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Nanoscopy of pairs of atoms by fluorescence in a magnetic field
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Spontaneous emission spectra of two initially excited closely spaced identical atoms are very sensitive to
the strength and the direction of the applied magnetic field. We consider the relevant schemes that ensure the
determination of the mutual spatial orientation of the atoms and the distance between them by entirely optical
means. A corresponding theoretical description is given accounting for the dipole-dipole interaction between the
two atoms in the presence of a magnetic field and for polarizations of the quantum field interacting with magnetic
sublevels of the two-atom system.
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I. INTRODUCTION

Ultrahigh spatial resolution at distances which are short
compared to optical wavelength is a challenging spectroscopic
problem. Various approaches to the solution of this problem
have been suggested, and some of them have been realized in
the experiment. The following ideas can be mentioned: (i) the
photoelectron (photoion) microscopy [1–3] being a develop-
ment of the Müller emission microscope [4]; (ii) the transport
of the molecule excitation between a nanosize needle tip and
bulk via the fluorescence resonance energy transfer (FRET)
[5]; (iii) FRET scanning near-field optical microscopy [6,7];
(iv) combinations of the optical excitation with nanoresolution
of the atomic force microscope or scanning tunnel microscope
[8]; and (v) the transport of a laser excited atom through a
nanohole in a metal screen [9].

A system of two closely spaced identical atoms (quantum
dots, vacancy centers, organic molecules in solid solutions,
etc.) is the simplest model where a determination of, at least,
two parameters might be desirable. These parameters are the
distance between the atoms and the direction of their vector
separation in space. In this paper we consider a method for
their estimation by only optical means, without any nanotools
like needles, tips, or holes. (For a possible solution of this task
in two dimensions (2D) see, e.g., Ref. [10]).

A system of two identical atoms with the ground states |g1,2〉
and the excited states |e1,2〉 is an example exhibiting the effects
of Dicke super- and subradiance [11]. The two excited states of
this system are |Q1〉 = |e1g2〉 and |Q2〉 = |g1e2〉. The dipole-
dipole interaction between the states |Q1〉 and |Q2〉 leads
to their superpositions producing two entangled eigenstates,
symmetric and antisymmetric (see, e.g., Refs. [12,13]). While
the symmetric state |Qs〉 = 1√

2
(|Q1〉 + |Q2〉) is superradiant,

decaying twice faster than the one-atom state |e〉, the antisym-
metric state |Qa〉 = 1√

2
(|Q1〉 − |Q2〉) is subradiant, decaying

slowly by the parameter (r/λeg)2 if the distance r between
the atoms is smaller then the wavelength of the |e〉 → |g〉
transition. The theory of this system (with an emphasis on

superradiance) was studied in a number of works (see, e.g.,
Refs. [14–16], and the review [12]). An interesting effect of the
exchange between symmetric and antisymmetric states due to
the spatial variation of the applied laser pulse at the positions
of the atoms was discovered in Ref. [17]. As for the subra-
diant states, they attracted special attention because of their
property of a relatively slow spontaneous decay and, hence, a
potentiality of keeping quantum information for a long time.

A prominent effect of subradiance can be achieved in the
one-dimensional (1D) case [18,19] (using, e.g., a single-mode
waveguide or a photon crystal) where two spatially separated
atoms are placed at a distance of the whole number of the
half-wavelengths of the optical transition. Several methods
were suggested to produce subradiant states. For example,
in the mentioned 1D case, the subradiant state is produced
with a probability of ≈1/2, when, at the initial moment of
time, one of the atoms is excited. More complicated config-
urations in a 1D waveguide have also been considered (see,
e.g., [20]). However, these schemes can be realized only for
spatially separated atoms. For closely spaced atoms in three
dimensions (3D), two schemes of control of subradiance can
be mentioned [21,22], both showing reasonable fidelity. An
interesting scheme for producing the single-photon subradiant
state in an ensemble of many atoms was recently considered by
Scully [23]. Protection of this state was discussed in Ref. [24].
As for the experiment on subradiance, certain evidences for
modification of the decay rate were received, e.g., in Ref. [25]
for a large atomic ensemble, and in Ref. [26] for a system
of two trapped ions. Subradiance was also observed very
recently for a cloud of cold atoms [27]. The contribution of
this effect was small but detectable as a narrow spectrum
of fluorescence gated at times much longer than the time of
single-atom decay. In connection with this experimental work,
a recent theoretical paper [28] should be mentioned where the
property of subradiance in atomic ensembles has been argued
to be more general than this is usually assumed.

In this paper we consider the fluorescence spectra of two
closely spaced identical atoms in a magnetic field. We use
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FIG. 1. Our model. Two identical atoms A1 and A2 are located
in the xz plane. The angular momenta of their ground state |g〉 and
excited state |e〉 are, respectively, Jg = 0 and Je = 1. Magnetic field is
directed along the z axis. The line connecting the atoms is directed at
a certain angle α to the z axis. This leads to splitting of the excited
state into the triplet of states with the J -projections m = 0,±1 on the
z axis. [In our consideration, the main results refer to the magic angle
α = αmag = arccos(1/

√
3) ≈ 54.7◦.]

the remarkable fact that, being directed at the magic angle
α ≈ arccos(1/

√
3) ≈ 54.7◦ relative to the direction from one

atom to another (see Fig. 1), a sufficiently strong magnetic field
suppresses the dipole-dipole excitation transfer from one atom
to the other one [29]. This makes the fluorescence spectrum
following the excitation of both atoms be very sensitive to small
deflections from the magic-angle configuration (see Fig. 2).
This observation helps one to determine the direction of the
vector separation by a series of manipulations with a magnetic
field. To demonstrate the relevant procedure, first in Sec. II, we
describe the model, write down the Hamiltonian of our system,
and derive properties of its eigenstates. Then, in Sec. III, we
consider the general theory of interaction of the two-atom
system with the electromagnetic field. Next, in Sec. IV, we
consider its consequences concerning fluorescence spectra in a
magnetic field of (i) singly excited entangled states (Sec. IV A)
and (ii) doubly excite states (Sec. IV B) where, in particular,
it is shown (Sec. IV B 2) how the distance between the atoms
can be estimated from the probability of the gated fluorescence
from the subradiant state only. Finally, in Sec. V we show how
the full nanoscopy of a pair of atoms can be completed, i.e., in
addition to the distance between the atoms (Sec. IV B 2), the
direction of the vector separation from one atom to another
can be determined. The latter is achieved using the above
announced sensitivity (see Fig. 2 supported by calculations
of Sec. IV B 3) of the fluorescence spectra to the direction of
the magnetic field.

The calculation details are presented in the Appendixes.

II. DESCRIPTION OF THE TWO-ATOM SYSTEM

The system of two closely located identical atoms in an
external magnetic field H directed along the z axis is shown

FIG. 2. An example of emission spectra of a two-atom system in
a strong magnetic field H at different values of the angle α (see Fig. 1).
Initially (at t = 0) both atoms are excited to the state |e〉 with m =
0. The rate of spontaneous transition |e〉 → |g〉 is �. The transition
frequency is ωeg and the corresponding wave vector is k0. For this
example, the atoms are located so that k0r = 0.5. For calculation of
these spectra, see Sec. IV B 3.

in Fig. 1. The vector r connecting the positions of two atoms
meets at an angle α with the field H; below we choose the x

and y coordinate axes such that

r = (rx,ry,rz) = r(sin α,0, cos α). (1)

It is assumed that the ground state |g〉 of the atom is nondegen-
erate and corresponds to the angular momentum J = 0, while
the excited state |e〉 of our interest is a triplet of states |e(m)〉
(just |m〉 below for shortness) corresponding to the momentum
J = 1 with projections m = 0,±1 on the quantization axis
z. In a zero magnetic field this triplet is degenerate and its
energy (counted from the ground atomic state) is ωeg . Nonzero
components of the dipole moment operator d̂ between the states
|g〉 and |m〉 are (see Appendix A) given by

