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Analysis of angular momentum properties of photons emitted in fundamental atomic processes
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Many atomic processes result in the emission of photons. Analysis of the properties of emitted photons,
such as energy and angular distribution as well as polarization, is regarded as a powerful tool for gaining more
insight into the physics of corresponding processes. Another characteristic of light is the projection of its angular
momentum upon propagation direction. This property has attracted a special attention over the past decades due to
studies of twisted (or vortex) light beams. Measurements being sensitive to this projection may provide valuable
information about the role of angular momentum in the fundamental atomic processes. Here we describe a simple
theoretical method for determination of the angular momentum properties of the photons emitted in various
atomic processes. This method is based on the evaluation of expectation value of the total angular momentum
projection operator. To illustrate the method, we apply it to the textbook examples of plane-wave, spherical-wave,
and Bessel light. Moreover, we investigate the projection of angular momentum for the photons emitted in the
process of the radiative recombination with ionic targets. It is found that the recombination photons do carry a
nonzero projection of the orbital angular momentum.
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I. INTRODUCTION

In recent decades various experimental techniques have
been developed to produce beams of light carrying a nonzero
projection of the orbital angular momentum (OAM) onto
the propagation direction [1–4]. These twisted (or vortex)
beams possess helical phase wave front and nonhomogeneous
intensity profile. Due to these distinguishing features the
twisted photons have found extensive applications, e.g., in
optical [5] and free-space [6–8] communications, metrology
[9], and biophysics [10]. Many of these applications require a
detailed description of the fundamental atomic processes.

During recent years numerous theoretical studies have been
conducted to investigate the effects of the twisted light beams
in absorption [11–19] and scattering [20,21] processes. Much
less attention has been paid to the question of whether emitted
light is twisted or not. The “twistedness” of the postinteraction
photons has been estimated mainly in the processes being
dedicated to their production. As an example, the OAM of the
emitted light was evaluated in the Compton scattering [22–24]
and in the process of the high harmonic generation [25–28].
The methods of these studies, however, are strongly related to
the features of particular processes and cannot be extended to
other situations. To the best of our knowledge, no effort has
been done to provide a theoretical approach which would allow
one to analyze the angular momentum properties of outgoing
photons for arbitrary reaction.

In this contribution we describe a simple theoretical method
for the analysis of the angular momentum properties of the

photons emitted in fundamental atomic processes. This method
is based on the calculation of the average value of the total
angular momentum (TAM) projection operator of the outgoing
photons. The averaged value can be naturally calculated within
the framework of the density matrix formalism. This method
allows one to find out whether the emitted photons are twisted
or not for arbitrary reaction.

We apply our method to analyze the angular momentum
properties of photon beams for several cases. First, the twist-
edness of the plane-wave, spherical-wave, and Bessel radiation
has been reexplored. As the second example, we analyze
the angular momentum properties of light emitted due to the
radiative recombination (RR) of electrons with bare nuclei. We
show that the RR photons, emitted along the electron beam
direction, do carry a nonzero and well-defined projection of
angular momentum.

Relativistic units (me = h̄ = c = 1) and the Heaviside
charge unit (e2 = 4πα) are used in the paper.

II. BASIC FORMALISM

The main goal of the present paper is to formulate a theoretic
method which will allow one to determine whether the photons
emitted in basic atomic processes are twisted or not. For this
purpose we start with the mathematical definition of the twisted
light. Here and throughout we restrict ourselves to the case of
the Bessel twisted photons.
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A. Twisted photons

Let us consider the brief theoretical description of the
Bessel-wave twisted photons. These waves are the solutions
of the free-wave equation in an empty space with the well-
defined energy ω, the helicity λ, and the projections of the
momentum kz and total angular momentum (TAM) mγ onto the
propagation direction. This direction is chosen along the z axis.
Additionally, the absolute value of the transverse momentum
�γ = (ω2 − k2

z )1/2 is well defined. Such a twisted photon state
|�γ mγ kzλ〉 is described by the vector potential [22,24,29]

A(tw)
�γ mγ kzλ

(r) = iλ−mγ

∫
eimγ ϕk

2πk⊥
δ(k‖ − kz)δ(k⊥ − �γ )

× A(pl)
kλ (r)dk, (1)

where k‖ and k⊥ are the longitudinal and transversal com-
ponents of momentum k, respectively, and A(pl)

kλ is the vector
potential of the plane-wave photon

A(pl)
kλ (r) = ελ(k)eik·r√

2ω(2π )3
. (2)

Equation (1) implies that the Bessel light can be “seen” as
a coherent superposition of the plane-wave photons with the
linear momenta k laying on the surface of a cone with the
opening angle θγ = arctan (�γ /kz).

