρab = −γabρ̃ab − 2iωabρ̃ab

+ i

2
(ρ̃cb�

−
μ + ρ̃db�

−
p − ρ̃ad�

+∗
p − ρ̃ac�

+∗
μ ), (8)

˙̃ρac = −γacρ̃ac − i(�μ + ωab)ρ̃ac

+ i

2
[−ρ̃ab�

+
μ + (ρcc − ρaa)�−

μ + ρ̃dc�
−
p ], (9)

˙̃ρad = −γad ρ̃ad + i(� − ωab)ρ̃ad

+ i

2
[−ρ̃ab�

+
p + ρ̃cd�

−
μ − (ρaa − ρdd )�−

p ], (10)

˙̃ρbc = −γbcρ̃bc − i(�μ − ωab)ρ̃bc

+ i

2
[ρ̃dc�

−
p − (ρbb − ρcc)�+

μ − ρ̃ba�
−
μ ], (11)

˙̃ρbd = −γbd ρ̃bd + i(� + ωab)

+ i

2
[ρ̃cd�

+
μ − ρ̃ba�

−
p − (ρbb − ρdd )�+

p ], (12)

˙̃ρcd = −γcd ρ̃cd + i(�μ + �)ρ̃cd

+ i

2
(−ρ̃cb�

+
p − ρ̃ca�

−
p + ρ̃bd�

+∗
μ + ρ̃ad�

−∗
μ ), (13)

where ρ̃ij is the density-matrix element after the trans-
formations and γij ≡ (γi + γj )/2. The detuning parameters

043816-2



GENERATION OF THREE WIDE FREQUENCY BANDS … PHYSICAL REVIEW A 97, 043816 (2018)

appearing in the above equation are defined by � = ω − W =
ω − ωad − ωbd and �μ = Q − ωμ = ωac + ωbc − ωμ, where
W is ωad + ωbd and Q = ωac + ωbc. In this manner, the values
of the energies ωad , ωbc, ωbc, and ωbd do not need to be
determined individually as only ωab appears.

To find the steady-state matrix elements, ˙̃ρij = 0, and the
two associated elements of the probe field, ρ̃ad and ρ̃bd , the
above equations are solved algebraically. Since the probe field
is weak, �±

p is only retained to first order, while the strong
driving fields �±

μ are kept to the second order. Solving Eqs. (5)–
(10) then yields

ρ̃
(1)
bd = i

Dbd + |�+
μ |2

4Dcd

[
�+

p

(
|�+

μ |2
8DcdD

∗
bc

Pbc − 1

2
Pbd

)

− �−
p

(
�+

μ�−∗
μ

8DcdD∗
ac

Pca

)]
, (14)

ρ̃
(1)
ad = i

Dad + |�−
μ |2

4Dcd

[
�+

p

(
�−

μ�+∗
μ

8DcdD
∗
bc

Pbc

)

− �−
p

(
|�−

μ |2
8DcdD∗

ac

Pca + 1

2
Pad

)]
, (15)

where Pij = ρii − ρjj and ρ̃
(1)
ij denote the population dif-

ference and the first-order approximation of the probe
field of element ρ̃ij while the different Dij parameters
are defined by Dbd = γbd − i(� + ωab), Dad = γad − i(� −
ωab),Dcd = γcd − i(�μ + �),Dbc = γbc + i(�μ − ωab), and
Dac = γac + i(�μ + ωab).

The electric susceptibility χ is the sum of the contributions
χad and χbd from each of the interactions of the probe field as

χε0E/2 = |dad |ρ̃(1)
ad + |dbd |ρ̃(1)

bd ,

χ = 2|dad |ρ̃(1)
ad /(ε0E) + 2|dbd |ρ̃(1)

bd /(ε0E),

χ = χad + χbd, (16)

Substituting Eqs. (14) and (15) into Eq. (16) then yields

χbd = i

Dbd + |�+
μ |2

4Dcd

[
C
(

|�+
μ |2

4DcdD
∗
bc

Pbc − Pbd

)

− B
(

�+
μ�−∗

μ

4DcdD∗
ac

Pca

)]
, (17)

χad = i

Dad + |�−
μ |2

4Dcd

[
B

(
�−

μ�+∗
μ

4DcdD
∗
bc

Pbc

)