〈m = 0|d̂z|g〉 ≡ d0, 〈m = ±1|d̂±|g〉 =
√

2d0, (2)

where d̂± ≡ d̂x ± id̂y are the circular components.
The reduced Hilbert space of the two-atom system

can be described by the following basis: {|g,g〉; |m,g〉;
|g,m〉,|m,m′〉}, where the two-atom state |a,b〉 = |a〉1 ⊗ |b〉2

is a direct product of the states of the first and second atoms.
The first state in curly brackets corresponds to the ground state,
the second and third ones to singly excited states, and the fourth
one to a doubly excited state of the two-atom system. In this
paper we consider only symmetric doubly excited states of the
form |m,m〉 that can be created by an optical π pulse of a certain
polarization, linear or circular. To account for the symmetry of
the two-atom system with one excitation, it is convenient to
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introduce a new basis of symmetric and antisymmetric states:

|sm〉 = 1√
2

(|m,g〉 + |g,m〉), (3)

|am〉 = 1√
2

(|m,g〉 − |g,m〉). (4)

The Hamiltonian Ĥ of the two-atom system can be represented
as a sum Ĥ (1) + Ĥ (2) of two Hamiltonians acting in the sub-
spaces with one and two excitations, respectively. An important
constituent of the Hamiltonian Ĥ of closely located atoms is
the operator Û of the dipole-dipole interatomic interaction:

Û = (̂d1 ·d̂2)

r3
− 3

(̂d1 ·r)(̂d2 ·r)

r5
, (5)

where d̂1(2) is the dipole moment operator of the first (second)
atom. This interaction is not important for doubly excited

states: the induced coupling between doubly excited and
ground states results only in a parametrically weak
(∼d2

0 /h̄r3ωeg � 1) renormalization of state parameters that
will be neglected below. So, the Hamiltonian Ĥ (2) in the
subspace of our interest can be represented as

Ĥ (2) =
∑
m

(2h̄ωeg + 2m�H )|m,m〉〈m.m|, (6)

where �H = μBgH describes the Zeeman splitting of levels
in the magnetic field (μB is the Bohr magneton and g is the
Landé factor).

The interaction Û is mixing the states with different projec-
tions m in the subspace with one excitation. As Û does not mix
states with different symmetries, the matrix of the Hamiltonian
Ĥ (1) in the basis (3) and (4) is split into two parts, Ĥ (1)

s and
Ĥ (1)

a :

Ĥ (1)
s = h̄ωeĝI + Ur

⎛⎜⎝−�H

Ur
+(1− 3

2 sin2 α) − 3
√

2
4 sin 2α − 3

2 sin2 α

− 3
√

2
4 sin 2α (1−3 cos2 α) − 3

√
2

4 sin 2α

− 3
2 sin2 α − 3

√
2

4 sin 2α �H

Ur
+(1− 3

2 sin2 α)

⎞⎟⎠, (7)

Ĥ (1)
a = h̄ωeĝI + Ur

⎛⎜⎝−�H

Ur
−(1− 3

2 sin2 α) 3
√

2
4 sin 2α 3

2 sin2 α
3
√

2
4 sin 2α −(1−3 cos2 α) 3

√
2

4 sin 2α
3
2 sin2 α 3

√
2

4 sin 2α �H

Ur
−(1− 3

2 sin2 α)

⎞⎟⎠, (8)

where the rows and columns are enumerated in the order
m = −1,0,1, Î is the unit matrix in the space spanned by (3)
and (4), Ur = d2

0 /r3, and an explicit form of angular parts of
the wave functions corresponding to |g〉 and |m〉 is given in
Appendix A.

Equations (7) and (8) are simplified for the above introduced
magic angle (see Fig. 1), when the diagonal part of the dipole-
dipole interaction vanishes, and have next form

Ĥ (1)
s = h̄ωeĝI + Ur

⎛⎝−�H

Ur
−1 −1

−1 0 −1
−1 −1 �H

Ur

⎞⎠, (9)

Ĥ (1)
a = h̄ωeĝI + Ur

⎛⎝−�H

Ur
1 1

1 0 1
1 1 �H

Ur

⎞⎠. (10)

The eigenenergies of the two Hamiltonians are determined by
the characteristic equations:

(Es(a))3 − (
�2

H + 3U 2
r

)
Es(a) ± 2U 3

r = 0, (11)

where Es(a) are counted from the atomic transition frequency
ωeg . In the absence of the magnetic field, the solutions E

s(a)
j of

the characteristic equations (it is convenient to numerate them
by j = −1,0,1 in ascending order) are

Es
−1 = −2Ur, Es

0(1) = Ur, Ea
−1(0) = −Ur, Ea

+1 =2Ur.

(12)

In the opposite case of a strong magnetic field, the role of
the dipole-dipole interaction is small, the eigenstates only
slightly differ from |sm〉 and |am〉, and eigenenergies are

given by

Eν
±1 ≈ m

(
�H + 3U 2

r

2�H

)
− νU 3

r

�2
H

, (13)

Eν
0 ≈ 2νU 3

r

�2
H

, (14)

where ν = ±1 for the symmetric and antisymmetric states,
respectively. For an arbitrary magnitude of the magnetic field
(and α = αmag), the eigenenergies are presented in Fig. 3.

FIG. 3. Energies of eigenstates of a system of two atoms as
functions of the magnetic field H applied at the magic angle as shown
in Fig. 1.
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For further purposes we also present the expression for the
energy Eν

0 for the case of an arbitrary angle α:

Eν
0 ≈ νUr

[
1 − 3 cos2 α + 27U 2

r

�2
H

sin2 α cos4 α

]
. (15)

In close vicinity of the magic angle this expression takes the
form

Eν
0 ≈ 2νUr

[√
2(α − αmag) + U 2

r

�2
H

]
. (16)

As seen from Eqs. (14)–(16), the detuning of Eν
0 from zero

decreases dramatically when α → αmag. The same is for the
splitting between Es

±1 and Ea
±1.

Eigenvectors |ψs
j 〉 and |ψa

j 〉 (numerated by j = −1,0,1) of
the matrices Ĥ (1)

s and Ĥ (1)
a form bases connected with {|sm〉}

and {|am〉} by a unitary matrix Ĉν ,

|νm〉 =
∑

j

Cν
mj |ψν

j 〉, (17)

where ν = s,a. These eigenvectors can be expressed in terms
of the elements of the matrices (9) and (10), and the corre-
sponding eigenenergies Eν

j (ν = s,a; j = −1,0,1) defined by
Eq. (11). In the basis |νm〉 (m = −1,0,1) defined by Eqs. (3)
and (4) they are

|ψν
j 〉 = qν

j

⎛⎜⎜⎜⎝
Eν

j ∓Ur

�H +Eν
j ∓Ur

1

− Eν
j ∓Ur

�H −Eν
j ±Ur

⎞⎟⎟⎟⎠ ≡
∑
m

Qν
jm|νm〉, (18)

where the upper (lower) sign refers to the symmetric (antisym-
metric) state s (a), and

qν
j =

[(
Eν

j ∓ Ur

�H + Eν
j ∓ Ur

)2

+ 1 +
(

Eν
j ∓ Ur

�H − Eν
j ± Ur

)2]−1/2

.

(19)

The matrix Ĉν is connected with Q̂ν as Cν
mj = Qν

jm.
In the next section we develop a convenient description of

the interaction of the two-atom system with the electromag-
netic field.

III. INTERACTION WITH THE ELECTROMAGNETIC
FIELD

The Hamiltonian of the two-atom system interacting with
the electromagnetic field has the form

Ĥ = Ĥ + Ĥph + Ĥint, (20)

Ĥph =
∑
kλ

h̄ωka
†
kλakλ, (21)

where the two-atom Hamiltonian Ĥ has been defined in the
previous section, and Ĥph corresponds to free photons, ωk and
k being the photon frequency and wave vector, so a

†
kλ (akλ) is a

photon creation (annihilation) operator with λ = 1,2 meaning
the two linear polarizations. The interaction Hamiltonian Ĥint

can be split into two parts Ĥ
(1)
int + Ĥ

(2)
int that correspond to

optical transitions between the ground and a singly excited

state of the two-atom system and between the singly and doubly
excited states, respectively.

In the rotating wave approximation (RWA) the first part Ĥ (1)
int

can be represented as

Ĥ
(1)
int = −

∑
k,λ,m

{
g

m,g

kλ [|m,g〉〈g,g|e−i kr
2

+ |g,m〉〈g,g|ei kr
2 ]akλ + H.c.

