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Entanglement between total intensity and polarization for pairs of coherent states
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We examine entanglement between number and polarization, or number and relative phase, in pair coherent
states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of
the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables.
This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle
entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties
of pairs of coherent states.
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I. INTRODUCTION

Entanglement is a distinguishing feature disclosing rather
fundamental nonclassical phenomena, as well as a powerful
resource for emerging quantum technologies. Entanglement
has many facets so it may be convenient to distinguish different
types. In this work we distinguish between particlelike versus
variablelike entanglement, also referred to as intersystem
versus intrasystem, respectively, as introduced in Ref. [1].
This might be related as well with the distinction between
intermode and intramode correlations in quantum metrology
[2]. By particlelike we mean entanglement between variables
belonging to two physically different systems, that is, local
observables. By variablelike we mean entanglement between
commuting variables of a single system, without any clear
subsystem splitting.

In this work we focus on variablelike entanglement for pairs
of coherent states. We show that there is entanglement between
total number and relative-phase or polarization variables,
revealed by linear entropy and covariance criteria for pure
states. Pure states are maximal preparations, so all fluctuations
and correlations might be ascribed to a quantum origin. The key
point is that entanglement is equivalent to nonclassicality in the
traditional sense of lack of bona fide phase-space joint distribu-
tion [3]. Thus entanglement in pairs of Glauber coherent states
is consistent with previous evidences of nonclassical behavior
as revealed by negativity of number-phase Wigner functions
[4], nonclassical statistics in photon number detection [5], and
unbalanced double homodyne detection [6], as well as other
results [7]. This also fits with the idea that entanglement may
be a more widespread property than naively expected [8–10].

This analysis faces the difficulty that there is no Hilbert
state factorization because of the emergence of a quantum
correlation between intensity and polarization not present in
the classical realm. So rigorous and complete conclusions
can be obtained only after embedding the system space in a
larger space to make room so these variables become truly
independent having their own Hilbert spaces.
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Therefore, this variablelike entanglement should be proba-
bly better described as protoentanglement that may be eventu-
ally converted into particle entanglement via the coupling of
the system space with an ancilla system. This would effectively
simulate the above embedding of the system space.

We think there is still much to be understood about en-
tanglement, as revealed by classical entanglement [11] and
fruitful emerging connections between classical and quantum
optics [12]. This can shed a lot of light on the quantum to
classical borderline with interesting consequences, both from
fundamental perspectives and technological applications.

II. SETTINGS

Our state space is made of two modes of the electromagnetic
field described by the complex amplitude operators a1,2 acting
on the corresponding component of the product Hilbert space
H = H1 ⊗ H2.

A. Total number and relative phase operators

The total number operator is N = a
†
1a1 + a

†
2a2. Relative

phase variables can be constructed via the Stokes operators
[13]

Sx = a
†
1a2 + a

†
2a1, Sy = i(a†

2a1 − a
†
1a2), Sz = a

†
1a1 − a

†
2a2

(2.1)

that satisfy the commutation relations

[N,Sj ] = 0, [Sx,Sy] = 2iSz, (2.2)

for j = x,y,z, and cyclic permutations, respectively. For ex-
ample a suitable unitary operator exponential of the phase
difference can be constructed via a polar decomposition of
the S± operators S± = Sx ± iSy [14]. Alternatively, there is a
nonunitary solution as product of the corresponding Susskind-
Glogower operators E1E

†
2 with

Ej |n〉 = |n − 1〉j , Ej |0〉j = 0, (2.3)

where |n〉j represents the photon-number basis in Hj . The
Stokes operators are basic for the description of any two-
beam interferometer. Naturally they describe as well quantum
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polarization properties [15]. Interference and polarization are
isomorphic phenomena and we may equally refer to one or the
other simply depending on whether the modes a1,2 represent
the same vibration state or orthogonal vibrations.

In principle we need not specify the concrete form of the
relative-phase or polarization operator, and we may refer to
it in a simple generic form as M , since we will only use
that [N,M] = 0. Nevertheless, for definiteness we will mainly
illustrate the procedure with M = Sz.

