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Subwavelength optical lithography via classical light: A possible implementation
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The resolution of an interferometric optical lithography system is about the half wavelength of the illumination
light. We proposed a method based on Doppleron resonance to achieve a resolution beyond half wavelength [Phys.
Rev. Lett. 96, 163603 (2006)]. Here, we analyze a possible experimental demonstration of this method in the
negatively charged silicon-vacancy (SiV−) system by considering realistic experimental parameters. Our results
show that quarter wavelength resolution and beyond can be achieved in this system even in room temperature
without using perturbation theory.
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I. INTRODUCTION

Optical lithography is widely used to print a circuit image
onto a substrate [1]. When a portion of the photoresist is
exposed to the light, it becomes soluble (or insoluble) to the
photoresisit developer so that a desired pattern can be formed
[2]. However, for noncontact optical lithography diffraction
limits the minimum feature size to about half the optical wave-
length [3]. To print smaller features, the illumination source
should be reduced from visible light to extreme ultraviolet
(EUV) or even x ray. However, the air can absorb the EUV
and x ray significantly and therefore it requires operation in
a vacuum system. In addition, the traditional lense used for
visible light does not work for short wavelength. Moreover,
the photon energies of the EUV and x ray are so high that they
may damage the silicon substrate [4]. Thus it is desirable to
invent a method to overcome the diffraction limit in the optical
lithography [5,6].

In the past two decades, a number of methods have been
proposed to achieve superresolution in optical lithography,
including the methods based on quantum entanglement [7–9],
quantum dark state [10–12], Rabi oscillations [13–15], coher-
ent atom lithography [16–18], and magnetic resonance [19].
Although quantum entanglement can successfully suppress
the diffraction-limited resolution term and achieve a λ/2N

resolution, it is hard to experimentally generate sufficiently
bright and pure NOON states [20]. In 2006, we proposed a
method based on Doppleron resonance which can mimic the
effect of quantum entanglement and achieve superresolution
but using only classical light [21]. Compared to the usual
multiphoton absorption process [22], our method based on
Doppleron resonance can have a higher efficiency and vis-
ibility. In addition, our method is in principle able to print
an arbitrary super-resolved pattern, but a suitable material for
demonstrating the method is still unknown [23,24]. Here, we
study a possible experimental realization of this method using
silicon vacancy (SiV) in diamond. One big advantage of SiV
is that it has 70% of its fluorescence in 738 nm zero-phonon
line (ZPL) [25,26]. By numerically solving the dynamics of
these systems using realistic material parameters, we show

that a factor of 2 and beyond resolution enhancement can
be achieved. While this may not seem impressive by itself, it
will demonstrate the feasibility of the technique and new color
centers are continually being discovered that may outperform
the SiV, for example, the germanium-vacancy (GeV) center in
diamond.

This paper is organized as follows: In Sec. II, we briefly
introduce the scheme for subwavelength optical lithography
via the Doppleron effect. In Sec. III we briefly introduce the
SiV−’s electronic structure and then show how to use it to
write a subwavelength pattern. In Sec. IV, we make a realistic
calculation based on the existing experimental data. We include
decay in our calculations and show that a λ/4 resolution can
be generated. Finally, we summarize the results.

II. SUBAWAVELENGTH OPTICAL LITHOGRAPHY
WITH CLASSICAL LIGHT

In this section, we first briefly show how to achieve
subwavelength optical lithography via the Dopperlon effect.
The schematic setup is shown in Fig. 1 where four-level
atoms interact with two classical light beams. Two signal laser
beams with slightly different frequencies (ν±) are incident
from opposite directions in plane and two drive beams with
frequency ω± are incident from the normal direction. The
resonant excitation from ground state |g〉 to excited state |e〉
can be reached by either absorbing two photons from the
left with frequency ν+ and one photon from the drive field
with frequency ω+ or absorbing two photons from the right
with frequency ν− and one photon from the drive field with
frequency ω−, i.e., ωab = 2ν± − ω±. Other combinations of
absorption are negligible due to the lack of resonance. By
satisfying these conditions, the four-level atoms are either
absorbing two photons from the left or two photons from
the right but never one photon from the left and one photon
from the right [21]. Such resonances were observed in atoms
moving in an intense standing-wave field where multiphoton
resonances were observed at certain velocities or Doppler
shifts, hence the name. By selective absorption of specific
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FIG. 1. (a) The schematic setup of subwavelength optical lithography via classical light. Two signal beams are incident at a very small angle
to ensure that the polarization is perpendicular to the {111} surface, so the signal frequencies can only excite e and f transitions. The drive
beams are normally incident to the surface. Two drive fields mainly excite transition g rather than d due to the big detuning between the drive
frequency and transition frequency of d . (b) Electronic pumping from the ground state to the excited state, where �D± is k±’s contribution to
transition f and e. Here we only show the resonant pumping (zero multiphoton detuning).