In the literature one may find many definitions of the twisted
light. Here we will term photons as twisted, in the sense
of pure Bessel beams, if they possess a well-defined TAM
projection and a well-defined opening angle differing from
0◦. Therefore, in order to determine the OAM properties of
the photon one needs to calculate its TAM projection and the
opening angle. Instead, of the evaluation of the opening angle

one can calculate its sine or cosine. For the monochromatic
photon beam, the evaluation of the opening angle cosine
simplifies to the calculation of the longitudinal momentum.
In the framework of the present investigation we restrict our
consideration to this type of beam.

B. Evaluation of TAM projection and opening angle of light

As described above, the twisted light is characterized by
the TAM projection and by the opening angle. Below we
consider a method of the evaluation of the mean values of
these two quantities. In the previous section it was assumed
that the propagation direction of the twisted light coincides
with the z axis. But this is not always the case for the atomic
processes. We analyze, therefore, the TAM projection onto the
propagation direction of the photons emitted in some arbitrary
n̂0 direction. The mean values of the TAM projection operator
and the opening angle are conveniently evaluated within the
framework of the density matrix formalism. In this approach,
the average value of the projection of the TAM operator J onto
some arbitrary n̂0 axis, defining the propagation direction of
the emitted photons, is given by

〈J · n̂0〉 = Tr
[
ρ(ph)ρ

(det)
n̂0

(J · n̂0)
]

Tr
[
ρ(ph)ρ

(det)
n̂0

] , (3)

where ρ(ph) is the density operator of the photon and the
operator ρ

(det)
n̂0

describes the detector. The form of the detector
operator depends on a particular experiment. In our study we
consider so large a detector that it can be approximated by a
plane-wave detector located perpendicular to the n̂0 direction.

The right-hand side of Eq. (3) is written in the operator form.
For practical applications it is more convenient to rewrite this
expression in the matrix form, which requires choosing the
basis representation of photon states. Here we use the helicity
basis of plane-wave solutions, |kλ〉, where k is the wave vector
and λ is the helicity, in which the expression (3) is given by

〈J · n̂0〉 =
∑

λλ′λ′′
∫

dk dk′dk′′(8ωω′ω′′)〈kλ|ρ(ph)|k′λ′〉〈k′λ′|ρ(det)
n̂0

|k′′λ′′〉〈k′′λ′′|(J · n̂0)|kλ〉∑
λλ′

∫
dk dk′(4ωω′)〈kλ|ρ(ph)|k′λ′〉〈k′λ′|ρ(det)

n̂0
|kλ〉 . (4)

The states |kλ〉 are described by the vector potential (2) and satisfy the following completeness condition:
∑

λ

∫
dk(2ω)|kλ〉〈kλ| = I, (5)

with I being the unity operator. In the helicity basis of plane-wave solutions the matrix element of the detector operator expresses
as [30]

〈k′λ′|ρ(det)
n̂0

|kλ〉 = 1

2ω
δ(k − k′)θ (k · n̂0)δλλ′ , (6)

where θ (x) is the Heaviside function. Substituting Eq. (6) into Eq. (4) one obtains the following expression for the average value
of the TAM projection operator:

〈J · n̂0〉 =
∑

λλ′
∫

dk dk′(4ωω′)〈kλ|ρ(ph)|k′λ′〉〈k′λ′|(J · n̂0)|kλ〉θ (k · n̂0)∑
λ

∫
dk(2ω)〈kλ|ρ(ph)|kλ〉θ (k · n̂0)

. (7)

