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Postquench prethermalization in a disordered quantum fluid of light
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We study the coherence of a disordered and interacting quantum light field after propagation along a nonlinear
optical fiber. Disorder is generated by a cross-phase modulation with a randomized auxiliary classical light
field, while interactions are induced by self-phase modulation. When penetrating the fiber from free space, the
incoming quantum light undergoes a disorder and interaction quench. By calculating the coherence function
of the transmitted quantum light, we show that the decoherence induced by the quench spreads in a light-cone
fashion in the nonequilibrium many-body quantum system, leaving the latter prethermalize with peculiar features
originating from disorder.
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I. INTRODUCTION

Recent avant-garde experiments on cold atomic vapors
[1–6] have attracted wide interest in the thermalization of
many-body quantum systems projected away from equilibrium
after a quench. In a typical setup, a many-body quantum system
is initially prepared in the ground state of a given Hamiltonian
and is suddenly forced to evolve according to a time-modified
version of this Hamiltonian (quench protocol). Due to particle
interactions, the associated energy difference is redistributed
among the degrees of freedom of the system and the latter
relaxes towards a thermal equilibrium state (thermalization
process). Depending on the system, this stationary state is
predicted to be described by either a Gibbs or a generalized
Gibbs density matrix, the temperature of which is set by the
energy injected into the system [7–12].

If the thermalized regime is in general well understood, the
nonequilibrium dynamics leading to this state still puzzles. In
particular, are there peculiar stages explored by the system be-
fore it fully thermalizes? It was shown that generic many-body
quantum systems first relax towards a quasistationary thermal
state, usually referred to as prethermalized [13]. In such
systems, the actual thermalization emerges only later on, when
inelastic scattering becomes non-negligible. Prethermalization
was studied in various condensed-matter systems ranging from
quantum Ising chains [14–17] to Bose-Hubbard gases [18–21],
Bose-Einstein condensates [22–26], and Tomonaga-Luttinger
liquids [27,28].

If the above descriptions hold for homogeneous many-body
quantum systems, they should be considered cautiously when
disorder is present. As a matter of fact, due to the complex
interplay between interactions, which drive thermalization, and
disorder, which induces localization, it is not at all guaranteed
that the equilibrium state of a many-body quantum system
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evolving in a disordered landscape can be described within a
standard statistical-mechanics framework [29,30]. This phe-
nomenon, known as many-body localization, is currently
under active investigation [31,32]. Also poorly understood is
the problem of prethermalization in disorder, which has not
received much attention so far. In this article we tackle this issue
by studying the postquench prethermalization of a disordered
quantum fluid of light.

Our system is based on the quantum propagation of a
paraxial beam of quasimonochromatic light in a dispersive,
inhomogeneous, and nonlinear dielectric medium. In this all-
optical platform, the space propagation of the envelope of
the quantum electric field may be reformulated in terms of
the time evolution of a quantum fluid of interacting photons
with specific canonical commutation relations [33] (see also
Refs. [34–42] for related works, especially in fiber geometries).
The resulting analog system constitutes a particular class of
quantum fluids of light [43] and is presently attracting growing
interest as a powerful tool for quantum simulating systems
of many interacting particles [44]. In close relation to the
topic of the present paper, it was used to investigate the
prethermalization [45], the thermalization, and the Bose-
Einstein condensation [46] of a homogeneous beam of quan-
tum light, as well as their classical counterparts in a nonquan-
tum description of the optical field [47–59].

The system specifically studied in this article is sketched
in Fig. 1. Two beams of light 1 and 2 copropagate in the
positive-z direction along a one-dimensional (1D) nonlinear
optical fiber. In the fiber (0 < z < L), the two beams interact
via the optical nonlinearity through cross-phase modulation,
as detailed in Sec. II. In this configuration, we demonstrate
in Sec. III that the propagation of beam 1 in the presence
of beam 2 may be reformulated in terms of the evolution of
a disordered 1D quantum fluid of light. Beam 1 is treated
within a quantum framework where the propagation coordinate
z and the time parameter t play exchanged roles and where
chromatic dispersion and self-phase modulation respectively
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FIG. 1. Schematics of the all-optical setup considered in the
article (see the text).

provide an effective mass and effective two-body interactions
to the photons. The power of beam 2, which enters the
dynamics of beam 1 through cross-phase modulation, acts
as a disordered potential once randomized as a function of
the spacelike variable t by means of a light modulator. A
Bogoliubov-type description of the vacuum fluctuations of the
disordered 1D quantum fluid of light is provided in Sec. IV.
When entering the fiber from free space (z = 0), the optical
nonlinearity is abruptly switched on. As explained in Sec. V,
this effectively simulates both a disorder and an interaction
quench for the quantum fluid of light. The statistical properties
of the postquench quantum fluid of light are encoded in its
coherence function g(1), which is the core object we study
in the present work. In practice, g(1) can be experimentally
accessed through interferometric measurements at the exit of
the fiber (z = L) and, accordingly, we calculate it at this point
in Sec. VI. From its structure we find that, as a result of
the quench, a disorder-altered prethermalized state emerges
in a light-cone way in the system, accompanied by a loss of
macroscopic coherence. In Sec. VII we discuss the quantum
nature of our results and provide orders of magnitude based on
state-of-the-art fiber optics. We summarize in Sec. VIII, after
which technical points are collected in Appendixes A and B.

II. CROSS-PHASE MODULATION

In this section we introduce the phenomenon of cross-phase
modulation used in Sec. III to create an effective disordered
potential for photons and give the main hypotheses of our
approach.

Two beams of light 1 and 2 copropagate in the positive-z
direction along a 1D optical fiber. Polarization effects are
neglected so that a scalar description may be used. We express
α’s complex electric field Eα(r,t) [α ∈ {1,2} and r = (x,y,z)]
as the product of an envelope Eα(r,t) and a carrier ei(kαz−ωαt)

with propagation constant kα > 0 and angular frequency
ωα; we also split Eα(r,t) into a transverse modal function
Fα(x,y), such that

∫
dxdy|Fα(x,y)|2 = 1, times a longitudinal

amplitude Aα(z,t):

Eα(r,t) = Eα(r,t)ei(kαz−ωαt), (1a)

Eα(r,t) = Fα(x,y)Aα(z,t). (1b)

We now suppose quasimonochromaticity around ωα . In this
case, Aα(z,t) becomes a slowly varying function of z and t over
scales respectively of the order of 2π/kα and 2π/ωα . Around
ωα , the fiber displays a local Kerr nonlinearity of coefficient

n2(ω) ≶ 0 as well as the quadratic dispersion relation

k(ω) � kα + 1

vα

(ω − ωα) + Dα

2
(ω − ωα)2. (2)

In this equation vα = [(∂k/∂ω)(ωα)]−1 > 0 and
Dα = (∂2k/∂ω2)(ωα) ≶ 0 are, respectively, the group velocity
and the group-velocity-dispersion parameter at ωα . We finally
assume negligible propagation losses at ωα .