Fock states from intense classical light, this effect can mimic
quantum entanglement. The absorption rate is proportional to

|e2ikx + e−2ikx | ∼ cos(4kx). (1)

The period of the pattern is λ/4 and therefore the resolution
is enhanced by a factor of two. By generalizing this system to
more energy levels and more drive beams, we can in principle
improve the resolution beyond a factor of two. Therefore, we
can achieve the same resolution as the quantum NOON state
by just using classical light.

Despite the simplicity of this scheme, no experiment has
been done yet. One main reason is the lack of a suitable
material for demonstrating this method. In the following, we
propose and numerically show that SiV may be a good candi-
date material for subwavelength optical lithography based on
Doppleron resonance. Due to their similarities in symmetries
and electronic structure, our arguments can also be applied to
other color centers like NV and GeV [27,28].

III. PROPOSED EXPERIMENTAL SETUP

The proposed experimental setup is shown in Fig. 1(a)
where a shallow layer of SiV− centers is oriented in the (111)
direction (i.e., perpendicular to the diamond surface). Although
such an oriented layer of SiV has not yet been observed,
a microwave plasma-assisted chemical vapor deposition dia-
mond growth technique on (111)-oriented substrates in NV
is reported [29]. Due to the similarities in symmetries and
electronic structure, it is therefore possible to fabricate such
a layer for SiV. The electronic structure of the SiV− center is
also shown in Fig. 1(a) with ground doublet levels 2Eg and
excited doublet levels 2Eu [30]. For simplicity, we relabel the
four doublet states as |a〉,|c1〉,|c2〉,|b〉. The dipole directions of
the transitions f and e are along the [111] crystal vector, and
the dipoles of transitions d and g are perpendicular to the [111]
crystal vector. Due to the symmetry, d’s and g’s dipoles have
the same magnitude in every direction perpendicular to [111]
[31]. The relative magnitude of four dipole moments can also
be inferred from the photoluminescence intensity in Ref. [31],
where the photoluminescence intensity is proportional to the
modulus square of the transition dipole after correcting for
Boltzmann population differences. Therefore, all the four
transition dipoles have similar strengths. As in Ref. [21],

we need pairs of drive beams and signal beams to complete
three-photon resonance in each of the two opposite directions.
As shown in Fig. 1(a), signal beams are incident at a small
angle with polarizations almost perpendicular to the surface
and wave vectors k identical along the surface. Therefore,
those signal beams only excite the transitions f and e and
produce a diffraction-limited periodic pattern. The drive beams
are normally incident with their polarizations perpendicular to
the [111] direction so that they are coupled to transitions g and
d. The level structure and beam coupling are shown in Fig. 1(b)
where multiphoton resonance is achieved by absorbing two
photons from signal beams of the same incident direction and
one from the drive beam.

In the rotating wave approximation (RWA) and the interac-
tion picture, the interaction Hamiltonian including four signal
beams is given by

HI = − h̄

2

∑
α=±

(�Sα|c1〉〈b|ei(−ναt+ωbc1 t+αkx)

+�Sα|a〉〈c2|ei(−ναt+ωac2 t+αkx)

− h̄

2

∑
α=±

(�Dα|c1〉〈c2|ei(−νDαt+ωc1c2 t)

+�Dα|a〉〈b|ei(−νDαt+ωabt)) + H.c., (2)

where the Rabi frequencies are set to be �S± = |μ|ES/h̄

and �D± = |μ|ED/h̄ (we have the relationship μac2 ≈ μbc1 ≈
μab ≈ μc1c2 ≈ μ), and the index S(D) is short for “sig-
nal”(“drive”). For simplicity, we have set the transition dipole
moment to be real, while it is not necessary to do so because
the phase of the dipole moment will not yield any differences
in observation. We define the detunings as follows: �1± =
ωc1b − ν±, �2± = ωac2 − ν±, ωij = |Ei − Ej |/h̄.