The explicit form of the photon density matrix 〈kλ|ρ(ph)|k′λ′〉
depends on the particular “scenario” under investigation. In the

present paper we consider the cases of plane-wave, spherical-
wave, and Bessel radiation as well as of RR photons.
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While the evaluation of the photon density matrix requires
the knowledge about a process under consideration, the matrix
element of the operator (J · n̂0), which also enters into Eq. (4),
is independent on the particular scenario. It is conveniently
calculated in the momentum representation for the TAM
operator [31]

Jp = −i[p × ∇p] + S, (8)

where S is the spin-1 operator. Apart from the operator J, the
vector potential of the plane-wave photon has also to be written
in the momentum representation:

f (pl)
kλ (p) = ελ(k)√

2ω
δ(p − k), (9)

which is related to the vector potential in the coordinate
representation (2) by the following simple relation:

A(pl)
kλ (r) = 1√

(2π )3

∫
dp f (pl)

kλ (p)eip·r. (10)

Utilizing Eqs. (8) and (9), one can derive the explicit expression
for the matrix element of the TAM projection operator

〈k′λ′|(J · n̂0)|kλ〉 =
∫

dp f (pl)†
k′λ′ (p)(Jp · n̂0)f (pl)

kλ (p)

= 1

4πk2
δ(k − k′)

δλλ′

2ω

∑
μ

(n̂0)μ

×
∑

jmj m
′
j

(2j + 1)
√

j (j + 1)C
jm′

j

jmj 1μ

×D
j

mj λ
(ϕk,θk,0)Dj∗

m′
j λ

(ϕ′
k,θ

′
k,0). (11)

Here (n̂0)μ are the contravariant vector components, CJM
j1m1 j2m2

is the Clebsch-Gordan coefficient, DJ
MM ′ is the Wigner matrix

[32,33], (k,θk,ϕk) are the spherical coordinates of k, and
(k′,θ ′

k,ϕ
′
k) are those of k′.

Substituting the explicit form of 〈kλ|ρ(ph)|k′λ′〉 and Eq. (11)
into Eq. (4), one can evaluate the average value of the TAM
projection. But the mean value of the TAM projection operator
cannot solely describe the twistedness of light. Indeed, in
accordance with the definition (see Sec. II A), the light is called
twisted if its TAM projection onto the propagation direction is
well defined. Therefore, one needs to know not only the mean
value but also the dispersion of TAM

�J =
√

〈(J · n̂0)2〉 − 〈J · n̂0〉2. (12)

As is seen from this expression, the evaluation of �J requires
the knowledge of not only 〈J · n̂0〉 given by Eq. (11) but
also of 〈(J · n̂0)2〉. By using Eqs. (8) and (9) and performing
some tedious but straightforward calculations, one obtains
the explicit expression for the matrix element of the (J · n̂0)2

operator. For the sake of brevity we will omit details of these
calculations here and just present the final result:

〈k′λ′|(J · n̂0)2|kλ〉
= 1√

4πk2
δ(k − k′)

δλλ′

2ω

∑
JnMn

C
Jn0
10 10Y

∗
JnMn

(n̂0)

×
∑

jmj m
′
j

j (j + 1)(2j + 1)3/2C
jm′

j

jmj JnMn

{
1 1 Jn

j j j

}

×D
j

mj λ
(ϕk,θk,0)Dj∗

m′
j λ

(ϕ′
k,θ

′
k,0). (13)

Here {· · · } denotes the Wigner 6j symbol [33] and Ylm(θ,ϕ)
is the spherical harmonic.

Up to now we have discussed the evaluation of the mean
value and the dispersion of the TAM projection of light. As was
already mentioned, in order to determine whether the emitted
photon is twisted or not one needs also to evaluate the opening
angle θγ or its cosine. In the case of the monochromatic photon
beam

cos θγ = 1

ω
〈p · n̂0〉, (14)

where p is the momentum operator. Rewriting the expression
(14) in the form similar to Eq. (7) and utilizing the explicit
form of the matrix elements,

〈k′λ′|(p · n̂0)|kλ〉 = δλλ′

2ω
δ(k − k′)(k · n̂0), (15)

〈k′λ′|(p · n̂0)2|kλ〉 = δλλ′

2ω
δ(k − k′)(k · n̂0)2, (16)

one can evaluate the mean value and the opening angle
cosine cos θγ . The dispersion �p is defined analogous to the
dispersion �J .