B. Hilbert-space factorization

Naturally, entanglement properties are closely related to the
Hilbert space structure and the nature of the observables chosen
[16]. In our case, the presence of the operator N in the pair of
commuting variables suggests the following change of labels
in the photon-number basis:

|n,m〉 =
∣∣∣n1 = n

2
+ m

〉
1

∣∣∣n2 = n

2
− m

〉
2
, (2.4)

where

n = n1 + n2, m = n1 − n2

2
. (2.5)

Note that for each n the range of possible values for m is
bounded and ranges as m = −n/2,−n/2 + 1, . . . ,n/2. This
forces the following split sum of the Hilbert space:

H =
∞⊕

n=0

Hn, (2.6)

where Hn is the finite-dimensional Hilbert space of dimension
n + 1 spanned by the basis vectors |n,m〉 with fixed n.

This means a rather unnatural link between total energy and
relative phase or polarization, which is universal, independent
of the field state. This is that the spectrum of any M in general
depends on the value of N . This is clearly so for the phase-
difference operator with eigenvalues 2π/(N + 1) [17], and this
is behind the Heisenberg limit in quantum metrology. There
seems to be no fundamental reason for this purely quantum
feature without classical analog. For example, in the classical
domain any polarization state is allowed for any field intensity
since they are clearly independent degrees of freedom.

This basic quantum link between total number and relative
phase or polarization prevents any Hilbert-state factorization
of the form H = HN ⊗ HM . This has consequences when
assessing entanglement of the N,M variables since typical en-
tanglement measures are devised for the cases of Hilbert-state
factorization, essentially via partial traces, not easily addressed
otherwise. Nevertheless, there is an alternative strategy that
avoids this difficulty by embedding H1 ⊗ H2 in a larger space
making room to remove the link between variables. This will
be examined in more detail in Sec. IV.

C. States

The main state we are going to consider is the product
of Glauber coherent states |α1〉1|α2〉2 as eigenstates of the
complex-amplitude operators aj |αj 〉j = αj |αj 〉j , with, in the

number basis,

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉. (2.7)

Clearly there is no entanglement between the a1,2 variables,
nor between any pair of variables derived from them under
energy conserving canonical transformations. The scenario is
different for total number and relative phase variables as we
will see in Sec. III.

To this end it may be illustrative to express |α1〉1|α2〉2 in the
|n,m〉 basis as

|α1〉1|α2〉2 =
∞∑

n=0

√
pne

inδ|n,�〉, (2.8)

where |n,�〉 are the SU(2) coherent states [18]

|n,�〉 =
j∑

m=−j

√
(2j )!

(j − m)!(j + m)!

× sinj+m θ

2
cosj−m θ

2
ei2mφ|n,m〉, (2.9)

and pn is the probability of having a total photon number n,

pn = e−N̄ N̄n

n!
, (2.10)

with N̄ = |α1|2 + |α2|2 being the total mean number of pho-
tons. This expression follows after the change of variables

α1 = r sin
θ

2
eiδeiφ, α2 = r cos

θ

2
eiδe−iφ, (2.11)

with r2 = N̄ .
On the opposite side we may also consider the two-mode

squeezed vacuum

|ξ 〉 =
√

1 − |ξ |2
∞∑

n=0

ξn|n〉1|n〉2, (2.12)

with total mean number of photons N̄ = 2|ξ |2/(1 − |ξ |2). In
this state there is clearly entanglement in the a1,2 modes. On
the other hand, in the |n,m〉 basis we get that m = 0 for all n,
suggesting that M does not depend on N . Thus we might expect
some kind of factorization in the total number and relative
phase variables.

We have the following expression in the |n,m〉 basis:

|ξ 〉 =
√

1 − |ξ |2
∞∑

n=0

ξn|2n,0〉, (2.13)

and the following probability of having a total photon number
2n,

p2n = 2N̄n

(N̄ + 2)n+1
. (2.14)

III. ENTANGLEMENT BETWEEN TOTAL NUMBER
AND RELATIVE PHASE

We examine the entanglement between total number N and
half the number difference M , this is the n,m variables. This is
addressed from the perspective of two different entanglement
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criteria valid for pure states, linear entropy and covariance.
This procedure is completely general and could be equally well
applied to any pair of commuting observables A and B in the
form N = A + B and M = A − B. The interest of choosing
number operators lies on their simplicity both for theoretical
and practical reasons.