IV. NUMERICAL CALCULATION

The master equation of the system is given by

ρ̇ = − i

h̄
[HI ,ρ] + L [ρ], (3)
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FIG. 2. Probability in the excited states as a function of position x. Decay is excluded in the dashed curve, and included in the solid
curve, wavelength λ = 736 nm. Interaction time t0 = 1 ns, �1+ = −1.1(ωa − ωc2 − ωc1 + ωb) = −691 GHz, �2+ = 0.9(ωa − ωc2 − ωc1 +
ωb) = 565 GHz, �1− = −0.9(ωa − ωc2 − ωc1 + ωb) = −565 GHz, �2− = 1.1(ωa − ωc2 − ωc1 + ωb) = 691 GHz, ρee = ρaa + ρc1c1 . (a)–(c)
Temperature T = 0.1 K, �S = 260 GHz, �D = 40 GHz. (d)–(f) T = 0.1 K, �S = 403 GHz, �D = 0.15�S = 60.5 GHz. (g)–(i) T = 300 K;
other parameters are the same as (a).

where HI is given by Eq. (2) and L [ρ] is the relaxation of the
system which is given by (see details in Appendix)

L [ρ] = −
∑

i

	i

2
[σ i

+σ i
−ρ − σ i

−ρσ i
+ + H.c.], (4)

where 	i is the decay rate of the transition i and σ i
± is the

raising or lowering operator for the transition i. Due to the
orbital relaxation, the electrons on |a〉 and |c2〉 also decay into
|c1〉 and |b〉, respectively. The excited state lifetime below 20 K
is τ = 1.5 ns so that decay rate 	c1→c2 = 	c1→b = 	a→c2 =
	a→b = 0.5τ−1. The orbital relaxation rate scales linearly with
temperature and can be found in Ref. [26].

According to the Boltzmann distribution, nearly all (above
99.99%) electrons are initially in the ground states |b〉 at low
temperature (∼0.1 K) and the orbital relaxation time T1 = 40
ns. The initial condition for Eq. (3) is therefore ρbb = 1 and
ρij = 0 for the other matrix elements. The numerical results
for different parameters are shown in Fig. 2. Considering that
detection laser may not resolve the upper two energy levels,
we also plot the spatial distribution of the total upper-level
populations (ρee = ρaa + ρc1c1 ) which are shown in Figs. 2(a),
2(d) and 2(g). In Fig. 2(b), λ

4 patterns are achieved with a

visibility of V = 1 and an excitation efficiency of 58%. It
is worth noting that, although the perturbation theory is no

longer valid (|�eff t | = | �2
S�D

�1±�2±
t | ≈ 5.4 > 1), the λ

4 fringes are
still nearly perfect sinusoidal without any background noise.
This is because �D � ωab − νD so that the direct transition
|b〉 → |a〉 is almost completely suppressed. We also show
the population distribution in state |c1〉 which is shown in
Figs. 2(c), 2(f) and 2(i). The population in state |c1〉 is not
completely suppressed because the signal field is not in the
perturbation regime. The excitation structure of the state |c1〉
is shifted from that of the state |a〉. Thus, the population on the
excited doublets ρee has a reduced visibility which is shown
in Fig. 2(a). The visibility is reduced from 100% to 57%.
Figures 2(e) and 2(f) show the results when we increase the
Rabi frequencies. We can see that the λ

8 pattern is generated.
The resolution is doubled because the excited state |a〉 has
undergone a Rabi oscillation.