}
. (22)

Here H.c. means Hermitian conjugate, the first and the second
terms in the square bracket correspond, respectively, to the
optical excitation of only the first atom (located at −r/2) and
of only the second atom (located at r/2), the matrix element
of the dipole transition is given by

g
m,g

kλ =
√

2πh̄ωk

V
〈m|d̂|g〉ekλ, (23)

where V is the quantization volume, and ekλ is the polarization
vector. Below we will replace the photon frequency ωk in
Eq. (23) by the resonance transition frequency ωeg . A similar
expression can be written for the part Ĥ

(2)
int with the only dif-

ference that the transitions take place between the states |m,g〉
(or |g,m〉) and |m,m′〉 (|m′,m〉). Restricting our consideration
to only symmetric doubly excited states |m,m〉, we have

Ĥ
(2)
int = −

∑
k,λ,m

{
g

m,g

kλ |m,m〉[〈m,g|ei kr
2

+〈g,m|e−i kr
2 ]akλ + H.c.

}
. (24)

The choice of the polarization vectors and explicit expressions
for the matrix element given by Eq. (23) are described in
Appendix A. Here we only briefly discuss the main steps of
the further analysis.

(i) We express singly excited states of the two-atom system
in terms of the symmetric and antisymmetric combinations (3)
and (4), and, finally, in terms of exact states {|ψν

j 〉; j = −1,0,1}
[see Eq. (17)] of a definite symmetry (ν = s,a).

(ii) To simplify calculations we use the symmetry of the
system and introduce new (“symmetric” and “antisymmetric”)
photon operators:

b1s(k) = 1√
2

[ak1 − a−k1], (25)

b1a(k) = 1√
2

[ak1 + a−k1], (26)

b2s(k) = 1√
2

[ak2 + a−k2], (27)

b2a(k) = 1√
2

[ak2 − a−k2]. (28)

To avoid double counting we restrict the photon wave vector
k to the upper hemisphere kz � 0. Then the above set of new
operators is complete, and obeys the usual boson commutation
relations:

[b1s(k),b†1s(k
′)] = δk,k′ = [b2s(k),b†2s(k

′)], (29)

[b1s(k),b†1a(k′)] = 0. (30)
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FIG. 4. Scheme of the spontaneous decay of the doubly excited
states of a system of two atoms. There are two ways of the decay
whose branching ratio depends on the distance between the atoms.

Now the free photon Hamiltonian is

Ĥph =
∑

k;λ=1,2;ν=s,a

′
h̄ωkb

†
λν(k)bλν(k), (31)

where the prime sign denotes the summation over the upper
hemisphere of k. The interaction part becomes

Ĥ
(1)
int = −2

∑
k′,λ,j

′
{
g

m,g

k′λ

[
cos

(
kr
2

)
Cs

mj

∣∣ψs
j

〉
bλs(k′)

− i sin

(
kr
2

)
Ca

mj

∣∣ψa
j

〉
bλa(k′)

]
〈g,g| + H.c.

}
, (32)

Ĥ
(2)
int = −2

∑
k′,λ,j

′
{
g

m,g

k′λ |m,m〉
[

cos

(
kr
2

)
Cs

mj

∣∣ψs
j

〉
bλs(k′)

+ i sin

(
kr
2

)
Ca

mj

∣∣ψa
j

〉
bλa(k′)

]
+ H.c.

}
, (33)

where the matrices Cν
mj (ν = s,a) are defined by Eq. (17).

Equations (31)–(33) explicitly demonstrate the important
properties of the system: (i) the symmetric and antisymmetric
singly excited states decay to the ground states independently
of each other; the decay is caused by the interaction with only
symmetric or antisymmetric photon continua, respectively;
and (ii) the decay of a doubly excited state (of the form |m,m〉)
to a singly excited one can go both via the symmetric and
antisymmetric channels. The decay scheme is shown in Fig. 4.

In the case of interest, when the interatomic separation is
small (kr � 1), the matrix elements of the symmetric and
antisymmetric channels enter Eqs. (22) and (24) with rather
different weights: the symmetric one ∝ cos ( kr

2 ) ≈ 1, while
the antisymmetric one ∝ sin ( kr

2 ) ≈ kr/2 � 1. This means
that the ratio of the decay rates via corresponding channels
scales as �a/�s ∝ (k0r)2 � 1, where k0 is the wave vector
that corresponds to the transition frequency ωeg .

Some implementations of the developed formalism are
given in the subsequent sections.

IV. FLUORESCENCE SPECTRA OF THE TWO-ATOM
SYSTEM

A. Decay rate of a singly excited system

Consider the two-atom system originally (at time t = 0)
prepared in one of the eigenstates ψν

j of a definite symmetry
ν = s,a. The time evolution of the atom-photon system is
described by the wave function

|�(t)〉 = Aν
j (t)

∣∣ψν
j

〉⊗ |vac〉
+
∑
k,λ

′
Bν

kλ(t)|g,g〉 ⊗ b
†
λν(k)|vac〉 (34)

determined by the Schrödinger equation with the interaction
Hamiltonian Ĥ

(1)
int (32) and the initial condition Aν

j (0) = 1,
Bν

kλ(0) = 0; the state |vac〉 is the vacuum state of the elec-
tromagnetic field (no photons). Assuming that the interval
between energy levels of the same symmetry is much greater
than the level’s widths we have neglected in Eq. (34) an
admixture of other excited states in the course of decay. As
the decay of the atomic state of a given symmetry ν involves
only photons of the same symmetry, the problem is similar to
the usual one-atom decay problem and here we write down
the calculated decay constants (referring to Appendix A 1 for
technical details). The decay constant for the symmetric singly
excited state is

�s ≈ 2�, (35)

where � is the decay rate for a single atom

� = 4

3

ω3
egd

2
0

h̄c3
. (36)

We see that decay rate of the symmetric states demonstrates
the expected superradiance property and is almost nonsensitive
to the magnetic field. On the contrary, the decay rate of
antisymmetric states �a is strongly suppressed (subradiant). In
the case of a strong magnetic field (�H � Ur ) and α = αmag,
the decay rate of any singly excited antisymmetric state is given
by

�a ≈ 1
6 (k0r)2� (37)

(see Ref. [30] and Appendix A 1). For the intermediate field
magnitudes the decay rate of a state |ψa

j 〉 takes the form

�aj = Rj�a, (38)

where the numerical coefficient Rj is a combination

Rj = 1 − 1

5

∑
m,m′ �=m

Ca
mj

(
Ca

m′j
)∗

(39)

of the elements of the matrix Ca
mj [see Eq. (17)]. With the

increase of the magnetic field the matrix elements Ca
mj → δmj ,

and we return to the expression (37). The dependencies of the
coefficients Rj on the magnetic field are shown in Fig. 5.

In the general case where the angle α is arbitrary, the
dependencies like shown in Fig. 5 can be obtained using
Eqs. (A14) and (A15) from Appendix A. In the explicit form

043812-5



E. S. REDCHENKO, A. A. MAKAROV, AND V. I. YUDSON PHYSICAL REVIEW A 97, 043812 (2018)

FIG. 5. Magnetic field dependence of the decay rate coefficients
Rj defined by Eqs. (38) and (39). The field H is directed at the
angle α = αmag relative to the vector separation r between the atoms.
Arrows indicate to which |m〉 state a given j eigenstate transforms as
H increases.

they are

Rj = 3

10

[(
Qa

j,−1

)2 + (
Qa

j,+1

)2]
(3 + cos2 α)

+ 3

5

(
Qa

j,0

)2
(2 − cos2 α) − 3

5
Qa

j,−1Q
a
j,+1 sin2 α

− 3
√

2

10

(
Qa

j,−1 + Qa
j,+1

)
Qa

j,0 sin 2α, (40)

where Qa
jm are components of the j th antisymmetric eigen-

vector in the |m〉 basis defined by Eqs. (18) and (19).