− A
(

|�−
μ |2

4DcdD∗
ac

Pca + Pad

)]
. (18)

Here, the strength parameters are defined by

A = N |dad |2
h̄ε0

, B = N |dad ||dbd |
h̄ε0

, C = N |dbd |2
h̄ε0

. (19)

The contribution from all atoms is obtained by multiplying the
atomic susceptibility by the number of atoms per unit volume
N . The exact expressions for the atomic populations ρii are

then derived by solving Eqs. (4)–(4) together with the normal-
ization condition ρaa + ρbb + ρcc + ρdd = 1, which gives

ρ(0)
aa = r

Ra(γb + γB) + γBRa + γbRb + 2RaRb

a1Ra + a2Rb + a3RaRb + a4
, (20)

ρ
(0)
bb = r

Rb(γa + γA) + γaRa + γARb + 2RaRb

a1Ra + a2Rb + a3RaRb + a4
, (21)

ρ
(0)
dd = γaρ

(0)
aa + γbρ

(0)
bb

2r
, (22)

ρ(0)
cc = 1 − ρ(0)

aa − ρ
(0)
bb − ρ(0)

cc , (23)

in which ρ
(0)
ii designates the zero-order probe field, and

Ra = γac|�−
μ |2

2
[
γ 2

ac + (�μ + ωab)
] , Rb = γbc|�+

μ |2
2
[
γ 2

bc + (�μ − ωab)
] ,

(24)

a1 = γa(γb + γB) + r(4γB + 2γb + γa), a2 = γb(γa + γA) +
r(4γA + 2γa + γb), a3 = 6r + γb + γa , and a4 = r(2γAγB +
γAγb + γBγa).

To illustrate the behavior of the susceptibility, the above
equations are evaluated with standard parameter values. With
γ = 107 the decay parameters employed here are γa = γb =
γ , γA = γB = 0.2γ , γab = γcd = 0, and γac = γbc = γad =
γbd = (γa + γA)/2 = 0.6γ . The density parameters are sim-
ilarly given in terms of C by A = θC and B = �C, with θ

and � set to 1.1 and 1.05, respectively. The driving fields
are expressed in terms of �−

μ by �+
μ = �−

μ/α, where α

corresponds to the ratio between the two fields. These fields
are assumed to be well detuned so that �μ = 0, while the
level spacing ωab = γ . A detuning parameter is additionally
defined as � = ω − W , where for typical gases in the optical
limit W = 106γ . Accordingly, the following sections examine
the dependence of the susceptibility on the free parameters r ,
�−

μ , α, and C.

IV. SUSCEPTIBILITY

To evaluate the susceptibility, Eq. (16), it is convenient to
set C = γ since the susceptibility scales linearly with C. The
following cases are then distinguished.

A. �−
μ = �+

μ , α = 1

Since all systems with r < γ possess the same inversion
properties, they can be analyzed by setting the pumping rate
r to zero such that only the state |d〉 is populated and then
increasing the pumping rate up to a value of γ . This insures
that the atomic population is primarily in the ground state and
therefore ρ(0)

aa ,ρ
(0)
bb − ρ

(0)
dd < 0. For the two driving fields with

α = 1, a pumping rate r < γ , the susceptibility exhibits EIT
as evident from Fig. 2(a) for which the driving field �−

μ = 10γ

and the pumping rate r = 0.5γ . Evidently, the absorption
which is proportional to Im(χ ) is ≈ 0 over an interval given
approximately by −4γ < � < 4γ , while Re(χ ) displays a
linear dispersion with positive slope. In Fig. 2(c), the driving
field is set instead to �−

μ = 20γ with the identical pumping rate
as Fig. 2(a), leading to an increase in the width of the near-zero
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(a) r = 0.5γ, Ω−
µ = 20γ
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(b) r = 2γ, Ω−
µ = 20γ
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(c) r = 0.5γ, Ω−
µ = 10γ

Re Χ
Im Χ

5 5 Γ

0.3
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0.2
Χ

(d) r = 2γ, Ω−
µ = 10γ

FIG. 2. The real and imaginary parts of χ for different r and �−
μ

with α = 1. The real and imaginary parts of χ are show as the solid
black and dashed red curves, respectively.

absorption region to −9γ < � < 9γ but otherwise the same
behavior as Fig. 2(a). In fact if the near zero absorption width
is denoted by T , then for large driving fields in our system
T ≈ �−

μ over a region from � ≈ −�−
μ/2 and to � ≈ �−

μ/2.