A. Linear entropy

For pure states entanglement is clearly recognized by taking
the trace with respect to one of the subsystems. In the case of
factorization such reduced state, say ρR , is pure and mixed
otherwise. Purity is disclosed by the trace of its square ρ2

R ,
so a good measure of entanglement is S = 1 − tr(ρ2

R). For
factorized states we have S = 0 while maximal entanglement
corresponds to S = 1.

Within this scenario let us address alternatively the partial
trace with respect to the total number variable N or half the
number difference M . Even if there is no Hilbert-state splitting
HN ⊗ HM , we calculate the closest analog to the idea of
subsystem trace allowed in this case in order to find possible
entanglement. A more rigorous approach will be provided later
via an enlargement of the Hilbert space.

We consider arbitrary pure states, expressed in the photon-
number basis and in the total number and half the number
difference as

|ψ〉 =
∑
k,�

ck,�|k〉1|�〉2 =
∞∑

n=0

n
2∑

m=− n
2

c n
2 +m, n

2 −m|n,m〉. (3.1)

We can restrict the total density matrix ρ = |ψ〉〈ψ | to the
subalgebra generated by N making use of the closest analog to
the partial trace with respect to total number. This is done by
removing all the coherences between different n,n′ values, so
only the minimal information required to compute the statistics
of any operator M commuting with N is left. This is

ρM =
∞∑

n=0

�nρ�n =
∞∑

n=0

|ψn〉〈ψn|, (3.2)

where�n are orthogonal projectors on the subspaces of definite
total photon number Hn,

�n =
n
2∑

m=− n
2

|n,m〉〈n,m|, (3.3)

and |ψn〉 = �n|ψ〉 are the corresponding unnormalized pro-
jections with

〈ψn|ψn′ 〉 = pnδn,n′ , pn =
n
2∑

m=− n
2

|c n
2 +m, n

2 −m|2, (3.4)

and pn is the probability of having a total photon number n.
Similarly, the closest analog of the partial trace with respect

to the phaselike or polarization variables is

ρN =
∞∑

m=−∞
�mρ�m =

∞∑
m=−∞

|ψm〉〈ψm|, (3.5)
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FIG. 1. Linear entropy SM versus mean number of photos N̄ for
a two-mode coherent state (solid line) and a two-mode squeezed
vacuum state (dashed line).

where �m are orthogonal projectors on the subspaces of
definite value m of M = Sz/2,

�m =
∞∑

n=2|m|
|n,m〉〈n,m|, (3.6)

and |ψm〉 = �m|ψ〉 are the corresponding unnormalized pro-
jections with

〈ψm|ψm′ 〉 = pmδm,m′ , pm =
∞∑

n=2|m|

∣∣c n
2 +m, n

2 −m

∣∣2
, (3.7)

and pn is the probability of having a total value of M equal
to m.

With this we can compute the corresponding linear en-
tropies for the ρM and ρN , leading to

SM = 1 −
∞∑

n=0

p2
n, SN = 1 −

∞∑
m=−∞

p2
m. (3.8)

Note that in general SN �= SM once again due to the lack of the
corresponding Hilbert-space splitting.

In the case of the two-mode coherent state |α1〉1|α2〉2 we
have pn given by Eq. (2.10) and then

SM = 1 − e−2N̄ I0(2N̄ ), (3.9)

where I0 is the Bessel function of order zero. The entropy is
plotted against N̄ in Fig. 1, showing the entanglement increases
as N̄ increases with SM → 1 when N̄ → ∞. On the other hand
for the range of values examined we have seen numerically that
SN 
 SM to the extreme of being indistinguishable.