B. Fluorescence spectrum of a doubly excited system

1. Time evolution of a doubly excited system

Now we consider the decay of a doubly excited state of the
two-atom system. For definiteness, we choose the state |0,0〉
(i.e., m1 = m2 = 0) that can be prepared by a laser π pulse
linearly polarized along z direction. We are searching for the
time dependent state of the atom-photon system in the form

|�(t)〉 = A(t)|0,0〉 ⊗ |vac〉
+

∑
k,λ,j,ν

′
B

(ν)
kλj (t)

∣∣ψν
j

〉⊗ b
†
λν(k)|vac〉

+
∑

k1(2),λ1(2),ν

′
C

(ν)
k1,λ1,k2,λ2

(t)|g,g〉

⊗ b
†
λ1ν

(k1)〉b†λ2ν
(k2)|vac〉, (41)

where the function C
(ν)
k1λ1k2λ2

(t) is symmetric with respect to the
permutation (k1,λ1) ↔ (k2,λ2). The initial state |�(t = 0)〉 =
|0,0〉 ⊗ |vac〉 corresponds to the initial condition A(t = 0) =
1, while all the other probability amplitudes are zero.

The emission spectrum in the direction k̂ ≡ k/|k| is defined
as

S(ω,̂k) =
∑

λ

〈Ψ (t)|a†
kλakλ|�(t)〉t→∞, (42)

where k = ω/c. In the limit t → ∞, only the amplitudes
C

(ν)
k1λ1k2λ2

(t) in Eq. (41) differ from zero. Accounting for
Eqs. (25)–(28), we find

S(ω,̂k) = 2
∑

λ,ν,k′,λ′

′ ∣∣C(ν)
kλk′λ′(t → ∞)

∣∣2. (43)

2. Probability of reaching an antisymmetric state

The system of Schrödinger equations for the time evolution
of the doubly excited state (41) is rather complicated [see
Eq. (B2) in Appendix B]. However, its study can be simplified
due to the great difference of the relevant time scales: the decay
rate �s through the symmetric channel is much greater than that
�a through the antisymmetric one. This means that the time
evolution of the amplitude A(t) = Ā(t)e−2ωegt of the doubly
excited state is fast and governed mostly by the symmetric
channel. Neglecting the influence of the antisymmetric channel
during the short time interval 1/�s � t � 1/�a , we find the
Laplace image defined analogously to Eq. (A9) Ā[z] and the
time dependence Ā(t):

Ā[z] ≈ 1

z + �s/2
, Ā(t) = e−�t , (44)

with �s = 2� [see Eq. (35)]. However, during the considered
short time interval 1/�s � t � 1/�a there is a small but
finite probability of emitting a single “antisymmetric” photon
with transition to singly excited atomic states (with ν = a)
described by the second term in Eq. (41). If such a transition
occurs, the further (slow) time evolution of the system follows
the antisymmetric channel. The antisymmetric atomic state,
formed at the short-time interval, may be considered as an
initial state for further evolution. Our current task is to estimate
the probability of the formation of such an antisymmetric state.
This probability is given by

P =
∑
k,λ,j

′∣∣Ba
kλj (t)

∣∣2 (45)

that actually does not depend on time if it lies in the interval
1/�s � t � 1/�a . To find this quantity it is sufficient to
solve Eq. (A20) for the amplitudes Ba

kλj neglecting the slow
processes of further decay (i.e., terms with amplitudes C) and
taking the amplitude A in the form (44). As a result we obtain

Ba
kλj

(
1

�s

� t � 1

�a

)
= −2i

(
g

m=0,g

kλ

)∗
sin
( kr

2

)
Ca

0j

Ea
j + ωk − 2ωeg + i�

. (46)

Using Eq. (46) we find [see derivation from Eq. (A22) to
Eq. (A24) in Appendix A] the probability

P ≈ 1
12 |k0r|2 (47)

of the transition of the doubly excited atomic system to a
singly excited antisymmetric state. This probability has been
obtained for the simplified case |k0r| � 1, where P is small.
However, no matter how small it is, its nonzero value results
in the delayed (at times t � 1/�a � 1/�s) fluorescence from
antisymmetric states. Measuring the ratio of quantum yields
of the fast and the delayed fluorescence, one can obtain the
quantity (47) and, thus, the desired distance r between the
atoms.
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3. Fluorescence spectrum in a strong magnetic field

We begin the analysis from a simple but instructive case
of a strong magnetic field (�H � Ur ), when the effect of the
dipole-dipole mixing of states with different m is negligible.
In this case, the spontaneous decay of the doubly excited
atomic state |0,0〉 goes via the singly excited states with m = 0,
either symmetric |s0〉 or antisymmetric |a0〉 (see Fig. 4). The
formula for the emission spectra defined by Eqs. (41)–(43)
can be obtained with just a little supplement to the method
of Ref. [31] where the general formula for the spectrum of
cascade spontaneous emission has been derived, including the
case of close transition frequencies. The only difference is that
now there are two ways of two-photon emission, whereas the
formula of Ref. [31] refers to the case of a single way. Its
modification to our case is derived in Appendix B, and the
final result is described in terms of the functions

L(ω; p; q) = 1

2π

p

(ω − q)2 + 1
4p2

,

M(ω; p; q) = 1

2π

ω − q

(ω − q)2 + 1
4p2

(48)

that are the real and imaginary parts of the complex Lorentzian.
So, the emission spectrum

S(ω) =
∫

k̂
S(ω,̂k) dk̂ (49)

with S(ω,̂k) given by Eq. (43) is represented, after the inte-
gration over all directions of the wave vector, as a sum of two
constituents

S(ω) = �s

�s + �a

Ps(ω) + �a

�s + �a

Pa(ω), (50)

they being expressed as combinations of the functions (48) as

Ps(ω) =
(

1 + 2�s(�s + �a)

4
2 + (�s + �a)2

)
L(ω; �s ; ωeg + 
/2)

+
(

1 − 2�s(�s + �a)

4
2 + (�s + �a)2

)
L(ω; 2�s

+�a; ωeg − 
/2) − 4�s


4
2 + (�s + �a)2

× [M(ω; �s ; ωeg + 
/2)

−M(ω; 2�s + �a; ωeg − 
/2)],

Pa(ω) =
(

1 + 2�a(�s + �a)

4
2 + (�s + �a)2

)
L(ω; �a; ωeg − 
/2)

+
(

1 − 2�a(�s + �a)

4
2 + (�s + �a)2

)
L(ω; �s

+ 2�a; ωeg + 
/2) − 4�a


4
2 + (�s + �a)2

× [M(ω; �a; ωeg − 
/2)

−M(ω; �s + 2�a; ωeg + 
/2)]. (51)

Here 
 means the splitting between the singly excited states s0

and a0. Examples calculated using Eqs. (48)–(51) are shown
in Fig. 2. The decay via the symmetric channel is fast and
leads to a relatively broad spectral contour. A considerably

FIG. 6. Emission spectra of a two-atom system in a strong
magnetic field H at different values of the angle α at k0r = 1. All
other preconditions are the same as in Fig. 2.

less probable decay via the antisymmetric channel is slow and
leads to a weak but very narrow spectral peak at the background
of a broad contour of the symmetric decay. The difference

ω between the centers of the broad and narrow peaks is
determined by Eqs. (14) and (15) for ν = 1 (s channel) and
ν = −1 (a channel): it is of the order of the dipole-dipole
interaction, i.e.,


ω = Es
m=0 − Ea

m=0 = 2(1 − 3 cos2 α)Ur (52)

when the angle α is not close to the magic one αmag, and it is
almost zero when α ≈ αmag [see Eq. (14)]. With deflection of
the angle α from αmag, the divergence of the two peaks rapidly
slows down as the distance between the atoms grows. This is
due to the r−3 dependence of Ur on r . One illustration is given
in Fig. 6 where k0r = 1, whereas k0r = 0.5 in Fig. 2. The
difference of two pictures can be seen from the angle values
attached to the curves: they are close to αmag in Fig. 2 while
they considerably deviate from αmag in Fig. 6.

For the completeness, below we consider also the spectrum
of the delayed fluorescence, measured at times much longer
than the decay time 1/�s through the symmetric channel.