In such a configuration, Aα(z,t) satisfies the following
nonlinear propagation equation [60]:

i
∂Aα

∂z
= Dα

2

∂2Aα

∂t2
− i

vα

∂Aα

∂t
− γα|Aα|2Aα

− δα|A3−α(z,t)|2Aα. (3)

In this equation the nonlinear parameters γα and
δα are expressed as γα = (ωα/c0)(n2)α/Aα and
δα = 2(ωα/c0)(n2)α/A, with c0 the speed of light in free
space, (n2)α = n2(ωα) the Kerr-nonlinearity coefficient at ωα ,
Aα = [

∫
dxdy|Fα(x,y)|4]−1 the effective transverse area of

the beam of light α, and A = [
∫

dxdy|F1(x,y)|2|F2(x,y)|2]−1

the overlap effective transverse area between beams 1
and 2. Both the γα and the δα terms in Eq. (3) originate
from the Kerr nonlinearity: While the γα term standardly
describes self-phase modulation, the δα one is responsible
for cross-phase modulation, nonlinear effect where one of
the optical beams is phase affected by its copropagating
partner via the Kerr nonlinearity [60–64]. The factor 2 in δα

shows that cross-phase modulation is twice as effective as
self-phase modulation when Aα ∼ A and P1 ∼ P2, where
Pα(z,t) = 1

2c0ε0(nL)α|Aα(z,t)|2 is the local and instantaneous
power of the optical beam α, with ε0 the permittivity of free
space and (nL)α = nL(ωα) the homogeneous contribution to
the linear refractive index at ωα .

Note that Eq. (3) may be derived within the framework of
a phenomenological model where the cross-phase modulation
induced by the beam of light 3 − α = 2 or 1 is described by a
modified linear refractive index for the single beam of light
α = 1 or 2. This approach, implicitly used throughout this
work, is detailed in Appendix A.

III. DISORDERED 1D QUANTUM FLUID OF LIGHT

In view of the discussions of Secs. III A and III B, the
coupled system formed by Eq. (3) for α = 1 and by this same
equation for α = 2 can be rearranged as

i
∂A1

∂z
+ i

v1

∂A1

∂t
= D1

2

∂2A1

∂t2
− δ1|A2(z,t)|2A1

− γ1|A1|2A1, (4a)

i
∂A2

∂z
+ i

v2

∂A2

∂t
= D2

2

∂2A2

∂t2
− γ2|A2|2A2

− δ2|A1(z,t)|2A2. (4b)

In Sec. III A we present a formalism making it possible to
describe the propagation (4a) of beam 1 at the quantum level.
In Sec. III B we consider that the instantaneous power of beam 2
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is randomized by means of a light modulator (see Fig. 1) so as
to produce disorder for beam 1. For this purpose, beam 2 will be
treated within a nonquantum framework and in a configuration
where its propagation (4b) formally decouples from (4a).

A. 1D quantum nonlinear Schrödinger theory

Capturing features originating from the zero-point fluctu-
ations of the electric field of the optical beam 1 requires us
to build upon a quantum-field description of its propagation
along the optical fiber. Following Refs. [34–41], a generalized
quantum formulation of the propagation of a paraxial beam
of quasimonochromatic scalar light in a dispersive, inhomoge-
neous, and nonlinear medium was derived from microscopic
grounds in Ref. [33] and dimensionally reduced soon after, in
Ref. [45], to the nonlinear-optical-fiber geometry that interests
us here. We assume that the envelope E1(r,t) of beam 1’s
complex electric field propagates in the positive-z direction
(no backpropagating waves) but let it be arbitrarily (red or
blue) detuned from the carrier angular frequency ω1. In other
words, the variables conjugated to E1(r,t)’s variables z and t

respectively take their values in (0,∞) and (−∞,∞). The first
one, proportional to the linear momentum (along the z axis)
carried by E1(r,t), is bounded from below while the second
one, proportional to the energy carried by E1(r,t), is not. As a
result, E1(r,t)’s variables z and t respectively behave as a time
parameter and a space coordinate in the standard framework
of quantum mechanics. Accordingly, within the single-beam
effective model introduced at the end of Sec. II, the canonical
quantization procedure developed in Refs. [33,45] applies to
the classical field E1(r,t) [33] and then to its longitudinal
component A1(z,t) = ∫

dxdyF ∗
1 (x,y)E1(r,t) [45]. Precisely,

the latter is canonically replaced with a quantum field Â1(z,t)
satisfying

i
∂Â1

∂z
+ i

v1

∂Â1

∂t
= D1

2

∂2Â1

∂t2
− δ1|A2(z,t)|2Â1

− γ1Â
†
1Â1Â1, (5a)

[Â1(z,t),Â†
1(z,t ′)] = h̄

C
δ(t − t ′), (5b)

C = 1

2

c0ε0(nL)1

ω1
. (5c)

The propagation equation (5a) is nothing but the quantized
version of Eq. (4a) and the capacitance (5c) appearing in
the same-“time z,” different-“position t” commutation rela-
tion (5b) fixes the actual spacing between the accessible energy
levels of the system [33,45].

The quantum theory (5) is formally analogous to the one
of dilute atomic Bose gases [65,66] in 1D after exchanging
the roles played by the position coordinate z and the time
parameter t . Most particularly, apart from the constant-drift
term (i/v1)∂Â1/∂t at the group velocity v1, Eq. (5a) looks
very similar to the quantum nonlinear Schrödinger equation
describing the dynamics of these atomic systems: Â1(z,t)
corresponds to the quantum matter field in 1D, −1/D1 is
the analog of the atom mass, −δ1|A2(z,t)|2 plays the role of
an external potential, and −γ1 corresponds to the 1D atom-
atom interaction constant in the zero-range-pseudopotential

approximation. Noticeably, the incident quantum light field
Â1(0,t) determines the initial condition of the quantum non-
linear Schrödinger-type equation (5a), of first order in the
partial derivative with respect to the timelike parameter z.
These analogies make it possible to reformulate the quantum
propagation of beam 1 in the presence of beam 2 in terms of
the evolution of a 1D quantum fluid of light in any external
potential. This is what we detail in the following paragraphs.

To facilitate z and t to be viewed as time and space variables,
we introduce

τ = z

v1
, (6)

ζ = v1t − z, (7)

respectively homogeneous to a time and a length. In this new
coordinate system, after defining

�̂(ζ,τ ) =
(

C

h̄v1

)1/2

Â1

(
v1τ,

ζ

v1
+ τ

)
, (8)

m = − h̄

v3
1D1

, (9)

U (ζ,τ ) = −h̄v1δ1

∣∣∣∣A2

(
v1τ,

ζ

v1
+ τ

)∣∣∣∣
2

, (10)

g = − (h̄v1)2γ1

C
, (11)

the formalism (5) explicitly takes the form of a 1D quantum
nonlinear Schrödinger theory:

ih̄
∂�̂

∂τ
= − h̄2

2m

∂2�̂

∂ζ 2
+ U (ζ,τ )�̂ + g�̂†�̂�̂, (12a)

[�̂(ζ,τ ),�̂†(ζ ′,τ )] = δ(ζ − ζ ′). (12b)

Using �̂†(ζ,τ )�̂(ζ,τ ) = �̂(ζ,τ )�̂†(ζ,τ ) − δ(0) [from
Eq. (12b)] and performing the substitution

�̂(ζ,τ ) −→ �̂(ζ,τ ) exp

[
i
gδ(0)τ

h̄

]
, (13)

we rewrite the quantum nonlinear Schrödinger equation in the
form (12a) but with the interaction term replaced with g�̂�̂†�̂
while preserving the same-τ commutation relation (12b). In
doing so, the phase of �̂(ζ,τ ) conveniently disappears from
the interaction term after reformulating the problem within
Madelung’s approach of quantum mechanics (see Sec. IV).
Building upon (12) and (13), we will from now on make use
of the terminology as well as of the theoretical tools specific
to the physics of dilute atomic Bose gases.