That is, the width of the EIT can be manipulated by modulating
the amplitude of the driving fields.

For r > γ , the population inversion becomes positive, with
the result that both ρ(0)

aa and ρ
(0)
bb exceed ρ

(0)
dd . In this case,

Figs. 2(b) and 2(d) indicate that EIT is again present but that
the dispersion slope reverses sign. As in the r < γ case, the
width of the negative absorption region is given by T ≈ �−

μ .
Note that in all of the figures in Fig. 2, two peaks are present
on each side of the absorption line. Since these are associated
with ωab, their positions can be altered by changing the value
of ωab. Thus, the width of the EIT and the sign of the dispersion
slope can be easily controlled by adjusting the amplitude of the
driving fields.

B. �−
μ �= �+

μ , α �= 1

Next, the case that α differs from unity (and α �= 0,∞)
so that the intensities of the driving fields differ (note that
systems with reciprocal values of α are nearly equivalent) is
investigated. In Figs. 3(a) and 3(b), χ is plotted for α = 2,
�−

μ = 20γ and r = 0.5γ and r = 2γ , respectively. In both
figures three separate regions exist in which Im(χ ) and hence
the absorption is nearly zero. The width of the middle region is
≈10γ , while the widths of the left and right regions are ≈5γ .
However, in Fig. 3(a) with r = 0.5γ , the three regions exhibit
EIT behavior, while in Fig. 3(b) the dispersion slope is negative.
In both cases, the width of the middle region is T ≈ �−

μ/α,
while that of the two side regions is T ≈ �−

μ (α − 1)/(2α).
If one of the driving fields is absent, α → 0,∞, only two

zero absorption regions exist, as evident from Figs. 3(c) and
3(d). Similarly, whether the EIT or the negative dispersion
behavior is present depends on the value of r . Therefore,
changing the ratio of the driving fields strongly influences the
widths of the low absorption regions. In the following, we will
focus on systems with finite values of α and hence three EIT or
negative dispersion regions. The two-region α → ∞,0 case,
however, is entirely analogous.

To describe Figs. 3(a) and 3(b) and other cases with α > 1
we denote the left, middle, and right negative dispersion
regions of � with negligible absorption by (−1), (0), and (+1),
respectively. The point within each region at which Re(χ ) =
0 is further termed the center point of the region and are
labeled as �−, �0, and �+ with �− ≈ −|�−

μ |(α + 1)/(4α), 0,
and �+ ≈ +|�−

μ |(α + 1)/(4α), respectively. In summary, by
manipulating the relative amplitude of the driving fields, one,
two, or three regions exhibiting EIT or negative dispersion can
be obtained. These regions will be employed to generate three
white bands in the following sections.

V. WHITE CAVITY CONDITIONS

While a Fabry-Pérot cavity supports discrete resonant fre-
quencies at

kml = Re[n(ω)]lωm/c = mπ, m = 1,2,3, . . . , (25)

where n(ω), l, and ωm are the cavity refractive index, length,
and resonant frequencies, for a white-light cavity (WLC) such
as that generated by bifrequency Raman gain [18,20,22], a
continuous band of frequencies is resonant simultaneously
inside the cavity. In a WLC the cavity condition Eq. (25) must
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(d) r = 2γ, Ω−
µ = 20γ, α → ∞

FIG. 3. The real (solid black) and imaginary (dashed red) parts of
χ for different values of r and �−

μ for α > 1.

be satisfied for the center points together with a negative and
roughly linear dispersion and phase delay cancellation. As
seen already in Figs. 2(b), 2(d), 3(b), and 3(d), the negative
dispersion condition is realized within adjustable wavelength
bands if the pumping r > γ .