4. Spectrum of the delayed decay of the doubly excited system

Actually the delayed decay of the doubly excited two-atom
system is a decay of a singly excited metastable state where
the doubly excited system falls to (with a small probability
[(47)] after emission of a antisymmetric photon at an instant
tin within a short time interval 1/�s . This antisymmetric state is
a superposition containing all possible polarizations and wave
vectors of the emitted photon:

|�(tin)〉 =
∑
k,λ,j

′
B

(a)
kλj

∣∣ψa
j

〉⊗ b
†
λa(k)|vac〉, (53)

where the amplitudes B
(a)
kλj are given by Eq. (46). The state (53)

may be considered as an “initial state” (tin ≈ 0) of further time
evolution. This evolution may, in principle, be described by
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the wave function (41) with only antisymmetric components
and with A(t > tin) = 0. However, such a representation is not
convenient for calculation of the delayed spectrum, because
the state (53) keeps information about the primary photon
emitted at the time tin, while the delayed spectrum is measured
at a considerably later time, when the primary photon is
already far from the registration region. It is difficult to
distinguish between the the primary and secondary photons
in the framework of Schrödinger state evolution. To overcome
this problem we develop the density matrix approach which
eliminates excessive information about the primary photon.

The initial density matrix operator ρ̂in of the atomic subsys-
tem is determined by the state (53):

ρ̂in = Trph{|�(tin)〉〈�(tin)|}
=

∑
k,λ,j,j ′

′
B

(a)
kλjB

(a)
kλj ′
∣∣ψa

j

〉〈
ψa

j ′
∣∣, (54)

where the trace is taken over the photon degrees of freedom.
This operation allows one to forget about a primary photon
emitted at the early time tin, but the price paid is that the
matrix ρ̂in corresponds not to a pure but to a mixed state. The
initial density matrix R̂in of the whole atomic-photon system
is constructed as a direct product of the atomic density matrix
ρ̂in and the density matrix |vac〉〈vac| of photon vacuum:

R̂in = ρ̂in ⊗ |vac〉〈vac|. (55)

The further temporal dynamics of the system is governed by
the Liouville equation:

i
d

dt
R̂(t) = [Ĥa,R̂] (56)

for the system density matrix R̂(t) with the initial condition
R̂(t = 0) = R̂in. The Hamiltonian Ĥa in (56) is the sum of
the atom Hamiltonian Ĥ (1)

a (7), the a part of the photon
Hamiltonian (31), and the a part of the interaction Hamiltonian
(32):

Ĥa =
∑
k,λ

′
h̄ω(k)b†λa(k)bλa(k) +

∑
j

Ej

∣∣ψa
j

〉〈
ψa

j

∣∣
+
∑
k,λ,j

′[
F

j

kλ

∣∣ψa
j

〉〈g,g|bλa(k) + H.c.
]
, (57)

where

F
j

kλ = 2i
∑
m

gm
kλ sin

(
kr
2

)
Ca

mj . (58)

It should be noted that the developed formalism describes a
“conditional” evolution of the system—under the condition
that the decay goes through the antisymmetric channel. This
is why the traces of the initial density matrices ρ̂in and R̂in

equal not to unity but to the probability (47) of falling to the
antisymmetric channel.

In terms of the density matrix R̂(t), the spectrum of the
delayed fluorescence in the direction k̂ is given by

S(ω,̂k) �
∑

λ

Tr{b†λa(k)bλa(k)R̂(t)}t→∞; k=ω/c, (59)

where it is assumed that the measurement is performed during
the time interval (t1,t2) with 1/�s � t1 � 1/�a � t2.

The matrix R̂ can be represented in the form

R̂(t) =
∑
j,j ′

Ajj ′(t)
∣∣ψa

j

〉〈
ψa

j ′
∣∣⊗ |vac〉〈vac|

+
∑
k,λ,j

′ [
Bj

kλ(t)|g,g〉〈ψa
j

∣∣⊗ |kλ〉〈vac| + H.c.
]

+
∑

k,λ,k′,λ′

′
Dkλ;k′λ′(t)|g,g〉〈g,g| ⊗ |kλ〉〈k′λ′|, (60)

where |kλ〉 = bλa(k)|vac〉. The initial condition R̂(t = 0) =
R̂in takes the formAjj ′(0) = (ρ̂in)jj ′ ,Bj

kλ(0) = 0,Dkλ;k′λ′(0) =
0. In this representation, the spectrum has the form

S(ω,̂k) =
∑

λ

Dkλ;kλ(t → ∞)|k=ω/c. (61)

The Liouville equation (56) leads to a system of linear differ-
ential equations for the amplitudes entering the representation
(60). These equations can be solved by the Laplace transform,
a bit boring but straightforward calculations. In principle, this
allows one to find arbitrary correlation functions of the emitted
light including the spectrum (61).

However, the main features of the delayed spectrum can
be understood based on the presented here scenario of the
decay. Namely, the spectrum consists of three very narrow
peaks of widths ∼�aj (38); the peaks’ centers correspond
to energies of three antisymmetric singly excited states (j =
−1,0,1) of the atomic subsystem in the magnetic field. The
peak weight Ij (i.e., the emission power collected from all
the angles and integrated over frequencies within the peak
widths) is proportional to the initial population Pj of the state
j : Ij ∝ Pj ≡ (ρ̂in)jj . The latter quantity is calculated with the
use of Eqs. (46) and (54) [see Eq. (A23) in Appendix A]. In
the case of our major interest, when the angle α between the
vector connecting the two atoms and the magnetic field is a
magic one, Eq. (A23) takes a simple form

Pj = 1
12 |k0r|2

∣∣Ca
mj

∣∣2, (62)

where the index m characterizes the original doubly excited
state |m,m〉, and the matrix Ĉa is determined by Eqs. (17),
(18), and (19). Here we give ratios of the peak weights for the
considered decay of the doubly excited state |0,0〉 prepared by
a linearly polarized π pulse:

I−1:I0:I1 =
[

q−1
(
Ea

−1+ Ur

)
�H + Ea

−1 + Ur

]2

:q2
0 :

[
q+1

(
Ea

1 + Ur

)
�H − Ea

1 − Ur

]2

,

(63)

where Ea
j and qj are determined by Eqs. (11) and (19),

respectively. An example of the dependence of peak weights
on the magnitude of the magnetic field is shown in Fig. 7.

Using the developed formalism one can also calculate the
integral intensities Ij (̂k) of the lines at the frequencies Ea

j /h̄

for an arbitrary direction k̂ of observation. These quantities
and the relation between them turn out to depend on k̂.
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FIG. 7. Magnetic field dependence of the intensities Ij of peaks
of the delayed fluorescence (see the text) at the frequencies Ea

j /h̄.
Their ratios are defined by Eq. (63), and they are normalized so that∑

j Ij = 1. The field H is directed at the angle α = αmag relative to
the vector separation r between the atoms. Initially excited state is
|m = 0,m = 0〉.

V. DETERMINATION OF THE MUTUAL ORIENTATION
OF THE TWO ATOMS

Sensitivity of the fluorescence spectrum of the dou-
bly excited system to the angle α between the vector
separation r and the magnetic field H (see Sec. IV B 3
and Fig. 2) allows one to find the direction of r from
an experiment. As follows from Eq. (52) the positions
of the broad and narrow central peaks almost coincide
when α ≈ αmag. Thus, rotating the direction of the mag-
netic field (while keeping the propagation direction and po-
larization of the pumping light orthogonal and parallel to
the magnetic field, respectively) and measuring the emission

spectrum, one can find the configuration where the positions
of two peaks in Fig. 2 (or in Fig. 6) coincide. This means
that the angle between the found direction ĥ1 of the magnetic
field H and the separation vector r equals to the magic angle
αmag. However, this condition determines not the direction r̂
of r but the whole cone of possible directions [see Fig. 8(a)].
To find r̂ one should repeat the routine searching for some
other suitable direction ĥ2 of the magnetic field such that
the two spectral peaks coincide, so that r̂̂h2 = cos αmag. From
these measurements and the elementary geometrical analysis
presented in Appendix C, one finds the desired vector r̂
between the atoms in the form

r̂ = cos (αmag)

1 + cos ϑ12
[̂h1 + ĥ2]

± 1

sin ϑ12

√
1 − 2 cos2 (αmag)

1 + cos ϑ12
[̂h1 × ĥ2], (64)

where ϑ12 is the angle between ĥ1 and ĥ2. The remaining
uncertainty [due to the ± sign in Eq. (64)] can be eliminated
by repeating the routine and finding the third suitable direction
ĥ3 of the magnetic field.