At this stage, a few comments are in order. Note first
that the extra z dependence of ζ in Eq. (7) makes the drift
derivative (i/v1)∂/∂t = i∂/∂ζ disappear from the left-hand
side of Eq. (5a). This is natural since Eq. (7) links the coordinate
systems {x,y,z,t} and {x,y, − ζ,t} of two Galilean reference
frames, the latter uniformly moving with respect to the former
at the velocity v1 > 0 along the z axis. Second, the quantum
field (8) and (13), which describes the dynamics of the thus-
defined 1D quantum fluid of light, is normalized so that the
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squared modulus of its classical version, |�|2, coincides with
the local and instantaneous density ρ of photons in beam 1.
Indeed, the flux φ1 of photons in that beam is by definition
related to the density ρ through φ1 = v1ρ and to the power
P1 = 1

2c0ε0(nL)1|A1|2 throughφ1 = P1/(h̄ω1), from which we
get ρ = |�|2, by definition of �. As a result, its quantized
counterpart ρ̂(ζ,τ ) = �̂†(ζ,τ )�̂(ζ,τ ) exactly corresponds to
the density operator of the 1D quantum fluid of light. The
mass (9) stems from the chromatic dispersion of the optical
fiber and may be positive or negative depending on whether
the group-velocity dispersion is anomalous or normal at ω1:
m ≷ 0 when D1 ≶ 0. Finally, the external potential (10) and
the photon-photon interactions, controlled by the nonlinear
parameter (11), originate from the Kerr nonlinearity and may
be repulsive or attractive depending on whether the latter is
defocusing or focusing at ω1: U (ζ,τ ),g ≷ 0 when (n2)1 ≶ 0.
In fact, the 1D quantum fluid of light is robust against the
formation of modulational instabilities when m and g are of
the same sign [67], for instance, when they are both positive,
m > 0 (D1 < 0) and g > 0 [(n2)1 < 0], which we consider
from now on.

B. Disordered potential

As we eventually wish to describe the effect of a static
disordered potential on the quantum fluid of light, we consider
the particular case where U (ζ,τ ) only depends on the space
coordinate ζ :

U (ζ,τ ) = V (ζ ). (14)

By looking at the propagation equation (4b) of the optical
field A2(z,t), from the squared modulus of which U (ζ,τ ) is
determined [see Eq. (10)], the condition (14) may be achieved
in a configuration where (i) v2 = v1, (ii) D2 = 0, and (iii)
(n2)2 = 0, the latter constraint yielding γ2 = 0 and δ2 = 0.
Indeed, in this very particular case, A2(z,t) is reduced to obey
the simple propagation equation

∂A2

∂z
+ 1

v1

∂A2

∂t
= 0, (15)

the solutions of which are by construction functions of
v1t − z = ζ . From an experimental point of view, the condi-
tions (i)–(iii) could be realized in the following configuration.
The optical fiber is designed so as to have two distinct cores.
The first core supports beam 1 while beam 2 propagates
along the second core. The latter is made of a linear material
[condition (iii)] whose dispersion relation κ(ω) is such that the
group velocity [(∂κ/∂ω)(ω)]−1 at ω = ω2 equals the group
velocity v1 in the first core [condition (i)] and such that the
group-velocity-dispersion parameter (∂2κ/∂ω2)(ω) vanishes
at ω = ω2, i.e., such that λD = 2πc0/ω2 corresponds to the
so-called zero-dispersion wavelength [60] of the material
[condition (ii)]. By construction physically separated from
beam 1, beam 2 should nevertheless be sufficiently evanescent
in the x and y directions to make beam 1 interact with it through
cross-phase modulation [that is, to always have Eq. (4a)].
Noticeably, since beam 2 is here assumed to propagate in
a linear material, cross-phase modulation does not enter the
dynamics of A2(z,t), the propagation equation of which is then
decoupled from Eq. (4a).

In this work we are interested in describing the vacuum
fluctuations of the 1D quantum fluid of light in the pres-
ence of disorder (Sec. IV). Such disorder can be obtained
by tailoring the stationary external potential (14) so that it
becomes a random function of ζ . Since V (ζ ) is derived from
|A2(z,t)|2 and since ζ is nothing but t at a fixed z, this may
be achieved by randomly designing the input power profile
P2(0,t) = 1

2c0ε0(nL)2|A2(0,t)|2 of the optical beam 2 as a
function of t , typically making use of a light modulator (see
Fig. 1). From now on, we denote by · · · the average over the
realizations of the disorder. For the sake of convenience, we
perform the gauge transformations

V (ζ ) −→ V (ζ ) − V (ζ ), (16)

�̂(ζ,τ ) −→ �̂(ζ,τ ) exp

[
i
V (ζ )τ

h̄

]
(17)

in Eqs. (12) supplemented by (13) and (14). As a consequence,
we are led to investigate the 1D quantum nonlinear Schrödinger
problem

ih̄
∂�̂

∂τ
= − h̄2

2m

∂2�̂

∂ζ 2
+ V (ζ )�̂ + g�̂�̂†�̂, (18a)

[�̂(ζ,τ ),�̂†(ζ ′,τ )] = δ(ζ − ζ ′), (18b)

where the static disordered potential V (ζ ) is now of zero
average,

V (ζ ) = 0. (19)

In the following, we will also need its two-point correlation
function, which we choose to be Gaussian,

V (ζ )V (ζ ′) = V2C(ζ − ζ ′) = V2e−(ζ−ζ ′)2/σ 2
, (20)

where V = [V 2(ζ )]1/2 and σ are, respectively, the standard
deviation and the correlation length of V (ζ ). Note that since we
will always work at the second order inV throughout this paper,
our calculations will hold whatever the probability distribution
of V (ζ ).

IV. QUANTUM BOGOLIUBOV THEORY
FOR DISORDERED 1D SYSTEMS

In order to perform an analytical treatment of the quantum
dynamics (18) in the external potential V (ζ ), we assume
that our nonlinear optical system falls into the limits of
weak interactions and of small density quantum fluctuations.
These hypotheses delimit the framework of the density-phase
extension [68,69] of the well-known Bogoliubov theory of
linearized quantum fluctuations [65,66,70]. It is standardly
used to treat the infrared divergences of the phase fluctuations
in reduced dimensions. In this section we recall the main lines
of this approach for our disordered 1D quantum fluid of light,
taking inspiration from Refs. [71–74]. For the moment, we
focus on light propagation in the fiber, leaving the question of
the interfaces for the next section.