The phase delay condition is derived from Eq. (25) which,
however, yields discrete frequencies rather than the continuous
band of a WLC. Accordingly, Eq. (25) must first be differen-
tiated with respect to ω where

d{ω Re[n(ω)]}
dω

= ω
d{Re[n(ω)]}

dω
+ Re[n(ω)] = 0. (26)

In the presence of negative dispersion Re[n(ω)] can equal the
negative of the first term. For the cases when the two driving
fields possess equal amplitudes, α = 1, the center point of the
negative dispersion is � = 0 corresponding to ω = W . Since
χ (W ) ≈ 0 near this point, the refractive index n(ω) ≈ 1 and
Eq. (26) implies

d{Re[n(ω)]}
dω

∣∣∣∣
ω=W

= − 1

W
. (27)

The slope near the center point is roughly linear, hence the
derivative can be approximated as

d{Re[n(ω)]}
dω

∣∣∣∣
ω=W

≈ Re[n(W + γ )] − Re[n(W − γ )]

2γ
.

(28)

Next, the refractive index can be expanded as n(ω) =√
1 + χ (ω) ≈ 1 + χ ′(ω)/2 + iχ ′′(ω)/2, in which χ ′(ω) and

χ ′′(ω) are the real and imaginary parts of the susceptibility,
respectively. The final form of the white-light condition for
equal driving fields is then

χ ′(W + γ ) − χ ′(W − γ ) = −4γ

W
. (29)

This equation can be employed to determine the required value
of �−

μ for the driving field that satisfies the WLC.
Repeating the above derivation for unequal driving field am-

plitudes yields separate conditions for each negative dispersion
region. These can be expressed as

χ ′(�C + W + γ ) − χ ′(�C + W − γ ) = − 4γ

�C + W
. (30)

Here, �C = ωC − W denotes the center point of each region
or the point at which χ ′(ωC) = 0 in the case of a negative
dispersion slope. For example, for each of the three near-zero
absorption and negative dispersion regions in Fig. 3(b), Eq. (30)
yields a separate result for the driving fields at each center point
to satisfy the WLC. These can then be employed to generate
three different resonant bands.

Observe next that when ωab � �±
μ , the populations ρaa ≈

ρbb ≈ ρcc. Hence, for simplicity, both Pbc and Pca can be set
to zero in Eqs. (17) and (18) so that only the second term of
Eq. (17) and the third term of Eq. (18) remain. The real and
imaginary parts of the susceptibility χ = χ ′ + χ ′′ are then

χ ′(ω) = −
θC

[
−� + ωab + |�−

μ |2
4�

]
Pad

γ 2
ad +

[
−� + ωab + |�−

μ |2
4�

]2

−
C
[
−� − ωab + |�−

μ |2
4α2�

]
Pbd

γ 2
bd +

[
−� − ωab + |�−

μ |2
4α2�

]2 , (31)
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FIG. 4. (a) The driving field �μW required to satisfy the WLC
condition Eq. (29). (b) The dependence of the cavity transmission on
the driving field for r = 2γ (except for the inner curve).

χ ′′(ω) = − θCγadPad

γ 2
ad +

[
−� + ωab + |�−

μ |2
4�

]2

− CγbdPbd

γ 2
bd +

[
−� − ωab + |�−

μ |2
4α2�

]2 , (32)

where as usual � is ω − W . In driving these equations we
assumed that γcd = 0 and �μ = 0. Replotting Figs. 2 and 3
using these expressions leads to almost the same set of curves.

VI. SINGLE WHITE BAND

As noted above, for equal amplitudes of the driving fields
�±

μ , e.g., α = 1, a single giant resonant frequency band is
obtained when the driving field value satisfies a condition
corresponding to the WLC of Eq. (29). Figure 4(a), which
plots this required field �−

μW against C and r , demonstrates

that �−
μW is nearly proportional to

√
CW . For example, for

r = 2γ , a graph of �−
μW = 0.774 741

√
CW almost coincides

with the plot in Fig. 4(a). As well, �−
μW generally increases

monotonically with the pumping r; however, the r = 16γ

and r = 32γ curves are nearly identical since the population
saturates for large r values.

For r = 2γ , while previously our calculations employed
C = γ as in a standard gas, the previous plot indicates that
�−

μW = 774γ . Since this value is unacceptably large, the gas
density is decreased by setting C = 0.01γ , which yields a
more reasonable value of �−

μW = 77.48γ . Hence this scheme

for generating a white driving field requires lower pressure
compared to previous experiments.