The described procedure presents an example of determin-
ing the direction of the vector separation. Another possibility
is shown in Fig. 8.

As described in Sec. IV B 2, the information about the length
of r can be extracted by measuring the ratio of the quantum
yields of the fast and the delayed fluorescence and using
Eq. (47). Together with the information about the direction
of r [Eq. (64)] this provides full knowledge about the relative
arrangement of two atoms.

VI. CONCLUSION

We have described fluorescence of an excited system of
two closely located identical atoms, each atom having a non-
degenerate ground state |g〉 of the angular momentum J = 0

)c()b()a(
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A2
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FIG. 8. Determination of the direction of the vector separation r using subsequently three configurations of the magnetic fields.
(a) Superimposition of the narrow and broad peaks of the spectrum in Fig. 2 by varying of the H direction leads to determination of the
cone of possible directions of r and fixes the axis z. (b) The rotation of H⊥ in the plane perpendicular to z allows one to fix the axes x and y

when the separation of the two peaks is maximal, i.e., the angle between H⊥ and r equal to π/2. (c) The choice between the two remaining
possible directions can be made by slight deflection of the H direction from z—as seen from Fig. 2 the counterclockwise deflection leads to the
red shift of the narrow peak, and vice versa.
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and a triply degenerate excited state |J = 1,m = 0,±1〉. We
accounted for the resonant dipole-dipole interaction between
close atoms and its competition with the Zeeman splitting of the
levels in an external magnetic field. The fluorescence spectrum
and its time behavior depend on the strength and direction of
the magnetic field. The emission of a doubly excited system
possesses two very different time regimes: for the ensemble,
fast strong emission pulse (of the duration ∼1/�s) is followed
by a weak but long (of the duration ∼1/�a) fluorescence
from metastable states where the system can fall with a small
but finite probability after the excitation. A very sensitive
dependence of the fluorescence spectrum on the direction of
the magnetic field allows one to determine the direction of the
vector connecting the two atoms. On the other hand, measuring
the ratio of the fast and the delayed emission powers one can ex-
tract the information about the distance between the two atoms.
Thus, one can get complete information about the relative
position of two atoms at nanoscale by entirely optical means.

We have studied the simplest realistic two-particle model.
A similar analysis may be applied to other systems: quantum
dots, color centers, molecules in matrices, etc.
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APPENDIX A: DETAILS ON INTERACTION WITH
THE ELECTROMAGNETIC FIELD

We use the standard representation of the electric field
operator in terms of the photon creation and annihilation
operators a

†
k,λ and ak,λ:

Ê(r) =
∑
k,λ

√
2πh̄ωk

V
[eikrekλakλ + H.c.], (A1)

where V is the quantization volume, and ekλ is the
polarization vector (λ = 1, 2) of the photon of a wave
vector k and frequency ωk . In the dipole approximation, the
atom-field interaction operator is −d̂ · Ê. Its matrix element
corresponding in RWA to the atom transition |g〉 ↔ |m〉 (g
is the ground state, and |m〉 is one of the excited states |e(m)〉
with m = 0,±1) is given by

g
m,g

kλ =
√

2πh̄ωk

V
〈m|̂d|g〉ekλ. (A2)

Using RWA, we can replace the photon frequency ωk

in Eq. (A2) by the resonance transition frequency ωeg .
In the considered model of atom levels (of the angu-
lar momentum J = 0 in the ground state, and J = 1
in the excited ones), the corresponding wave functions
have a structure typical for a particle in a centrosymmet-
ric field: �J=0(r) = R0(r), �J=1,m=±1(r) = R1(r) sin θre

±iϕr ,
�J=1,m=0(r) = √

2R1(r) cos θr, where θr and ϕr are the polar
and the azimuthal angles of the radius-vector r, and R0(r)
and R1(r) are the radial functions in the ground and excited
states, respectively. Nonzero matrix elements 〈m|̂d|g〉 can be
expressed in terms of a single quantity d0 ≡ 〈0|d̂z|g〉, namely
〈±1|d̂±|g〉 = √

2d0, where d̂± ≡ d̂x ± id̂y .
For calculations one should specify the choice of the

polarization vectors. Representing Cartesian coordinates of a
wave vector k in the form

k = |k|(sin θ cos ϕ, sin θ sin ϕ, cos θ ), (A3)

where θ and ϕ are the polar and the azimuthal angles in
the momentum space, we choose two vectors of the linear
polarization in the following form:

ek1 = (− sin ϕ, cos ϕ, 0), (A4)

ek2 = [k × ek1]

|[k × ek2]| = (cos ϕ cos θ, sin ϕ cos θ, − sin θ ).

(A5)

It is easy to check that these vectors are perpendicular to each
other and to k. Then the matrix elements (A2) take the form{

g
±1,g

k1

g
±1,g

k2

}
=
√

πh̄ωeg

V
d0e

∓iϕ

{ ∓i

cos θ

}
, (A6)

g
0,g

k1 = 0, g
0,g

k2 = −
√

2πh̄ωeg

V
d0 sin θ. (A7)

Replacing the original set of photon operators akλ used in
the Hamiltonians (22) and (24) by the properly symmetrized
operators (25)–(28), one should restrict the space of photon
wave vectors by the upper hemisphere (kz � 0) to avoid double
counting and to provide the correct hold true the commuta-
tion relations (29). Correspondingly, in the transformation of
Hamiltonians from (22) and (24) to (32) and (33) we used the
symmetry properties of the polarization vectors (A4) and (A5):
e−k,1 = −ek,1 and e−k,2 = ek,2.

For further references we write down a useful relation

∑
λ

g
m,g

kλ

(
g

m′,g
kλ

)∗ = πh̄ωegd
2
0

V
Gmm′ , Gmm′ =

⎛⎝ 1 + cos2 θ −√
2 sin θ cos θeiϕ − sin2 θe2iϕ

−√
2 sin θ cos θe−iϕ 2 sin2 θ −√

2 sin θ cos θeiϕ

− sin2 θe−2iϕ −√
2 sin θ cos θe−iϕ 1 + cos2 θ

⎞⎠ (A8)

that directly follows from Eqs. (A4)–(A7).

1. Decay of a singly excited state of the two-atom system

Consider the two-atom system prepared at the time t = 0 in
one of the eigenstates ψν

j of a definite symmetry ν = s,a. The
time evolution of the atom-photon system is described by the
wave function (34), that obeys the Schrödinger equation with
the Hamiltonian (22). It is convenient to represent |�(t)〉 in the

form exp(−iEν
j t)|�̃(t)〉 with slowly varying amplitudes. After

the Laplace transformation

|�(t)〉 → |�[z]〉 =
∫ ∞

0
dt e−zt |�(t)〉, (A9)
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the Schrödinger equation for (34) can be written as the system
of equations for the Laplace transforms of the slowly varying
amplitudes (their symbol tilde is omitted for brevity):[

z + i
(
ωk − Eν

j

)]
Bν

kλ[z] = 2iAν
j [z]f ∗

ν (kr)
∑
m

(
g

m,g

kλ Cν
mj

)∗
,

zAν
j [z] = 1 + 2i

∑
k,λ,m

′
g

m,g

kλ Cν
mjfν(kr)Bν

kλ[z], (A10)

where fν(ξ ) = cos ξ/2 for ν = s and fν(ξ ) = i sin ξ/2 for
ν = a. It is assumed that the energy differences between the
levels Eν

j of the atomic system are large as compared with the
radiative widths of these levels. This is why the system (A10)
ignores mixing of states with different j . Representing Bν

�kλ
[z]

in terms of Aν
j [z] we obtain the following equation for Aν

j [z]:

[
z+
∑
m,m′

∑
k,λ

′ 4g
m,g

kλ Cν
mj |fν(kr)|2(gm′,g

kλ Cν
m′j
)∗

z + i
(
ωk − Eν

j

) ]
Aν

j [z] = 1.