III. RESULTS AND DISCUSSIONS

A. TAM and its dispersion for plane-wave,
spherical-wave, and Bessel photons

In order to demonstrate the method which is described above
let us evaluate the TAM projection, momentum projection,
which is directly related to the opening angle cosine (14),
and their dispersions for the plane-wave, spherical-wave, and
twisted photons.

1. Plane-wave photons

As was discussed in Sec. II B, in order to find the average
value of the TAM and its dispersion it is sufficient to calculate
the trace of the density matrix with TAM and squared TAM
projection operators. The density operator for the plane-wave
photon with the momentum k and polarization ελ is given by

ρ
(pl)
kλ = |kλ〉〈kλ|. (17)

In the present study we restrict ourselves to the case of TAM
projection onto the photon propagation direction, i.e., n̂0 =
k̂ ≡ k/|k|. For this case one obtains

〈J · k̂〉pl = λ, 〈(J · k̂)2〉pl = 1, �
(pl)
J = 0, (18)

〈p · k̂〉pl = ω, 〈(p · k̂)2〉pl = ω2, �(pl)
p = 0. (19)

The formulas (18) represent the well-known fact that the
TAM projection of the plane-wave photon on its propagation
direction is given by the helicity λ. The expressions (19)
indicate that the plane-wave photon is the eigenfunction of
the p operator.
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2. Spherical-wave photons

The density operator for the spherical-wave photon with
energy ω, TAM j , and TAM projection onto the z axis mγ is
given by

ρ
(sph)
ωjmγ π = |ωjmγ π〉〈ωjmγ π |, (20)

with π = 0 for the magnetic and π = 1 for the electric photon.
The explicit form of the vector potential of the spherical photon
in the momentum space expresses as follows [34]:

f (sph)
ωjmγ π (p) = 4π2

ω3/2
δ(|p| − ω)Y(π)

jmγ
(p̂), (21)

where Y(π)
jmγ

is the spherical harmonic vectors [33]. Utilizing
the formalism described in Sec. II B and Eqs. (20) and (21),
one can calculate the average value of the projection of the
TAM operator onto some arbitrary n̂0 axis. Here we focus on
the situation when n̂0 coincides with the quantization z axis,
i.e., n̂0 = êz with êz being the unit vector directed along the z

axis. In this case,

〈Jz〉sph = mγ ,
〈
J 2

z

〉
sph = m2

γ , �
(sph)
J = 0. (22)

From these equations one can see that the spherical-wave pho-
ton is the eigenfunction of the Jz operator with the eigenvalue
mγ . It is worth mentioning that the average value of the opening
angle cosine and its’ dispersion are both dependent on the j

and mγ . And since these dependencies cannot be expressed by
a compact formula we omit them for the sake of brevity.

3. Twisted photons

Let us now consider the case of the Bessel-wave twisted
photon propagating along the z axis. The corresponding density
operator is given by

ρ
(tw)
�γ mγ kzλ

= |�γ mγ kzλ〉〈�γ mγ pzλ|, (23)

where �γ and kz are the transversal and longitudinal momenta,
λ is the helicity, and mγ is the TAM projection onto the propa-
gation direction. As in the case of the plane- and spherical-wave
photons, we restrict ourselves to evaluation of TAM projection
and its dispersion for the particular direction of n̂0. Namely, we
study the situation when n̂0 is directed along the propagation
direction, i.e., n̂0 = êz. In this case one obtains

〈Jz〉tw = mγ ,
〈
J 2

z

〉
tw = m2

γ , �
(tw)
J = 0, (24)

〈pz〉tw = kz,
〈
p2

z

〉
tw = k2

z , �(tw)
p = 0. (25)

As is expected from the form of the density operator (23),
the mean value of the TAM projection onto the propagation
direction of the twisted photon equals mγ with the zero
dispersion. The formulas (25) denote that the Bessel-wave
twisted photon is the eigenfunction of the pz operator.

B. Radiative recombination of electrons with bare nuclei

Until now we have applied our approach to study the
twistedness of light to the textbook examples of the plane-
wave, spherical-wave, and Bessel-wave twisted radiation. Let
us now turn to the analysis of the photons emitted in one of
the fundamental processes of light-matter interaction, namely

the radiative recombination (RR) of electrons with bare nuclei.
Despite a large number of studies devoted to this process (for
a review see Ref. [35]) no attention has been paid so far to the
angular momentum properties of the RR photons. Below we
analyze these properties.