The effect of the white driving field is apparent from the the
transmission Tcav of the Fabry-Pérot cavity,

Tcav =
∣∣∣∣ T eilωn(ω)/c

1 − R e2ilωn(ω)/c

∣∣∣∣
2

, (33)

in which T and R are the mirror amplitude transmission
and reflection coefficients. The cavity length must equal l =
mλ/2 = πcm/W , where m is any integer, to satisfy Eq. (25).
The upper exponent is then a function of � as iπm(W +
�)n(�)/W , where, in Fig. 4(b), T = 0.001, R = 0.999, m =
100, and W = 106γ . Evidently, in Fig. 4(b) for �−

μW , the
transmission band is broadened significantly compared to that
of an empty cavity. The linewidth is additionally nearly 40γ ,
while additional calculations indicate that the linewidths of
the white driving fields are nearly proportional to �

2/3
μW . For

comparison, the transmission is also plotted for a second value
of the driving field, namely, �−

μ = 70γ . The linewidth for this
value is less than for the white driving field. We further plot the
transmission for �−

μ = 70γ , but with pumping r = 0.5γ . The
pumping clearly reduces the linewidth of the band compared
to the empty cavity band since for pumping strengths r < γ ,
EIT, which in our scheme leads to a reduced linewidth, is the
dominant physical effect in this case.

To summarize, the propagation of light though a cavity with
a wide transmission band can be controlled by adjusting the
amplitudes of the two driving fields. To activate a white band,
the value of �−

μ must be within a certain range that depends on
the gas density and the pumping rate according to Fig. 4(a). The
linewidth of the transmission band can further be controlled by
varying the pumping, gas density, and the white driving field
amplitude.

VII. GENERATION OF THREE WHITE BANDS

A. Method A

When the two driving fields are unequal, three negative
dispersion regions can be supported, as Figs. 3(b) and 3(d)
demonstrate. While the procedure in the previous section can
be employed to create a white band in one of the regions, this is
not as efficient as white-light generation for α = 1. Therefore,
we here consider activating all three regions. However, each of
these in principle requires a different length. This length must
be a half-integer multiple of the center wavelength according
to Eq. (25) which, noting that χ ′ is equal to zero at the center
points (�0 and �±), yields

lωm = cmπ, (34)

for Re[n(ωC)] = 1.
Since the cavity length is the product of an integer k, with

a half wavelength at frequency ω = W , that is, l = kλ/2 =
πck/W . This yields the condition

ωm = mW

k
. (35)

Since the center point of region (0) is found to be �0 =
0, ωm must equal W , and therefore m = k. To ensure that
the center points of the regions (±1) coincide with ωm±1,
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observe that the center point frequencies �± are W + �±
and hence ωm±1 = W + �±, leading to the conditions ωm±1 =
W + �± = W (m±1)

k
= W (m±1)

m
= W ± W

m
and therefore

�± = ±W

m
. (36)

Since W = 106, �± can be approximated by an integer m to
satisfy the above equation, however, the condition that |�+| =
|�−| still remains.

The above results for χ for a given α and �−
μ yield

|�+| ≈ |�−|, however, the WLC Eq. (30) requires that
the field amplitudes differ in order to generate the regions
(±1), implying |�+| �= |�−|. For example, employing our
current parameter values with ωab = γ and α = 3, we find
that the fields required to satisfy the WLCs in Eq. (30)
with χ ′(ω) = 0 for the regions (±1) are given by (�μW+ =
177.1385γ,�μW− = 183.7735γ ), where �μW± are the �−

μ

values in the regions (±1). These two values yield (�+ =
64.71γ,�− = −67.18γ ). Hence Eq. (36) is not fulfilled and
only the regions [(0),(+1)] or [(0),(−1)] will satisfy the WLC.

To circumvent this difficulty we instead set ωab = 0.1γ ,
and solve the two equations [Eq. (30) with χ ′(ω) = 0]. This
gives for region (+1), �−

μ = �μW+ = 180.1415γ and �+ =
65.8392γ , while for region (−1), �−

μ = �μW− = 180.7945γ

and �− = −66.0827γ . Here, both |�±| are nearly identical,
indicating that for small ωab the values of |�±| are nearly
identical so that Eq. (36) is approximately fulfilled.