(A11)

The second term in the square brackets describes both the
radiative width and the energy shift. Neglecting the latter
we represent (A11) as [z + �νj/2]Aν

j [z] = 1, where the term
�νj/2 results from the pole integration over ωk near the
resonance ωk ≈ Eν

j :

�ν
j = 4ω3

0d
2
0

∫ ′ dô

4π
|fν(kr)|2

∑
m,m′

Gmm′Cν
mjC

ν∗
m′j . (A12)

Here Eq. (A8) is used, and the integration is performed over
the hemisphere in the polar angles θ (0 � θ � π/2 and ϕ 0 �
ϕ � 2π ) that describe directions of the photon wave-vector
k while its length is kept constant (|k| = k0 = ωeg/c), and
dô = sin θ dθ dϕ.

Let us consider first the decay of a symmetric state (ν = s).
For closely located atoms one has fs(kr) = cos(kr/2) ≈ 1.
The angular integration in (A12) results in

∫ ′
Gmm′dô/(4π ) =

(2/3)δmm′ , so the remaining summation of Cs
mjC

s∗
mj over m

gives unity due to that the matrix Ĉ is unitary. So, we
arrive at the expression �s

j = 8ω3
0d

2
0 /3h̄c3 = 2�, presented by

Eqs. (35) and (36) in the main text. Thus, the decay rate of the
symmetric states is a robust quantity insensitive to the magnetic
field.

For antisymmetric states (ν = a) the situation is more
complicated. Using the definition of r in the beginning of Sec. II
and also Eq. (A3), the function fa(kr/2) entering Eq. (A12) is
approximated as ik0r[sin α sin θ cos ϕ + cos α cos θ ]/2. Then
the expression (A12) for �a

j takes the form

�a
j = 3

4
�k2

0r
2
∑
m,m′

Gmm′Ca
mj

(
Ca

m′j
)∗

, (A13)

where

Gmm′ = 1

4π

∫ π
2

0
sin θ

∫ 2π

0

(kr)2

k2r2
Gmm′ dϕ dθ. (A14)

Direct calculation gives for (A14)

Gmm′ =

⎛⎜⎝ 1
30 (7 + cos 2α) −

√
2

30 sin 2α − 1
15 sin2 α

−
√

2
30 sin 2α 1

15 (3 − cos 2α) −
√

2
30 sin 2α

− 1
15 sin2 α −

√
2

30 sin 2α 1
30 (7 + cos 2α)

⎞⎟⎠.

(A15)

This expression simplifies for the magic angle αmag =
arccos (1/

√
3):

Gmm′ = 2

9

⎡⎣̂I − 1

5

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠⎤⎦, (A16)

where Î is the unit matrix. Equations (A13) and (A16) lead to
the above announced expressions (38) and (39).

2. Decay of a doubly excited state of the two-atom system

Here we give more detail on the derivation of the results
presented in Sec. IV B 1. The decay of a doubly excited state,
e.g., the state |0,0〉 (i.e.,m1 = m2 = 0) of the two-atom system,
is described by a quite complicated system of Schrödinger
equations for the probability amplitudes entering Eq. (41).
However, the analysis of the system evolution can be simplified
due to the great difference �s � �a between the decay rates in
the symmetric and antisymmetric channels, see Fig. 4. This
allows one to describe the time evolution in the following
succession of steps. At the first step, neglecting the existence of
the slow antisymmetric channel we find the time evolution of
the amplitude A(t) in Eq. (41). At the second step, using this
fast decaying function A(t) we calculate a small probability
of emission of a single antisymmetric photon. Once occurred,
this event determines further evolution of the system via the
antisymmetric channel.

Step 1. Decay rate via the symmetric channel. The time
dependence of A(t) is mainly determined by the first transition
of the decay, see Fig. 4. Using the Hamiltonian (33), we obtain
equations for the Laplace transforms of the slow amplitudes
Ā(t) = A(t)e2iωegt and B̄s

kλj = Bs
kλj e

2iωeg t as[
z + i

(
ωk + Es

j − 2ωeg

)]
B̄s

kλj [z]

= 2i
(
g

m=0,g

kλ Cs
m=0,j

)∗
Ā[z] + · · · ,

zĀ[z] = 1 + 2i
∑
k,λ,j

′
g

m=0,g

kλ Cs
m=0,j B̄

s
k,λ,j [z], (A17)

where we put cos(kr/2) ≈ 1. The omitted terms in the first
equation correspond to transitions from the singly excited
symmetric states (of energies Es

j ) to the ground state, they
give only negligible corrections to the studied decay rate of
the doubly excited state. From the above system we express
B̄s

kλj in terms of Ā[z], put it into the last equation and perform
a pole integration over ωk. In this way we arrive at the reduced
equation for Ā[z]:

[z + �2s/2]Ã[z] = 1, (A18)

where

�2s = 4ω3
0d

2
0

∑
j

Cs
m=0,j

(
Cs

m′=0,j

)∗ ∫ ′ dô

4π
G0,0(θ,ϕ), (A19)
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and the summation rule (A8) is used. The summation in j

gives unity due to the unitarity of the matrix Ĉs . Performing
the angle integration over the upper hemisphere we find the
expected relation [see Eq. (44)]: �2s = �s = 2�.

Step 2. Leakage to the antisymmetric channel [derivation
of Eqs. (45)–(47)]. Now our aim is to find the probability
amplitudes Ba

kλj [see Eq. (41)] of the antisymmetric states
where the doubly excited system may fall after the emission
of an antisymmetric photon. The short-time evolution of these
amplitudes is mainly governed by the antisymmetric part of
the Hamiltonian (33) that connect these antisymmetric states
with the doubly excited one (see Fig. 4):

[
i

∂

∂t
− (

Ea
j + ωk

)]
Ba

kλj (t)

= 2i
(
g

m=0,g

kλ Ca
m=0,j

)∗
sin

(
kr
2

)
A(t), (A20)

where the amplitude A(t) is determined by the symmetric
decay channel as in Eq. (44). The solution of Eq. (A20) with
the initial condition Ba

kλj (t = 0) = 0 is given by

Ba
kλj (t) = −2i

(
g

m=0,g

kλ Ca
m=0,j

)∗
sin
( kr

2

)
Ea

j + ωk − 2ωeg + i�

× [e−(2iωeg+�)t − e−i(Ea
j +ωk)t ]. (A21)

When time t is much greater than 1/� (but is still much shorter
than the antisymmetric decay time 1/�a), this expression
reduces to Eq. (46).

Now we derive the diagonal elements of the initial density
matrix (54) of the atomic subsystem (after the emission of a
single antisymmetric photon):

Pj = 〈
ψa

j

∣∣ρ̂in

∣∣ψa
j

〉 = ∑
k,λ

′
∣∣∣∣Ba

kλj

(
1

�
� t � 1

�a

)∣∣∣∣2

=
∑
k,λ

′ 4
∣∣gm=0,g

kλ Ca
m=0,j

∣∣2(
ωk + Ea

j − 2ωeg

)2 + �2
sin2

(
kr
2

)
. (A22)

Performing here the pole integration in ωk and using the
summation rule (A8), we obtain

Pj = 3
8k2

0r
2
∣∣Ca

m=0,j

∣∣2G0,0(α), (A23)

where the approximation sin x ≈ x is used, the matrixGm,m′ (α)
is given by Eq. (A15) for an arbitrary angle α and by Eq. (A16)
for the magic angle. Using Eq. (A16), we arrive at the result
for Pj , Eq. (62). Finally, the total probability for the doubly
excited system to follow the antisymmetric decay channel is
given by the summation of (A23) in j . Due to the unitarity of
the matrix Ĉa we arrive at

P =
∑

j

Pj = 3

8
k2

0r
2G0,0(α). (A24)

In general, this probability depends on the angle α as P ∝ (3 −
cos 2α). For the magic angle αmag we arrive at the expression
(47).