We start by writing the quantum field �̂(ζ,τ ) in Madelung’s
representation [68,69],

�̂(ζ,τ ) = eiϕ̂(ζ,τ )
√

ρ̂(ζ,τ ), (21)
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where the density and the phase Hermitian operators ρ̂(ζ,τ )
and ϕ̂(ζ,τ ) obey the commutation rule

[ρ̂(ζ,τ ),ϕ̂(ζ ′,τ )] = iδ(ζ − ζ ′) (22)

at any time τ so as to preserve the canonical commutation rela-
tion (18b). Inserting Eq. (21) into Eq. (18a) and separating the
imaginary parts from the real ones in the resulting Heisenberg
equation of motion, we obtain the well-known Madelung (or
quantum Euler) equations [68,69]

∂ρ̂

∂τ
+ ∂

∂ζ
(v̂ρ̂) = 0, (23a)

m
∂v̂

∂τ
= − ∂

∂ζ

[
mv̂2

2
− h̄2

2m

1√
ρ̂

∂2√ρ̂

∂ζ 2
+ V (ζ ) + gρ̂

]
(23b)

for the density and the velocity operators ρ̂(ζ,τ ) and
v̂(ζ,τ ) = (h̄/m)(∂ϕ̂/∂ζ )(ζ,τ ).

In 1D, the hypothesis of weak interactions implies the one
of small density quantum fluctuations [75]. Since the external
potential is in addition time independent, we accordingly look
for weak-amplitude quantum fluctuations of the density oper-
ator around a stationary classical state of density ρ0(ζ ), zero
velocity for simplicity’s sake, and overall energy (chemical
potential) μ:

ρ̂(ζ,τ ) = ρ0(ζ ) + ρ̂1(ζ,τ ), (24)

ϕ̂(ζ,τ ) = ϕ0(τ ) + ϕ̂1(ζ,τ ) = −μτ

h̄
+ ϕ̂1(ζ,τ ). (25)

In Eq. (24) the classical density ρ0(ζ ) a priori depends on
ζ in the presence of the inhomogeneous potential V (ζ ). Its
quantum correction ρ̂1(ζ,τ ) is in comparison small. In Eq. (25)
the classical phase ϕ0(τ ) = −μτ/h̄ does not depend on ζ in
the absence of background velocity. Its quantum correction
ϕ̂1(ζ,τ ) strongly fluctuates in the infrared. This is not the case
for the associated velocity field (h̄/m)(∂ϕ̂1/∂ζ )(ζ,τ ), which is
as weakly fluctuating as ρ̂1(ζ,τ ) [68,69].

A. Gross-Pitaevskii classical field

At the classical level, that is, when ρ̂(ζ,τ ) = ρ0(ζ ) and
ϕ̂(ζ,τ ) = ϕ0(τ ) = −μτ/h̄, Eq. (23a) is trivially verified and
Eq. (23b) simplifies to the following stationary Gross-
Pitaevskii equation for the classical density ρ0(ζ ) [68,69]:

μ = − h̄2

2m

1√
ρ0

∂2√ρ0

∂ζ 2
+ V (ζ ) + gρ0. (26)

In this work we assume that the fiber is continuously
pumped by a monochromatic beam 1 (the initial condition
will be precisely treated in Sec. V A, when dealing with
the interfaces with free space). Therefore, in the absence of
disorder [V (ζ ) = 0], the in-fiber classical density ρ0(ζ ) is
externally forced to be independent of ζ , given by the uniform
solution ρ̄0 of the stationary Gross-Pitaevskii equation (26):

ρ0(ζ ) = ρ̄0 = const with μ = gρ̄0. (27)

In the presence of disorder [V (ζ ) 
= 0], ρ0(ζ ) cannot be
independent of ζ anymore. From now on, we assume that the
typical amplitude [V 2(ζ )]1/2 = V of the disordered potential
is much smaller than the typical interaction energy gρ̄0 = μ:

V � μ. In this small-disorder limit, ρ0(ζ ) weakly deviates
from its disorder-average value ρ0(ζ ) = ρ̄0 as

ρ0(ζ ) = ρ̄0 + δρ0(ζ ), (28)

where |δρ0(ζ )|/ρ̄0 ∼ V/μ � 1. Note that due to the stationar-
ity of the amplitude of the input classical beam, no localization
phenomenon is visible in the in-fiber average classical density,
which is purely uniform. The situation could be different
for explicitly time-dependent, pulsed beams. After linearizing
Eq. (26) according to Eq. (28), we get the linear differential
equation (

−ξ 2

4

∂2

∂ζ 2
+ 1

)
δρ0

ρ̄0
= −V (ζ )

μ
, (29)

where ξ = h̄/(mμ)1/2 is the healing length. Solving it in
Fourier space, we obtain [76–78]

δρ0(ζ ) =
∫

dζ ′χ (ζ − ζ ′)V (ζ ′), (30a)

χ (ζ − ζ ′) = − ρ̄0

ξμ
e−2|ζ−ζ ′ |/ξ . (30b)

Equation (30a) gives the density linear response of the 1D
system and the expression (30b) of the corresponding linear-
response function unsurprisingly indicates that the typical
length scale over which the fluid’s density is able to respond
to a single realization of the disorder is the healing length ξ .

Given Eq. (28) with |δρ0(ζ )|/ρ̄0 ∼ V/μ � 1, any expec-
tation value of quantities involving ρ0(ζ ) starts to depend on
disorder from the second order when expanded in powers of
V/μ. We will work up to this order in the following, assuming
that the subsequent terms, a priori smaller, do not alter the
general physics of the problem. For this reason, it is sufficient
to know the two-point correlator

G(ζ − ζ ′) = δρ0(ζ )δρ0(ζ ′), (31)

which only depends on |ζ − ζ ′| since ρ̄0 = const. Making use
of Eqs. (20) and (30), we recast Eq. (31) as

G(ζ − ζ ′)
ρ̄2

0

=
(V

μ

)2 ∫
dZdZ′

ξ 2
C(Z − Z′)

× e−2(|Z−ζ |+|Z′−ζ ′|)/ξ , (32)

where C(Z − Z′) = e−(Z−Z′)2/σ 2
. Performing the integrals, we

get

G(ζ − ζ ′)
ρ̄2

0

=
√

π

2

(V
μ

)2
σ

ξ

×
[
eσ 2/ξ 2 f (ζ − ζ ′) + f (ζ ′ − ζ )

2

+ 2√
π

σ

ξ
e−(ζ−ζ ′)2/σ 2

]
, (33a)

f (ζ − ζ ′) =
(

1 − 2
σ 2

ξ 2
+ 2

ζ − ζ ′

ξ

)
e−2(ζ−ζ ′)/ξ

× erfc

(
σ

ξ
− ζ − ζ ′

σ

)
, (33b)
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μ
)2

ρ̄
2 0]
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0.375

0.1

FIG. 2. The red curves show the normalized two-point correlation
function of the density classical fluctuations as a function of |ζ − ζ ′|/ξ
for different values of σ/ξ , as given in Eqs. (33). The blue curves
show the asymptotic results when σ/ξ � 1 (dashed curve) and when
σ/ξ � 1 (solid curve), as given in Eq. (34).

where erfc(X) = (2/
√

π )
∫ ∞
X

dYe−Y 2
is the complementary

error function. In Fig. 2 we plot G(ζ − ζ ′)/[(V/μ)2ρ̄2
0 ] as a

function of |ζ − ζ ′|/ξ for different values of σ/ξ .
When σ/ξ � 1 or σ/ξ � 1, Eqs. (33) reduce to

G(ζ − ζ ′)
ρ̄2

0

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
π

2

(V
μ

)2
σ

ξ
e−2|ζ−ζ ′ |/ξ

(
1 + 2

|ζ − ζ ′|
ξ

)
,

σ

ξ
� 1,

(V
μ

)2

e−(ζ−ζ ′)2/σ 2
,

σ

ξ
� 1.