Since the two values of |�±| are not precisely identical, we
impose Eq. (36) in region (+1) while approximately satisfying
this equation in region (−1). This yields, for m in Eq. (36),
k = m = W/�+ ≈ 15188. The WLC for the region (0) from
Eq. (29) then gives �μW0 = 169.964γ . Accordingly, the three
regions (0),(±1) can be activated in the same cavity.

For simplicity, neglecting the small absorption associated
with regions (±1) yields the transmission Tcav for the white
bands in the three separate wavelength regions with Tcav ≈ 1
illustrated in Fig. 5(a). Of these, the band in region (0) is
the widest with a linewidth of ≈6γ Hz, while the linewidth
in the (±1) regions is ≈3γ Hz. The three bands are shown
individually in Figs. 5(b)–5(d). Evidently, the band of region
(−1) in Fig. 5(c) is slightly less broad than that associated
with region (+1), since we have employed the driving field
corresponding to the latter region. The small depressions in
Fig. 5(a) occur in regions of high absorption and therefore can
be neglected.

Accordingly, the procedure of this section efficiently
produces three different white-light bands in a single cavity.
Additionally, the white-light band of region (0) is activated
though a driving field of 169.96γ , while to activate the (±1)
regions the driving field is found to equal 180.1415γ . This
enables the optical switching of the bands.

B. Method B

In Sec. VII A, three white bands were generated subject to
the condition ωab ≈ 0. This and the following section instead
outline two procedures for generating three bands in which the
value of ωab is not constrained. The first of these procedures
assumes that the length of the cavity can be altered. In this
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ΜW 180.1415Γ
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ΜW0 169.964Γ
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Γ
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(b)
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FIG. 5. Cavity transmission frequencies for different driving field
values with α = 3. (a) All bands together. (b) The band of region (0).
(c) The band of region (−1). (d) The band of region (+1).

case, the cavity condition, Eq. (25), for region (0) reads

l0W = cmπ, l0 = mπc

W
, (37)

043816-7



ANAS OTHMAN, DAVID YEVICK, AND M. AL-AMRI PHYSICAL REVIEW A 97, 043816 (2018)

while the condition for the other two regions (±1) with varying
length can be written as

l±(W + �±) = cmπ, l± = cmπ

W + �±

W

W
, (38)

and therefore

l± = l0

(
1

1 + �±
W

)
= l0X±, (39)

where X± are multiplicative factors that express the required
length modifications. Setting ωab to its previous value, γ , and
calculating the driving fields that satisfy the white cavity con-
dition for α = 3 yields (�μW0 = 169.94γ , �μW+ = 177.13γ ,
�μW− = 183.77γ ) for the [(0), (+1), (−1)] regions, respec-
tively. If the length of region (0) is set to l0 = 100πc/W , the
required lengths of the (±1) regions are l+ = 0.999 935 28l0
and l− = 1.000 067 19l0, which are sufficiently close to l0 to
enable the tuning of the cavity length.

The cavity transmission is plotted in Fig. 6, demonstrating
three bands with a very large linewidth (≈1.0 GHz) compared
to that of the previous method since the cavity length is reduced.
Recall as well that for α = 1, the band of region (0) is nearly
unchanged but requires a smaller amplitude driving field, as
evident from Fig. 4(b). Further, as in the previous section, the
center frequency of the (±1) bands can be shifted by adjusting
the C parameter. Hence here again both the linewidth and the
center of the transmitted bands can be easily manipulated.

C. Method C

A third procedure for generating three white bands which
employs α = 1 is to tune the spacing energy ωab. We notice in
Fig. 3 that there are two peaks on either side of the transmission
maximum. These peaks are related to ωab as they vanish for
ωab = 0. Increasing ωab therefore results in three white bands
similar to the α �= 1 case. The width of both regions (±1)
approximately equals ωab, while the bandwidth of the middle
region (0) is �−

μ ≈ ωab. Therefore, when �−
μ ≈ 2ωab, the three

regions will possess almost the same width. This method could
be highly efficient if ωab is easily tunable and illustrates that
three bands can be generated even for equal amplitude driving
fields.