The density matrix of the photons emitted in the course
of the RR of the asymptotic plane-wave electron with the
momentum p and the helicity μ into the final bound f state
with the TAM projection mf has the following form:

〈kλ|ρpμ;f mf
|k′λ′〉 = τpμ;f mf ,kλτ

∗
pμ;f mf ,k′λ′ , (26)

with the amplitude

τpμ;f mf ,kλ =
∫

dr �
†
f mf

(r)R†
kλ(r)�(+)

pμ (r). (27)

Here �f mf
is the wave function of the electron in the final state,

Rkλ designates the transition operator which has the following
form in the Coulomb gauge:

Rkλ(r) = −
√

α

ω(2π )2
α · ελe

ik·r, (28)

with α being the vector of Dirac matrices, and �(+)
pμ is the wave

function of the electron in the initial state given by [36–38]

�(+)
pμ (r) = 1√

4πεp

∑
κmj

C
jμ

l0 1/2μil
√

2l + 1eiδκ

×Dj
mj μ

(ϕp,θp,0)�εκmj
(r). (29)

Here κ = (−1)l+j+1/2(j + 1/2) is the Dirac quantum number
with j and l being the angular momentum and parity, respec-
tively, and δκ is the phase shift corresponding to the potential
of the extended nucleus.

Above we have presented the density matrix (26) of the
photon emitted in the course of the RR of a plane-wave
electron with a bare nucleus. Now we turn to the evaluation
of twistedness of this radiation. Let us fix the z axis along
the propagation direction of the incoming electron. For such
choice of the coordinate system the TAM projection onto the
z axis, i.e., n̂0 = êz, and its dispersion equal, respectively,

〈Jz〉 = μ − mf , �J = 0. (30)

This equation indicates that the photons being emitted in the
course of the RR of the polarized plane-wave electron and prop-
agating in the forward direction do possess the well-defined
projection of TAM onto their propagation direction. This
means that the RR photons can carry the nonzero projection of
the OAM onto the propagation direction which is determined
solely by the helicity μ of the incident electron and by the
magnetic quantum number of the residual ion mf .

Above we analyzed the angular momentum properties of
the photons emitted along the z axis. Let us recall here that
the z axis is fixed along the propagation direction of the
incoming electron. Now let us consider the angular momentum
properties of the RR photons emitted into some arbitrary
direction n̂0 �= êz. This case is represented in Fig. 1 for the
RR with the bare argon nuclei. On the left panel of this figure
it is seen that for the forward and backward emission angles
the TAM projection takes the well-defined values. This fact is
predicted by the relation (30). From the right panel of Fig. 1
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FIG. 1. Mean value of the operator of the TAM projection on the direction of photon emission n̂0 = (sin θ0,0, cos θ0) (left panel) and the
cosine of the opening angle (right panel). The recombination of the 2 keV plane-wave electron with μ = 1/2 into the 2p3/2(mf ) state of the
H-like Ar (Z = 18) ion is considered. The shadowed areas designate the dispersions.

one can conclude that for all propagation directions the emitted
photons do not have the well-defined opening angle θγ and
consequently transversal momentum. This can be explained as
follows. In the external field of the nucleus the momentum does
not conserve and, as a result, the distribution of the momentum
occurs. In accordance with the definition given in Sec. II A, the
RR photons cannot be regarded as twisted. But, these photons
can neither be regarded as the plane or the spherical wave since
the cosine of the opening angle always differs from 1 and 0,
respectively (see the right panel of Fig. 1). Therefore, one can
say that the RR photons emitted in the forward or backward
directions are, in some sense, twisted.

Up to now we discussed the RR of the polarized electron
into a particular magnetic sublevel of the ion. The scenarios
in which the incident electron is unpolarized or (and) the
population of the magnetic sublevels of the residual ion that
remains unobservable are also worth investigation. First, let
us consider the angular momentum properties of the photons

emitted in the course of the RR of an unpolarized electron with
a bare nucleus. This case is presented in Fig. 2.