(34)

These asymptotic behaviors are shown in Fig. 2. In the limit
σ/ξ � 1, the correlation function C(Z − Z′) in Eq. (32) can
be replaced by

√
πσδ(Z − Z′) (uncorrelated disorder). In this

case, the healing length ξ is the only relevant scale of variation
of G(ζ − ζ ′). In the inverse limit σ/ξ � 1, C(Z − Z′) slowly
varies at the scale of ξ . In this case, G(ζ − ζ ′) and C(ζ − ζ ′)
are proportional [interestingly, independently of the shape of
C(ζ − ζ ′)] and the disorder’s correlation length σ is the only
relevant scale of variation of G(ζ − ζ ′). The limit σ/ξ � 1
actually coincides with the Thomas-Fermi regime where the
kinetic term ∼h̄2/mσ 2 is negligible compared to the interac-
tion term ∼h̄2/mξ 2 in the Gross-Pitaevskii equation (26). In
this limit indeed, Eq. (26) reduces to ρ0(ζ ) � [μ − V (ζ )]/g
(since μ > V), from which we readily get the second row of
Eq. (34) after making use of Eq. (28), μ = gρ̄0, and Eqs. (20).

B. Bogoliubov quantum fluctuations

At the first order in the density and the velocity quantum
fluctuations ρ̂1(ζ,τ ) and (h̄/m)(∂ϕ̂1/∂ζ )(ζ,τ ), the Madelung
equations (23) reduce to the density-phase Bogoliubov-
de Gennes equations for the rescaled quantum fields

ρ̂1(ζ,τ )/
√

ρ0(ζ ) and 2i
√

ρ0(ζ )ϕ̂1(ζ,τ ) [68,69],

ih̄
∂

∂τ

ρ̂1√
ρ0(ζ )

=
[
− h̄2

2m

∂2

∂ζ 2
+ V (ζ ) + gρ0(ζ ) − μ

]
2i

√
ρ0(ζ )ϕ̂1, (35a)

ih̄
∂

∂τ
2i

√
ρ0(ζ )ϕ̂1

=
[
− h̄2

2m

∂2

∂ζ 2
+ V (ζ ) + 3gρ0(ζ ) − μ

]
ρ̂1√
ρ0(ζ )

, (35b)

where ρ0(ζ ) is given in Eqs. (28) and (30) in the weak-disorder
limit V/μ � 1.

Let us first recall a few well-known results in the absence
of disorder [V (ζ ) = 0]. In this case, the system’s background
density is homogeneous, Eqs. (27). As a result, the eigenso-
lutions ρ̂1(ζ,τ )/

√
ρ̄0 and 2i

√
ρ̄0ϕ̂1(ζ,τ ) of the Bogoliubov-de

Gennes equations (35) are linear superpositions of plane-wave
fields:[

ρ̂1(ζ,τ )/
√

ρ̄0

2i
√

ρ̄0ϕ̂1(ζ,τ )

]
=

∫
dk

2π

[
ρ̂1(k,τ )/

√
ρ̄0

2i
√

ρ̄0ϕ̂1(k,τ )

]
eikζ . (36)

Their common wave number along the ζ axis is denoted by k

and is proportional to the detuning � = ω − ω1 ≶ 0 from the
carrier angular frequency ω1 since ζ is nothing but the time
variable t (at a fixed z) of the complex envelope E1(r,t). We
furthermore parametrize their amplitudes as follows:[

ρ̂1(k,τ )/
√

ρ̄0

2i
√

ρ̄0ϕ̂1(k,τ )

]
= (uk ± vk)[â(k,τ ) ± â†(−k,τ )]. (37)

In doing this, ρ̂1(ζ,τ )/
√

ρ̄0 and 2i
√

ρ̄0ϕ̂1(ζ,τ ) may be sym-
metrically expressed as[

ρ̂1(ζ,τ )/
√

ρ̄0

2i
√

ρ̄0ϕ̂1(ζ,τ )

]
= γ̂ (ζ,τ ) ± γ̂ †(ζ,τ ), (38)

where

γ̂ (ζ,τ ) =
∫

dk

2π
[uke

ikζ â(k,τ ) + vke
−ikζ â†(k,τ )]. (39)

In the transformation equation (37), the operator â(k,τ )
[â†(−k,τ )] annihilates (creates) an elementary excitation in
the plane-wave mode of wave number k (−k) at the time
τ . It harmonically evolves at a well-defined energy Ek > 0
and satisfies the standard equal-time commutation relation in
momentum space:

â(k,τ ) = e−iEkτ/h̄â(k,0), (40)

[â(k,τ ),â†(k′,τ )] = 2πδ(k − k′). (41)

Chosen to be real and even functions of k, the weights uk and
vk must accordingly obey the constraint

u2
k − v2

k = 1 (42)

so as to preserve the commutation rule (22) verified by the
fields ρ̂(ζ,τ ) and ϕ̂(ζ,τ ). When V (ζ ) = 0, Eqs. (35), (37), (40),
and (42) are readily solved in Fourier space and give the
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standard results [65,66,68–70]

Ek =
[

h̄2k2

2m

(
h̄2k2

2m
+ 2μ

)]1/2

, (43)

uk ± vk =
(

h̄2k2

2m

/
Ek

)±1/2

. (44)

Equation (43) is the usual Bogoliubov dispersion relation and
Eq. (44) fixes the k dependence of the Bogoliubov amplitudes
uk and vk . When |k|ξ � 1, the Bogoliubov excitations of the
homogeneous quantum fluid of light consist in sound waves, or
phonons, propagating at the velocity s = (μ/m)1/2 = h̄/(mξ ):
Ek � sh̄|k|. When |k|ξ � 1 instead, they consist in gapped
free particles: Ek � h̄2k2/(2m) + μ.

Let us now return to the situation where disorder is present
[V (ζ ) 
= 0]. In this case, the system’s background densityρ0(ζ )
is no longer constant. It is given in Eqs. (28) and (30) in
the weak-disorder limit V/μ � 1. An analytical treatment of
the dynamics of Bogoliubov excitations in weakly interacting
dilute atomic Bose gases subjected to weakly perturbing,
spatially correlated disordered potentials was developed in
Refs. [71,72]. In the present paper we build upon these works to
solve our 1D disordered Bogoliubov-de Gennes problem (35).