On the other hand, for the two-mode squeezed vacuum
(2.12) we have pn given by Eq. (2.14) leading to

SM = N̄

1 + N̄
, (3.10)

with the same behavior than coherent states as shown in Fig. 1,
maybe surprisingly. On the other hand, the result is the opposite
for SN , since we clearly have that ρN is actually a pure state
|ψm=0〉 so that SN = 0.

In principle it might be questioned whether these mixedness
properly reflect entanglement, after the lack of Hilbert-space
factorization. We think that at least they may provide a clear
indicator. Maybe more rigorous and conclusive results will be
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provided in Sec. IV when embedding the two-mode space in
a larger Hilbert space so there is room for the Hilbert-space
factorization.

B. Covariance

Let us now use the covariance criterion studied in Ref. [8]
that establishes that for pure states there is entanglement
between A and B variables provided that

〈AB〉 �= 〈A〉〈B〉. (3.11)

Clearly this correlation is incompatible with state factorization
if A and B act on different spaces. Let us extend this idea to the
pair of commuting variables we are considering in this work.
Let this time be

A = N = a
†
1a1 + a

†
2a2, B = Sz = a

†
1a1 − a

†
2a2. (3.12)

So

〈AB〉 − 〈A〉〈B〉 = 
2a
†
1a1 − 
2a

†
2a2, (3.13)

so that this criterion predicts entanglement provided that

2a

†
1a1 �= 
2a

†
2a2.

For the pair coherent states 
2a
†
j aj = |αj |2, so that there

is entanglement provided that |α1| �= |α2|. Otherwise we get
entanglement by replacing Sz by another Stokes operator.

On the other hand, for the two-mode squeezed vacuum state
(2.12) the equality is always satisfied for all Sj ,

〈NSj 〉 = 0, 〈Sj 〉 = 0. (3.14)

Nevertheless it fails to be satisfied for higher power operators,
such as 〈

NS2
x

〉 = N̄ (N̄ + 2)(3N̄ + 2), (3.15)

while 〈
S2

x

〉 = N̄ (N̄ + 2). (3.16)

Finally we may consider the rather odd case A = B, where
we have entanglement of A with itself provided that 
2A �= 0.
We explain this striking case in Sec. V.

IV. HILBERT-SPACE FACTORIZATION VIA EMBEDDING

In principle, the above claims about entanglement may be
obscured by the lack of Hilbert-space factorization of the form
H = HN ⊗ HM . This rather technical point can be avoided
by extending the state space so that H1 ⊗ H2 ⊂ HN ⊗ HM

and considering that meaningful states are restricted to some
physical sector of HN ⊗ HM . Although these observables are
nonlocal, they can be measured and tailored theoretically as
shown in [19].

Thus we consider the following embedding ofH1 ⊗ H2 into
the product of two Hilbert spaces HN ⊗ HM via the following
injective correspondence between basis vectors:

|n1〉1|n2〉2 → |n〉N |m〉M, (4.1)

with

n = n1 + n2, m = n1 − n2

2
. (4.2)

This is essentially the same basis relabeling in Eqs. (2.4)
and (2.5), but now we admit that there is no restriction on

the n,m values in |n〉N |m〉M : n runs over all integers while
m runs over all integers and half-integers. In other words,
the correspondence (4.1) does not exhaust all basis vectors
|n〉N |m〉M and there are states |n〉N |m〉M without preimage.
The physical sector holds for basis vector with integer and
nonnegative n

2 ± m.
This is essentially a version of previous expansions of the

state space to formally include negative numbers in the number
basis. This has been used in the quantum phase context to
recover the unitarity of the Susskind-Glogower operators, so
that E|0〉 = |−1〉 and so on [20]. Then it is said that physical
states are restricted to the sector of nonnegative integers. So it
is natural to find that this strategy is also useful in the context
dealing also with number-phase variables.