APPENDIX B: DERIVATION OF EQ. (51) FOR THE SPECTRUM OF SPONTANEOUS EMISSION
IN A STRONG MAGNETIC FIELD

For the spontaneous decay in a strong magnetic field of a doubly excited state |m1 = 0,m2 = 0〉, the wave function (41) can
be reduced to

�(t) = A(t)|0,0〉 ⊗ |vac〉 +
∫

B̃s(ω1s ,t)|s0〉 ⊗ |1ω1s
〉 dω1s +

∫
B̃a(ω1a,t)|a0〉 ⊗ |1ω1a

〉 dω1a

+
∫∫

ω1s�ω2s

C̃s(ω1s ,ω2s ,t)|g,g〉 ⊗ |1ω1s
1ω2s)〉 dω1sdω2s +

∫∫
ω1a�ω2a

C̃a(ω1a,ω2a,t)|g,g〉 ⊗ |1ω1a
1ω2a

〉 dω1adω2a. (B1)

Here the following designations are used: (i) the one-photon wave packets |1ωs〉 and |1ωa〉 are introduced being the unique
superpositions of the corresponding symmetric and antisymmetric one-photon states b†(k)|vac〉 with different k (and the same
|k|) that alone interact with the state m = 0 [32]; (ii) |1ω1s

1ω2s
〉 and |1ω1a

1ω2a
〉 are two-photon states where ω1ν � ω2ν is taken for

definiteness; (iii) indexes are simplified for the probability amplitudes B̃ and C̃ that replace B and C; and (iv) a shorter notation
is used for the singly excited states |s0 = |ψ (ν=s)

m=0 〉 and |a0〉 = |ψ (ν=a)
m=0 〉.

The Schrödinger equation for the wave function (B1) is given by the following set of equations for the probability amplitudes
(where 
 is the splitting between the states |s0〉 and |a0〉):

dA

dt
= −2iωegA − i

√
�s

2π

∫ ∞

−∞
B̃s(ξ ) dξ − i

√
�a

2π

∫ ∞

−∞
B̃a(ξ ) dξ,

dB̃s(ω1s)

dt
= −i

(
ωeg + 1

2

 + ω1s

)
B̃s − i

√
�s

2π
A − i

√
�s

2π

(∫ ω1s

−∞
C̃s(ξ,ω1s) dξ +

∫ ∞

ω1s

C̃s(ω1s ,ξ ) dξ

)
,

dB̃a(ω1a)

dt
= −i

(
ωeg − 1

2

 + ω1a

)
B̃a − i

√
�a

2π
A − i

√
�a

2π

(∫ ω1a

−∞
C̃a(ξ,ω1a) dξ +

∫ ∞

ω1a

C̃a(ω1a,ξ ) dξ

)
,
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dC̃s(ω1s ,ω2s)

dt
= −i(ω1s + ω2s)C̃s − −i

√
�s

2π
[B̃s(ω1s) + B̃s(ω2s)],

dC̃a(ω1a,ω2a)

dt
= −i(ω1a + ω2a)C̃a − −i

√
�a

2π
[B̃a(ω1a) + B̃a(ω2a)]. (B2)

These equations incorporate the idealizations introduced by the Weisskopf-Wigner approximation [33]: integrations in photon
frequencies are performed from −∞ to +∞; nondiagonal matrix elements of the atom-field interaction do not depend on ω, so,
being expressed in terms of the spontaneous decay rates �s and �a [see Eqs. (35) and (37)], they are pulled out the corresponding
integrals.

The initial condition of interest is

A(t = 0) = 1, B̃s(t = 0) = B̃a(t = 0) = 0, C̃s(t = 0) = C̃a(t = 0) = 0. (B3)

The solution of Eq. (B2) with the initial condition (B3) can be obtained by the method described in Ref. [31]. It is convenient to
represent the solution in the following integral form that is easy to check:

A = 1

2πi

∫ ∞

−∞

eizt dz

z + 2ωeg − i
2 (�s + �a)

,

B̃s = − 1

2πi

√
�s

2π

∫ ∞

−∞

eizt dz[
z + 2ωeg − i

2 (�s + �a)
](

z + ωeg + 1
2
 − i

2�s + ω1s

) ,
B̃a = − 1

2πi

√
�a

2π

∫ ∞

−∞

eizt dz[
z + 2ωeg − i

2 (�s + �a)
](

z + 2ωeg − 1
2
 − i

2�a + ω1a

) ,
C̃s = �s

4π2i

{∫ ∞

−∞

eizt dz[
z + 2ωeg − i

2 (�s + �a)
](

z + ωeg + 1
2
 − i

2�s + ω1s

)
(z + ω1s + ω2s)

+
∫ ∞

−∞

eizt dz[
z + 2ωeg − i

2 (�s + �a)
](

z + ωeg + 1
2
 − i

2�s + ω2s

)
(z + ω1s + ω2s)

}
,

C̃a = �a

4π2i

{∫ ∞

−∞

eizt dz[
z + 2ωeg − i

2 (�s + �a)
](

z + ωeg − 1
2
 − i

2�a + ω1a

)
(z + ω1a + ω2a)

+
∫ ∞

−∞

eizt dz[
z + 2ωeg − i

2 (�s + �a)
](

z + ωeg − 1
2
 − i

2�a + ω2a

)
(z + ω1a + ω2a)

}
. (B4)

The emission spectrum is defined as

S(ω) =
∫ ∞

−∞
|C̃s(ω,ξ ; t → ∞)|2 dξ +

∫ ∞

−∞
|C̃a(ω,ξ ; t → ∞)|2 dξ. (B5)

An intermediate calculation gives

C̃s(ω1s ,ω2s ; t → ∞) = �s

2π

exp[−i(ω1s + ω2s)t]

ω1s + ω2s − 2ωeg + i
2 (�s + �a)

(
1

ω1s − ωeg − 1
2
 + i

2�s

+ 1

ω2s − ωeg − 1
2
 + i

2�s

)
,

C̃a(ω1a,ω2a; t → ∞) = �a

2π

exp[−i(ω1a + ω2a)t]

ω1a + ω2a − 2ωeg + i
2 (�s + �a)

(
1

ω1a − ωeg + 1
2
 + i

2�a

+ 1

ω2a − ωeg + 1
2
 + i

2�a

)
. (B6)

Hence, one arrives at

S(ω) = �2
s

4π2

1(
ω − ωeg − 1

2

)2 + 1

4�2
s

∫ ∞

−∞

(ξ + ω − 2ωeg − 
)2 + �2
s[

(ξ − ωeg − 1
2
)2 + 1

4�2
s

][
(ξ + ω − 2ωeg)2 + 1

4 (�s + �a)2
] dξ

+ �2
a

4π2

1(
ω − ωeg + 1

2

)2 + 1

4�2
a

∫ ∞

−∞

(ξ + ω − 2ωeg + 
)2 + �2
s[

(ξ − ωeg + 1
2
)2 + 1

4�2
a

][
(ξ + ω − 2ωeg)2 + 1

4 (�s + �a)2
] dξ. (B7)

Finally, performing the integration, one gets Eq. (51) that have been used for calculation of the spectra shown in Fig. 2.

043812-13



E. S. REDCHENKO, A. A. MAKAROV, AND V. I. YUDSON PHYSICAL REVIEW A 97, 043812 (2018)

APPENDIX C: DERIVATION OF EQ. (64)

As described in Sec. IV B 3, to obtain the unit vector r̂ in the
direction of the vector r connecting the two atoms, one should
find any two nonparallel directions ĥ1 and ĥ2 of the magnetic
field such that the spectral detuning between the symmetric
and antisymmetric emission peaks is minimal. This condition
means that the scalar products r̂̂h1 = r̂̂h2 = cos (αmag). The
unit vector r̂ can be expanded over the (nonorthogonal) basis
of three vectors

r̂ = aĥ1 + bĥ2 + c[̂h1 × ĥ2], (C1)

where [ĥ1 × ĥ2] means the vector product. The coefficients a

and b can be obtained from two relations:

cos (αmag) = r̂̂h1 = a + bĥ1ĥ2,

cos (αmag) = r̂̂h2 = aĥ1ĥ2 + b. (C2)

Hence,

a = b = cos (αmag)

1 + cos (ϑ12)
, (C3)

where ϑ12 is the angle between ĥ1 and ĥ2. The coefficient c in
the expansion (C1) is obtained (up to the sign) from the relation
1 = r̂2 = a2(̂h1 + ĥ2)2 + c2[̂h1 × ĥ2]. Hence,

c = ± 1

sin ϑ12

√
1 − 2 cos2 (αmag)

1 + cos ϑ12
[̂h1 × ĥ2]. (C4)

Collecting Eqs. (C1)–(C4) we arrive at Eq. (64) presented in
Sec. IV B 3.
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