We also study the temperature’s influence on our subwave-
length pattern. At room temperature T = 300 K, the excited
state lifetime is 1.1 ns, and the initial state according to the
Boltzmann distribution is ρbb = 0.502 and ρc2c2 = 0.498. The
results are shown in Figs. 2(f)–2(i). The visibility is 0.57, 0.55,
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FIG. 3. Three ways of forming λ

4 fringes. (a) Transition |b〉 → |c1〉 → |c2〉 → |a〉 is achieved by absorbing two photons from the left (right)
with frequency ν+ (ν−) and one photon from the drive field with frequency ω+ (ω−). (b) Transition |c2〉 → |c1〉 → |b〉 → |c1〉 is achieved
by absorbing one photon from the drive field, followed by absorbing one photon from the left (right) and emitting one photon from the right
(left). �′

1± = ωc1c2 − ωD± = ∓125 GHz, �′
2± = ωc1b − ν∓, �′

2+ = −565 GHz, �′
2− = −691 GHz. (c) Transition |c2〉 → |a〉 → |c2〉 → |c1〉

is achieved by first absorbing one photon from the left (right) and emitting one photon from the right (left), then absorbing one photon from the
drive field. �′

1± = ωac2 − ν±, �′
1+ = 565 GHz, �′

1− = 691 GHz, �′
2± = ωc1c2 − ωD∓ = ±125 GHz.

0.56 for patterns formed by |a〉, |c1〉, and the excited doublets,
respectively, which is higher than the usual method through
two-photon absorption in Ref. [22]. λ

4 fringes on |a〉 are formed
through the |b〉 → |c1〉 → |c2〉 → |a〉 transition pathway with
two photons absorbed from ν+(ν−) and one photon absorbed
from ω+(ω−), as shown in Fig. 3(a). λ

4 fringes on |c1〉 can be
formed in two ways, which are shown in Figs. 3(b) and 3(c).
Both ways involve the absorption of one photon from the signal
beam in one direction and the emission of one photon from
the signal beam in the other direction. They are also reso-
nant as long as �1+ + �1− = −(ωa − ωc2 − ωc1 + ωb) and
�2+ + �2− = ωa − ωc2 − ωc1 + ωb. Therefore, their patterns
are shown to be of the form,

|ei(k1+k2)x + e−i(k1+k2)x | ∼ cos(2(k1 + k2)x). (5)

In Fig. 3(b), the electron is excited from |c2〉 to |c1〉 by
absorbing one photon from the drive field, followed by emitting
and absorbing one photon from the signal field to achieve the
|c1〉 → |b〉 → |c1〉 transition. This process is resonant since
ωc2c1 = ω± − ν± + ν∓. In Fig. 3(c), the electron undergoes the
|c2〉 → |a〉 → |c2〉 transition by absorbing one photon from
one signal beam and emitting one photon from the other signal
beam, followed by absorbing one photon from the drive field so
it can be pumped to the |c1〉 state. This process is also resonant
since ωc2c1 = ν± − ν∓ + ω∓. The noise of Figs. 2(h) and 2(i)
is due to the single photon process |c2〉 → |a〉 and |b〉 → |c1〉.
Therefore, at room temperature, the λ

4 patterns are formed on
|a〉 and |c1〉, and the overall λ

4 fringes are formed on the excited
doublets with a visibility of 0.58 and an efficiency of 0.62.

For lithography, we then need to transfer the internal state
population to the photoresist pattern. To achieve this, one
may cover the SiV with a thin layer of photoresist. After
the above process, the required pattern is mapped to the
spatial distribution of the excited state of the SiV system.
To transfer this pattern to the resist there are two possible
mechanisms: (1) The SiV− can be ionized by a second laser
and the electron would leave the diamond and form a solvated
electron on the resist that would drive an electrochemical
reaction [33]; (2) a two-color gated photo resist [32] is used
to prevent the strong excitation lasers from exposing while
allowing the much weaker fluorescence to expose. By the
above process, the required pattern can be imprinted to the
photoresist.