Now the operation of taking the partial trace with respect
to the N variable for a pure state of the form (3.1) is quite
transparent leading to

ρM =
∞∑

m,m′=−∞
dm,m′ |m〉M〈m′|, (4.3)

where

dm,m′ =
∞∑

n=−∞
c n

2 +m, n
2 −mc∗

n
2 +m′, n

2 −m′ . (4.4)

The corresponding trace of the square ofρM gives the following
linear entropy:

S = 1 −
∞∑

m,m′=−∞
|dm,m′ |2. (4.5)

Note that in general this entropy is slightly different than
the ones in Sec. III A since we are now in a different space. We
notice also that now there can be no distinction between the N

and M traces.
Let us compute S for the pair coherent state |α1〉1|α2〉2 with

α2 = 0, this is the vacuum in mode a2. In such a case ck,� =
0 unless � = 0 that leads to m = m′ = n/2 in Eq. (4.4) and
dm,m′ = dn/2,n/2 = pn with the same pn in Eq. (2.10), so that

ρM =
∞∑

n=0

e−N̄ N̄n

n!
|n/2〉M〈n/2|. (4.6)

Therefore we have the same result in Eq. (3.9). However, in this
extended case the entropy S no longer depends just on N̄ and
the result is different under different splittings of the photons
between modes. This is for example the case α1 = α2 = 1 for
which we have S = 0.60. This is below the value obtained
for the same state in Sec. III. Besides, the entanglement for
H1 ⊗ H2 is always greater than in HN ⊗ HM . This is due to
the number of terms in the coefficients in H1 ⊗ H2 is less
than in HN ⊗ HM because of the embedding. In the physical
sectorHN ⊗ HM there are no terms of the form |n〉N |m〉M with
|m| > n. So we have that SH1⊗H2 � SHN ⊗HM

which means that
the restriction to the physical sector reduces the entanglement.

On the other hand, for the two-mode squeezed vacuum
(2.12) we get

|ψ〉 → |ϕ〉N |0〉M, (4.7)
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where |ϕ〉N is an eigenstate of the square of the Susskind-
Glogower phase operator in the space HN ,

|ϕ〉N =
√

1 − |ξ |2
∞∑

n=0

ξn|2n〉M. (4.8)

In this case there is no entanglement and S = 0 as it could be
expected.

V. FROM PROTOENTANGLEMENT TO ENTANGLEMENT

In this section we present the conversion of protoentangle-
ment into actual particle entanglement. This is accomplished
by the coupling of the system with an appropriate ancilla
system. This is a kind of operational simulation of the system-
space embedding discussed in the preceding section.

A. Two-level atom entanglement

We can provide a very specific and operational scheme
considering the nonresonant interaction of the field modes with
a pair of two-level atoms. Let us couple an atom to the variable
N and the other one to the variable M = Sz with the following
interaction Hamiltonian:

Hint = h̄λ(Nσ1 + Szσ2), (5.1)

or equivalently

Hint = h̄λ[a†
1a1(σ1 + σ2) + a

†
2a2(σ1 − σ2)], (5.2)

where λ is a coupling constant and σj = |e〉j 〈e|, with |g,e〉j be-
ing the corresponding ground and excited states, respectively.
This is a really experimentally feasible field-atom coupling
as already demonstrated in beautiful experiments via Rydberg
interferometry [21].

The atoms are initially prepared in the state |+〉1|−〉2 with

|±〉j = 1√
2

(|g〉j ± |e〉j ). (5.3)

The key point is that when N is even (odd) Sz is also even
(odd). We fix the interaction time τ to be such that λτ = π so
that when N and Sz are even the evolution takes the initial state
again to the initial state

|+〉1|−〉2 −→ |+〉1|−〉2, (5.4)

while when N and Sz are odd the evolution produces the
following transformation on the atomic state:

|+〉1|−〉2 −→ |−〉1|+〉2. (5.5)

Therefore, if the initial state is |ψ〉|+〉1|−〉2 the evolved state
at time τ is

|ψe〉|+〉1|−〉2 + |ψo〉|−〉1|+〉2, (5.6)

where |ψe,o〉 are the unnormalized orthogonal projections of
the initial field state |ψ〉 on the subspaces of even and odd total
photon number N , respectively, with

|ψ〉 = |ψe〉 + |ψo〉, 〈ψe|ψo〉 = 0. (5.7)