VIII. ONE WHITE BAND WITH ADJUSTABLE
CENTER FREQUENCY

Finally, we propose a technique for generating a single large
white band with a center frequency that can be displaced by
adjusting the parameter α. We specialize here to method B,
for which ωab = γ . Solving for the white cavity condition
Eq. (30), along with χ ′ = 0, yields the value of the field that
satisfies the WLC condition �μW± as well as the center point
�± for each value of α. These results are shown in Fig. 7, where
Fig. 7(a) plots �μW± against the ratio 1/α while Fig. 7(b)
displays the dependence of the center point location on of the
same ratio. Figure 7(a) demonstrates that there is almost a
constant spacing between �μW− and �μW+, which is expected
since ωab is not negligible, as discussed in Sec. VII A. Further,
both �μW± increase rapidly as α approaches 1 as the widths of

ΜW0 169.949Γ
Empty cavity
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0.8
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ΜW 177.1385Γ
Empty cavity
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(b)
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90 80 70 60 50 40 30 200.0
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(c)

FIG. 6. Magnified plots of the transmission bands of the cavity
for differing driving field amplitudes with α = 3 for cavity lengths
(a) l0, (b) l+ = l0X+, and (c) l− = l0X−.

the (±1) regions decrease in this limit and vanish when α = 1.
The position of the center points in Fig. 7(b) behaves similarly.

The above figures can be employed as follows. To position
the white-light band around a given center point, e.g., �± =
x, the value of α can be determined from Fig. 7(b) and the
required driving fields �−

μ and �+
μ = �−

μ/α are then obtained
from Fig. 7(a). Finally, the cavity length must be adjusted to
equal l = X±l0. A similar procedure for displacing the white
band position can be formulated for method A, however, the
resulting curves differ since ωab is altered in this scenario. The
only positions which cannot be accessed fall in the interval
≈−37.2γ to 35.5γ , as evident from Fig. 7(b). The two edges of
this range correspond to α → ∞, which limits the two regions
present in Fig. 3(d).
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FIG. 7. The (a) driving fields �−
μ = �μW± and (b) center point

positions �± resulting from the white-light condition for the (±1)
regions plotted as a function of the ratio 1/α.

IX. POTENTIAL APPLICATIONS

While the practical implementation of the systems de-
scribed above cannot be specified exactly without considerable
additional experimental and presumably theoretical analyses, a
comparison with theoretical as well as the limited experimental
results of similar studies suggest several obvious applications.
One of these is all-optical switches for which, for example,
the performance of an optically switched nonlinear ring cavity
[41,42] can be significantly enhanced by introducing doped
� atoms into the ring cavity. The � scheme then exhibits a
negative dispersion slope, enabling the resonator to operate in
a tunable white-light band [17] region with reduced switching
time and power.

Such systems could possibly extend existing single-
band optical switching applications of white-light bands
[1–6,43] by enabling light to be optically or mechanically
switched or modulated within two or three wavelength bands

simultaneously within an optical cavity. Introducing double-�
atoms into the resonator of a single-band switch not only
generates multiple white bands that can be simultaneously
modulated, but also removes the limitation of a standard un-
doped resonator which is not easily adjusted after fabrication.

Measurement applications such as gravitational-wave de-
tection are often based on scanning a wide frequency band
[41,44] in order to determine the wavelength dependence of
relevant physical properties. While white-light cavities are
employed to accumulate data over wide continuous ranges of
frequencies rather than a limited set of discrete frequencies,
employing a double-� system would extend this capability
by enabling the center frequency to be adjusted without
significantly affecting the measurement bandwidth. Finally,
multiband systems could be applied to numerous additional
fields as, for example, quantum optics and information.

X. CONCLUSION

This article has demonstrated that one, two, or three white
bands can be generated in a single cavity simply by adjusting
the magnitude of the driving fields and the cavity length. Three
separate techniques with different relative advantages were
given for creating three white bands. As well, the wavelengths
of the white-light bands can be further shifted through optical
or mechanical tuning. As a consequence, the three-band system
can be more efficiently controlled compared to previously
proposed single white-light band systems.

In the future, this work could possibly be extended to the
production of three simultaneous white bands with only a
single driving field. Further, for systems with a greater number
of interactions between the probe beam and the atom than those
considered above, the number of white cavity bands could in
principle be further increased [45,46].
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