Rewriting the solutions ρ̂1(ζ,τ )/
√

ρ0(ζ ) and
2i

√
ρ0(ζ )ϕ̂1(ζ,τ ) of Eqs. (35) as

[
ρ̂1(ζ,τ )/

√
ρ0(ζ )

2i
√

ρ0(ζ )ϕ̂1(ζ,τ )

]
=

[
ρ̄0

ρ0(ζ )

]±1/2[
ρ̂1(ζ,τ )/

√
ρ̄0

2i
√

ρ̄0ϕ̂1(ζ,τ )

]
(45a)

=
[

ρ̄0

ρ0(ζ )

]±1/2 ∫
dk

2π

×
[

ρ̂1(k,τ )/
√

ρ̄0

2i
√

ρ̄0ϕ̂1(k,τ )

]
eikζ , (45b)

applying the Bogoliubov transformation (37) to ρ̂1(k,τ )/
√

ρ̄0

and 2i
√

ρ̄0ϕ̂1(k,τ ) in Eq. (45b), and arranging the resulting
formula in the form (38), we get the following (39)-like
expansion for the Bogoliubov quantum field γ̂ (ζ,τ ):

γ̂ (ζ,τ ) =
∫

dk

2π
[u(k,ζ )eikζ â(k,τ ) + v(k,ζ )e−ikζ â†(k,τ )].

(46)

In this equation, the ρ0(ζ )-dependent weights u(k,ζ ) and
v(k,ζ ) are real and even functions of k given by

u(k,ζ ) ± v(k,ζ ) = (uk ± vk)

[
ρ̄0

ρ0(ζ )

]±1/2

. (47)

By construction, these disorder-modified Bogoliubov ampli-
tudes comply with the usual η-orthogonality relation [consis-
tently with Eq. (41)] and with the orthogonality with respect
to the deformed classical state [71,72],∫

dζ�
†
1(k,ζ )η�1(k′,ζ ) = 2πδ(k − k′), (48)∫

dζ�
†
0(ζ,τ )�1(k,ζ ) = 0, (49)

where �0(ζ,τ ) = eiϕ0(τ )√ρ0(ζ ) t[11], �1(k,ζ ) = t[u(k,ζ )
v(k,ζ )]eikζ is the Bogoliubov wave function, and
η = diag(1,−1) is the Bogoliubov metric. Equation (48)

is nothing but the generalization of Eq. (42) when ρ0 = ρ0(ζ ).
In the weak-disorder limit V/μ � 1, we recall that ρ0(ζ )
slightly deviates from its unperturbed value ρ̄0 according to
Eq. (28). In this case, u(k,ζ ) and v(k,ζ ) are not too far from
their respective disorder-free counterparts uk and vk . Indeed,
at the first order in |δρ0(ζ )|/ρ̄0 � 1, one readily verifies from
Eq. (47) that

u(k,ζ ) ± v(k,ζ ) = (uk ± vk)

[
1 ∓ 1

2

δρ0(ζ )

ρ̄0

]
, (50)

which we will use in the following sections to carry out our
calculations.

As in Refs. [71,72], we here choose to expand the disorder-
dependent Bogoliubov quantum field γ̂ (ζ,τ ) over the plane-
wave eigenbasis of the disorder-free Bogoliubov-de Gennes
problem. In this formulation, the Bogoliubov excitations are la-
beled by a wave number k independent of the realizations of the
disorder. As shown in Eq. (46), they consist in distorted plane
waves whose ζ -dependent amplitudes u(k,ζ ) and v(k,ζ ) are
given in Eq. (50) for a weakly perturbing disordered potential.
They fulfill the usual η-orthogonality relation [Eq. (48)] and,
most importantly, decouple from the classical state [Eq. (49)].
At first sight, such a formulation suggests that the plane-wave
basis remains an eigenbasis of the disordered Bogoliubov-de
Gennes problem (35). This is not true in general though, as
in the disordered potential a Bogoliubov fluctuation of wave
number k undergoes scattering and therefore does not possess
a well-defined energy. Correspondingly, it is not clear that the
elementary-excitation operator â(k,τ ) in Eq. (46) evolves in a
simple harmonic way, as in Eq. (40). We treat this important
subtlety in the subsequent paragraphs. Most particularly, we
discuss the influence of our weak disordered potential on the
low-k scattering and dispersion properties of the Bogoliubov
quantum gas on top of the disordered classical background
fluid.

In full generality, a Bogoliubov excitation of wave number
k in the disordered potential V (ζ ) does not have a well-defined
energy ε = Ẽk but rather an energy distribution Sk(ε) called
spectral function [79–83]. Interpreted as an energy density,
the spectral function of the disordered Bogoliubov gas is
normalized to unity,

∫
dεSk(ε) = 1, and in the weak-disorder

limit V/μ � 1 is given by [71,72]

Sk(ε) = 1

π

�k/2

(ε − Ẽk)2 + (�k/2)2
, (51a)

�k = −2 Im(�k) > 0, (51b)

Ẽk = Ek + Re(�k). (51c)

In these equations, Ek is the disorder-free Bogoliubov dis-
persion relation (43) and �k = �(k,ε = Ek) is the on-shell
self-energy of the disordered Bogoliubov-de Gennes prob-
lem [71,72]. In general, a Bogoliubov excitation of wave
number k thus ends up energy distributed around an Ẽk 
= Ek

according to the Lorentzian law (51a). Due to scattering on the
random potential V (ζ ), such a quasiparticle correspondingly
possesses a finite lifetime τk = h̄/�k provided by the spectral
width �k . Of course, �(k,ε) = 0 in the absence of disorder.
In this case, Sk(ε) = δ(ε − Ek) and one recovers that an
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elementary excitation of wave number k possesses a single
energy Ek .

In the following we will specifically focus on the small-
wave-number, |k|ξ � 1, regime. In this limit, let us compare
the spectral width �k to the unperturbed Bogoliubov dispersion
relation Ek . By introducing the scattering mean free path
�k = |∂Ek/∂(h̄k)|τk [71,72], where ∂Ek/∂(h̄k) is the unper-
turbed Bogoliubov group velocity, we find

�k

Ek

= |∂Ek/∂(h̄k)|
Ek/(h̄|k|)

1

|k|�k

. (52)

When |k|ξ � 1, the first ratio on the right-hand side tends
to unity and the second one is found to be proportional
to (V/μ)2|k|ξ [71,72] when truncating the V/μ � 1 power
expansion of Im(�k) at the second order (Born approximation):

�k

Ek

� 1

|k|�k

∝
(V

μ

)2

|k|ξ, |k|ξ � 1. (53)

Thus, �k is negligible compared to Ek when |k|ξ approaches
zero. This implies that the spectral function (51a) can be
approximated by a Dirac distribution centered at ε = Ẽk:

Sk(ε) � δ(ε − Ẽk), |k|ξ � 1. (54)

As a result, when |k|ξ � 1, a Bogoliubov excitation of wave
number k keeps possessing a well-defined energy Ẽk , given by
the bare Bogoliubov dispersion relation Ek shifted by the real
part of �k [see Eq. (51c)]. Correspondingly, its annihilation
operator â(k,τ ) follows the harmonic evolution law (40) upon
substitution of Ek by Ẽk for |k|ξ � 1:

â(k,τ ) � e−iẼkτ/h̄â(k,0), |k|ξ � 1. (55)

The energy Ẽk for |k|ξ � 1 is the dispersion relation of
the small-wave-number Bogoliubov fluctuations in the weak
disordered potential V (ζ ).