From the left panel of this figure it is seen that the most
interesting situation is expected for the forward and backward
emission directions and the population of mf = ±3/2 mag-
netic sublevels. For this case the TAM projection of the RR
photon equals ∓1 with almost zero dispersion that makes these
photons twisted in some sense. This result can be explained as
follows. As an example, let us consider the capture into mf =
3/2 magnetic sublevel of the 2p3/2 state. Since the incident
electron is unpolarized, this magnetic sublevel is populated via
the RR of the electrons with the spin projection μ = 1/2 and
μ = −1/2. These two captures are related to the pure non-spin-
flip and pure spin-flip channels, respectively. It is a well-known
fact that in the recombination processes the spin-flip channel is
strongly suppressed with respect to the non-spin-flip one (see,
e.g., Refs. [35,39]). The population of mf = 3/2 magnetic
sublevel is therefore strongly dominated by the capture of the
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FIG. 2. Mean value of the operator of the TAM projection on the direction of photon emission n̂0 = (sin θ0,0, cos θ0) (left panel) and the
cosine of the opening angle (right panel). The recombination of the unpolarized 2 keV plane-wave electron into the 2p3/2(mf ) state of the
H-like Ar (Z = 18) ion is considered. The shadowed areas designate the dispersions.
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FIG. 3. Mean value of the operator of the TAM projection on the direction of photon emission n̂0 = (sin θ0,0, cos θ0) (left panel) and the
cosine of the opening angle (right panel). The recombination of the 2 keV plane-wave electron into the 2p3/2 state of the H-like Ar (Z = 18)
ion is considered. It is assumed that the population of the magnetic sublevels of the residual ion remains unobservable. The shadowed areas
designate the dispersions.

electron with μ = 1/2. And, as a result, from Eq. (30) it follows
that the TAM projection in this case equals −1. The situation is
more involved for the population of, e.g., mf = 1/2 magnetic
sublevel. In this case, the RR of the electrons with both
spin projections μ = ±1/2 can proceed via the non-spin-flip
channel, which leads to the growth of the dispersion.

The scenario in which the population of the magnetic
sublevels of the residual ion remains unobservable is depicted
in Fig. 3. In this case, the emitted photon, unfortunately, has
neither a well-defined TAM projection nor a well-defined
opening angle.

Let us now briefly discuss the feasibility of the experimental
measurement of the angular momentum properties of the RR
photons. As already mentioned, the most interesting situation
occurs when the particular magnetic sublevels are populated
in the course of this process (see Figs. 1 and 2). This requires
the coincidence measurement of the radiative emission and
the population of the magnetic sublevels of the residual ion,
which is a rather challenging task. Instead, one can think
of the RR with the polarized ionic (or atomic) targets with
a single vacancy in closed shells. In this case, the emission
following the recombination into this vacancy will carry away
the polarization of the initial target since the TAM projection
of the residual ion will be zero. One can expect that these RR
photons emitted in the forward and backward directions can
be, in some sense, twisted. The polarized atomic targets with
a single vacancy can be routinely obtained with the present
day experimental techniques. The creation of the analogous
highly charged targets is a more difficult task. Nevertheless,
such targets can be, in principle, obtained at the GSI and
FAIR facilities (Darmstadt, Germany) with the usage of the
techniques described in Refs. [40,41].

IV. CONCLUSION

In the present work, we described the simple theoretical
method for the evaluation of the angular momentum properties
of the photons emitted in basic atomic processes. As the
applications of the proposed method, we evaluated the TAM
projection and its dispersion for the plane-wave, spherical-
wave, and twisted photons. We have also analyzed the pro-
jection of the angular momentum of the photons emitted in
the radiative recombination of electrons with the bare argon
nuclei. It was found that the RR photons emitted in the forward
or backward directions have the well-defined TAM projection
onto this direction. For these photons the TAM projection is
determined solely by the polarizations of the incident plane-
wave electron and by the magnetic quantum number of the
residual ion. And, although the emitted photons do not have
well-defined opening angles, we believe that the RR photons
for the forward or backward emission directions are, in some
sense, twisted.

To summarize, the developed method allows one to find out
whether the emitted photons are twisted without going into
details of the process. This method can be readily extended
for the analysis of the angular momentum properties of other
particles.
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