Note that the state in Eq. (5.6) is a tripartite entangled state.
In order to extract pure particle entanglement in the atomic
space we may project the field system on a suitable state. For

N

Sa

0.5 1.0 1.5 2.0 2.5 3.0
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0.4

0.6

0.8

1.0

FIG. 2. The atomic linear entropy Sa versus mean number of
photos N̄ for a two-mode coherent state.

simplicity this may be the same initial state |ψ〉, so that the
reduced atomic state reads

1√
p2

e + p2
o

(pe|+〉1|−〉2 + po|−〉1|+〉2), (5.8)

where

pe,o = 〈ψe,o|ψe,o〉. (5.9)

We can assess the entanglement of this reduced state via a
properly normalized version of the linear entropy as Sa =
2[1 − tr(ρ2

R)] so that it ranges between 0 and 1 with

Sa = 2

[
1 − p4

e + p4
o(

p2
e + p2

o

)2

]
. (5.10)

We have Sa = 0 for factorized states pe = 0 or po = 0 while
Sa = 1 for maximally entangled states pe = po = 1/2.

In the case of product of coherent states it holds that pe,o

depend only on the total mean number of photons N̄ , as shown
by Eqs. (2.8) and (2.10) [18]. More specifically

pe = e−N̄ sinh N̄, po = e−N̄ cosh N̄, (5.11)

so that

Sa = tanh2(2N̄). (5.12)

Moreover, we have that the condition for maximally entangled
states is reached actually for very small mean numbers and
pe 
 po 
 1/2 for N̄ as small as N̄ = 2 leading to Sa = 0.998.
In Fig. 2 we have plotted Sa as a function of N̄ . Within this same
scenario, when the initial field state is the two-mode vacuum
(2.12) we have only an even number of photons po = 0,
the atomic state always factorizes, and Sa = 0. So there is a
very large agreement between this operational entanglement
conversion and the above analysis.

B. Covariance criterion

Let us show that the protoentanglement revealed by criterion
(3.11) has a complete equivalence with particle entanglement
as far as one attempts to actually measure both A and B

simultaneously to compute 〈AB〉. To show this we consider
that the system space is enlarged from H to H ⊗ Ha in order
to make room for a joint measurement of A and B, always with
[A,B] = 0. For example we consider that A is measured in the
original system H while B is measured in an different system
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Ha prepared in some ancilla state |ϕ〉a . In order to transfer
information about B from H to Ha we consider the following
state transformation:

|ψ〉|ϕ〉a → |�〉 = eiBQa |ψ〉|ϕ〉a, (5.13)

where Qa is some operator acting solely on Ha . Let the
observable to be measured in Ha be Pa with

e−ibQa Pae
ibQa = Pa + b, a〈ϕ|Pa|ϕ〉a = 0, (5.14)

for every real scalar b.
With all this we get

〈�|APa|�〉 = 〈ψ |AB|ψ〉 (5.15)

and

〈�|A|�〉 = 〈ψ |A|ψ〉, 〈�|Pa|�〉 = 〈ψ |B|ψ〉. (5.16)

Thus, the variablelike entanglement criterion in |ψ〉 for A,B

is fully equivalent to the particlelike entanglement criterion in
the state |�〉 for A and Pa .

This particle entanglement may naturally arise even if we
measure the same observable twice if 
2A �= 0. Now we see

that there is nothing striking in the entanglement of the state
eiAQa |ψ〉|ϕ〉a .

VI. CONCLUSIONS

We have investigated the entanglement between total num-
ber and polarization or relative-phase variables arising in
two-mode electromagnetic fields. Since these variables lack a
definite splitting of Hilbert spaces this entanglement should be
better considered as a kind of protoentanglement. Nevertheless
we have shown that this protoentanglement can be actually
extracted and converted into real particle entanglement via
feasible experimental procedures. So this might be regarded as
a useful and practical entanglement resource. This is because
we have shown that this holds also for products of Glauber
coherent states, confirming previous results indicating nonclas-
sical features of coherent states in phase-number variables.
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