Within the Born approximation for Re(�k), Ẽk is given
by [71,72]

Ẽk � s̃ h̄|k| = (s + �s̃)h̄|k|, (56a)

�s̃

s
= −1

2

(V
μ

)2 ∫
dk

2π

C(k)

(k2ξ 2/2 + 1)3
. (56b)

Equation (56a) shows that the dispersion relation Ẽk of the
small-k Bogoliubov fluctuations is phononlike, as in the ab-
sence of disorder (Ek � sh̄|k|) but with a disorder-modified
speed of sound s̃ = s + �s̃. The sound-velocity relative cor-
rection (56b) turns out to be negative, which is a peculiarity of
1D geometries [71,72]. In Eq. (56b), C(k) = ∫

dζC(ζ )e−ikζ

is the space Fourier transform of C(ζ ) given in Eqs. (20).
Straightforward calculations yield

�s̃

s
= − 3

16

√
π

2

(V
μ

)2
σ

ξ

×
[
e(σ 2/ξ 2)/2

(
1 − 2

3

σ 2

ξ 2
+ 1

3

σ 4

ξ 4

)
erfc

(
1√
2

σ

ξ

)

+
√

2

π

σ

ξ

(
1 − 1

3

σ 2

ξ 2

)]
. (57)

In Fig. 3 we plot the corresponding �s̃/[(V/μ)2s] as a function
of σ/ξ .

0 5 10 15 20

σ/ξ

−0.6

−0.5

−0.4

−0.2

0

Δ
s̃/

[(
V/

μ
)2

s]

FIG. 3. The red curve shows the normalized disorder-induced
correction to the Bogoliubov speed of sound as a function of σ/ξ ,
as given in Eq. (57). The blue curves show the asymptotic behaviors
when σ/ξ � 1 (dashed curve) and when σ/ξ � 1 (solid curve),
as given in Eq. (58). The horizontal dashed line indicates that
�s̃/[(V/μ)2s] = −1/2 when σ/ξ = ∞ [71,72], independently of the
original shape of the disorder’s correlation function C(ζ ), which in
this case equals 1.

Its asymptotic behaviors are also displayed in Fig. 3 and
they are given by

�s̃

s
�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 3

16

√
π

2

(V
μ

)2
σ

ξ
,

σ

ξ
� 1,

−1

2

(V
μ

)2(
1 − 3

σ 2/ξ 2

)
,

σ

ξ
� 1.

(58)

They are here derived from Eq. (57) but may also be directly
obtained from Eq. (56b): The limit σ/ξ � 1 corresponds to
an almost uncorrelated disordered potential [C(ζ ) � √

πσδ(ζ )
and then C(k) � √

πσ in Eq. (56b)], while the limit σ/ξ � 1
corresponds to a disordered potential with a slowly decay-
ing, quasiparabolic correlation function (C(ζ ) � 1 − ζ 2/σ 2

and then C(k) � 2π [1 + ∂2/∂(kσ )2]δ(k) in Eq. (56b)). The
fact that �s̃ ∝ V2σ when σ/ξ � 1 is expected since V2σ

is the only combination of V and σ that an uncorrelated
disordered potential can provide: V (ζ )V (0) ∝ V2σ . In the
opposite limit σ/ξ = ∞, the result �s̃ ∝ V2 can be qualita-
tively understood from a local-density approximation (LDA)
where the Bogoliubov wave (of wavelength ∼ξ ) perceives a
locally homogeneous background (of spatial extent ∼σ � ξ ).
Within this framework, we can define the correction to
s as �s̃LDA = s(ζ ) − s, where the local sound velocity
s(ζ ) = [μ(ζ )/m]1/2 is governed by the local chemical potential
μ(ζ ) = μ − V (ζ ). We first perform a V/μ � 1 power expan-
sion at the second order and then carry out the disorder average
using V (ζ )V (0) = V2, which eventually yields �s̃LDA ∝ V2.

To summarize, when |k|ξ � 1, the spectral function is
δ peaked and the disordered system exhibits a well-defined
dispersion relation: It is of phonon type with a specific
disorder-renormalized sound velocity. When |k|ξ � 1 instead,
the unperturbed dispersion relation is parabolic and the spectral
function becomes broad (see, e.g., Ref. [84]): No dispersion
relation may be identified. This issue could be circumvented
by starting from an energy (ε) expansion, instead of a wave-
number (k) expansion, of the Bogoliubov quantum field (46).
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This was done in, e.g., Refs. [85,86] to describe Bogoliubov
quantum fluctuations around nonuniform stationary back-
ground patterns in the context of acoustic Hawking radiation.
Nevertheless, as we will focus in the following on the phonon
regime, the descriptions we established up to here will be
sufficient to carry out our calculations.

V. QUANTUM QUENCH

In Sec. IV we treated the quantum fluctuations of beam 1
in the fiber. Here we address the effect of the z = 0 and z = L

interfaces with free space, where beam 1 evolves independently
of beam 2. As shown below, these interfaces effectively induce
a disorder and interaction quench for the quantum fluid of light.

Upon crossing the entrance of the fiber at z = 0, the
optical nonlinearity is abruptly switched on. The vacuum of
the quantum fluctuations of beam 1 then gets nonadiabat-
ically modified: From free space, it suddenly becomes the
Bogoliubov vacuum and beam 1 gets in turn projected away
from equilibrium. Since z plays the role of time, this directly
simulates a steplike quench of the quantum fluid of light at τ =
0/v1 = 0. This quench involves the disordered and interaction
potentials in Eq. (18a) since both originate from the optical
nonlinearity [see Eqs. (10) and (11)]. The propagation distance
z > 0 across the fiber simulates the time τ = z/v1 > 0 elapsed
after the occurrence of the quench. Thus, when measuring the
statistical properties of the light exiting the fiber at z = L

(see Fig. 1), one also gains insight into the nonequilibrium
features of the quenched quantum fluid of light at the time
τ = L/v1 = T .

In Sec. V A we derive an expression for beam 1’s quantum
optical field in free space (z < 0 or z > L, i.e., τ < 0 or
τ > T ). In Sec. V B we establish the input-output relations
connecting the z < 0 and z > L regions given beam 1’s
quantum optical field in the fiber (0 < z < L, i.e., 0 < τ < T ).

A. Quantum optical field in free space

In free space (z < 0 or z > L) the beam of quasimonochro-
matic light 1 is assumed to have a wide top-hat spatial profile in
the x and y directions and to not suffer from attenuation along
the z axis. In such a configuration, its electric field Ê1(r,t)
quantum fluctuates around a classical monochromatic plane
wave with angular frequency ω1 and wave vector (ω1/c0)ẑ,

Ê1(r,t) = [E1 + δÊ1(r,t)]ei[(ω1/c0)z−ω1t], (59)

where δÊ1(r,t) is a small and slowly varying quantum depar-
ture from the uniform and static classical envelope E1.