V. CONCLUSION

We numerically show that the SiV system is a good can-
didate material for demonstrating the subwavelength optical
lithography via classical light. In our numerical calculation,
we use the existing material parameters and consider all the
allowed transitions. In addition, we also include the decay
in our calculation and give a set of parameters to get the
λ
4 pattern with visibility V = 1 and efficiency 58% at low
temperature. Higher Rabi frequencies and interaction time can
compromise the λ

8 pattern due to higher order effects. Even at
room temperature, λ

4 with a visibility of around 0.57 can be
achieved. Due to the similarities in symmetry and electronic
structure, this method can be applied to other color centers with
suitable parameters.
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APPENDIX: DERIVATION OF EQ. (3)

We now generalize the decay between the two-level system
to the multilevel system. The interaction Hamiltonian for the
multilevel system is

V (t) = h̄
∑
i,k

gk,i(a
†
kσ

i
−e−i(ωi−νk)t + σ i

+ake
i(ωi−νk)t ), (A1)

where gk,i =
√

νk
2h̄ε0V

μicosθ , μi is the dipole magnitude for
transition i, and θ is the angle between the atomic dipole di-
rection and electric field polarization vector. Since the lifetime
in the excited states is around 1 ns, we can approximate the
linewidth as 1 GHz, which is much smaller than the splitting
between the ground doublets ∼50 GHz. Therefore, we can
rewrite Eq. (B1) as

V (t) = h̄
∑
i,k

gk,i(a
†
k,iσ

i
−e−i(ωi−νk,i )t+σ i

+ak,ie
i(ωi−νk,i )t ), (A2)

where the subscript i means the photon is from transition i,
so we have [ak,i ,a

†
k,j ] = δi,j . The physical meaning is easy to

understand: The Lorentzians of each decay have no overlap,
so that the photon from transition i cannot be the photon from
transition j . Then we insert Eq. (B2) into the equation of
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motion for the reduced density matrix of the system ρS [34],

ρ̇S = − i

h̄
TrR[V (t),ρS(0) ⊗ ρR(0)]

− 1

h̄2 TrR

∫ t

0
[V (t),[V (t ′),ρS(t ′) ⊗ ρR(0)]]dt ′, (A3)

where ρR is the density matrix for the vacuum reservoir. For
the vacuum reservoir we have 〈ak,i〉 = 〈a†

k,i〉 = 0,〈ak,ia
†
k′,j 〉 =

δkk′δij ,〈a†
k,iak′,j 〉 = 0,〈ak,iak′,j 〉 = 〈a†

k,ia
†
k′,j 〉 = 0. Then triv-

ial calculation leads to

ρ̇S = −i
∑
i,k

gk,iTrR(a†
k,iρR)[σ i

−,ρS(0)]e−i(ωi−νk,i )t −
∫ t

0
dt ′

∑
i ′,k′,i,k

gk,igk′,i ′ {[σ i
−σ i ′

−ρS(t ′) − 2σ i ′
−ρS(t ′)σ i

− + ρS(t ′)σ i
−σ i ′

−]

× e−i(ωi−νk,i )t−i(ωi′ −νk′ ,i′ )t ′TrR(a†
k,ia

†
k′,i ′ρR) + [σ i

−σ i ′
+ρS(t ′) − σ i ′

+ρS(t ′)σ i
−]e−i(ωi−νk,i )t+i(ωi′ −νk′ ,i′ )t ′TrR(a†

k,iak′,i ′ρR)

+ [σ i
+σ i ′

− − σ i ′
−σ i

+]ei(ωi−νk,i )t−i(ωi′ −νk′,i′ )t ′TrR(ak,ia
†
k′,i ′ρR)} + H.c.

= −
∑
i,k

∫ t

0
dt ′g2

k,i[σ
i
+σ i

−ρS(t ′) − σ i
−ρS(t ′)σ i

+]ei(ω−νk,i )(t−t ′) + H.c. (A4)

We replace
∑
i,k

by 2 V
(2π)3

∫ 2π

0 dφ
∫ π

0 dθsinθ
∫ ∞

0 dkk2 where factor 2 is for two polarizations, V is the quantization volume, and

k = ω
c

√
εrμr . Then we use the Weisskopf-Wigner approximation, and we can get

ρ̇ = −
∑

i

	i

2
[σ i

+σ i
−ρ − σ i

−ρσ i
+ + H.c.], (A5)

where 	i = 1
4πεo

4ω3μ2
i

3h̄c3 . Considering this process occurs in diamond, we need to replace 	i by the decay rate in the medium:

	′
i = (n(ω))3

εr (ω) 	i [35]. Then we get Eq. (4).
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