Making use of the well-known plane-wave quantization
of the electric field in free space [87], we can express the
projection Â1(z,t) = ∫

dxdyF ∗
1 (x,y)[E1 + δÊ1(r,t)] of this

envelope onto the transverse modal function F1(x,y) of the
fiber at ω1. It consists in the sum of a homogeneous and
stationary classical field and of a weak quantum fluctuation
that may be cast in the following form [45]:

Â1(z,t)=
(

2h̄ω1

ε0

)1/2

eiϕ0

×
[√

ρ0 + 1√
c0

∫
d�

2π
e−i�t δα̂(�,z)

]
. (60)

In this equation, valid for z < 0 or z > L, the classical linear
density ρ0 and the classical phase ϕ0 are piecewise constant:
(ρ0,ϕ0) = (ρin,ϕin) for z < 0 and (ρ0,ϕ0) = (ρout,ϕout) for
z > L. In the quantum-fluctuation term, the integral is taken
over the detunings � = ωq − ω1 from the carrier angular fre-
quency ω1, with ωq = c0|q| = c0(q2

x + q2
y + q2

z )1/2 the photon
dispersion relation in free space. Finally, the operator δα̂(�,z)
derives from the photon annihilation operator in free space
α̂(q) as [45]

δα̂(�,z)= i√
c0

∫
dqxdqy

(2π )2
F ∗

1 (qx,qy)eiδqz(qx ,qy ,�)

× α̂

[
qx,qy,

ω1

c0
+ δqz(qx,qy,�)

]
, (61)

where F1(qx,qy) = ∫
dxdyF1(x,y)e−i(qxx+qyy) is the Fourier

transform of F1(x,y) and δqz(qx,qy,�) = −(q2
x + q2

y )/
[2(ω1/c0)] + �/c0 is qz − ω1/c0 upon linearization of ωq
around q = (0,0,ω1/c0). Since [α̂(q),α̂†(q′)] = (2π )3δ(q −
q′) [87], the δα̂(�,z)’s satisfy the following equal-z commu-
tation relation:

[δα̂(�,z),δα̂†(�′,z)] = 2πδ(� − �′). (62)

To facilitate the matching of the fields at the entrance (z = 0)
and the exit (z = L) of the fiber (Sec. V B), we are now going
to insert the free-space formulas (60)–(62) into the z ←→ t

mapping used to describe the system’s dynamics in the fiber.
For this purpose, we first reintroduce the quantum-fluid

variables (6) and (7), with here τ < 0 or τ > T . We then define
the free-space counterpart

�̂(ζ,τ ) =
(

C0

h̄c0

)1/2

Â1

(
v1τ,

ζ

v1
+ τ

)
, (63a)

C0 = 1

2

c0ε0

ω1
, (63b)

of the in-fiber quantum field (8) and (5c). In Eq. (63a), the
free-space capacitance C0 given in Eq. (63b) is nothing but
the in-fiber one (5c) with (nL)1 = 1, and the free-space speed
of light c0 replaces the in-fiber group velocity v1. Inserting
Eq. (60) into Eqs. (63) and performing the change of variables
k = −�/v1 in the integral over the detunings �, we eventually
write �̂(ζ,τ ) in the form of a classical contribution corrected
by plane-wave quantum modes with wave numbers k along the
ζ axis:

�̂(ζ,τ ) = eiϕ0

[√
ρ0 +

(
v1

c0

)1/2 ∫
dk

2π
eikζ â(k,τ )

]
. (64)

In the quantum term of Eq. (64), the velocity ratio v1/c0

originates from the fact that we use the same definition for
τ and ζ irrespective of whether one is outside or inside the
fiber [88]. The â(k,τ )’s are defined in terms of the δα̂(�,z)’s
as

â(k,τ ) = √
v1e

ikv1τ δα̂(−v1k,v1τ ), (65)

and due to Eq. (62), they satisfy the following equal-τ com-
mutation relation:

[â(k,τ ),â†(k′,τ )] = 2πδ(k − k′). (66)
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In Eq. (64) the quantum field

γ̂ (ζ,τ ) =
(

v1

c0

)1/2 ∫
dk

2π
eikζ â(k,τ ) (67)

is by construction small compared to the c-number
√

ρ0. As
a result, we can resum the first-order expansion (64) in the
form (21), (24), (25), and (38),

�̂(ζ,τ ) = eiϕ̂(ζ,τ )
√

ρ̂(ζ,τ ), (68)

where the quantum linear density ρ̂(ζ,τ ) and the quantum
phase ϕ̂(ζ,τ ) are expanded as

ρ̂(ζ,τ ) = ρ0 + ρ̂1(ζ,τ ), (69)

ϕ̂(ζ,τ ) = ϕ0 + ϕ̂1(ζ,τ ), (70)

the quantum contributions of which are symmetrically ex-
pressed as [

ρ̂1(ζ,τ )/
√

ρ0

2i
√

ρ0ϕ̂1(ζ,τ )

]
= γ̂ (ζ,τ ) ± γ̂ †(ζ,τ ). (71)

Equations (66)–(71) constitute the reformulation of beam
1’s quantum optical field in free space (z < 0 or z > L) within
the z ←→ t language used to describe the system’s dynamics
in the fiber (0 < z < L). This facilitates the matching of the
fields at z = 0 and z = L, as detailed in the next section.

B. Input-output relations

As in Refs. [33,45,67], we assume that the entrance (z = 0)
and the exit (z = L) facets of the fiber are treated with
an ideal antireflection coating. In such a configuration, all
the backpropagating modes originating from light reflection
on the z = 0 and z = L diopters are suppressed and light
transmission across the fiber is perfect. This constrains beam
1’s envelope to propagate in the positive-z direction and makes
the z ←→ t mapping legitimate. Such an antireflection coating
has a characteristic thickness of the order of a few optical
wavelengths, much shorter than any other length scale in the
considered problem. Therefore, its effect on light transmission
can be described as simple boundary conditions guaranteeing
the continuity of the flux of the Poynting vector of the optical
beam 1 at both z = 0 and z = L.

In mathematical terms, these continuity conditions form the
following system:

∫
dxdy〈�̂1(r,t)〉t

∣∣∣∣
z=0−

=
∫

dxdy〈�̂1(r,t)〉t
∣∣∣∣
z=0+

, (72a)

∫
dxdy〈�̂1(r,t)〉t

∣∣∣∣
z=L−

=
∫

dxdy〈�̂1(r,t)〉t
∣∣∣∣
z=L+

. (72b)

In these equations �̂1(r,t) is the quantum field associated
with the z component of beam 1’s Poynting vector and
〈· · ·〉t = (2π/ω1)−1

∫ 2π/ω1

0 dt(· · ·) accounts for the fact that
the photodetectors perform an average over at least one time
period 2π/ω1 of the carrier. In the fiber (0 < z < L), the flux

∫
dxdy〈�̂1(r,t)〉t is expressed as (see Appendix B)∫

dxdy〈�̂1(r,t)〉t

= 1

2
c0ε0(nL)1F(v1t − z)Â†

1(z,t)Â1(z,t), (73)

where F(v1t − z) is given in Eq. (B9). In free space on the
other hand (z < 0 or z > L), it admits the simple expression∫

dxdy〈�̂1(r,t)〉t = 1

2
c0ε0Â

†
1(z,t)Â1(z,t), (74)

which is obtained from Eq. (73) by setting (nL)1 = 1 and
�nL(x,y,ω1) = (�nL)′(r,ω1) = 0. Reformulating Eqs. (72)
in the z ←→ t language, we arrive at

ρin + ρ̂1(ζ,0−) = v1

c0
F(ζ )[ρ0(ζ ) + ρ̂1(ζ,0+)], (75a)

v1

c0
F(ζ )[ρ0(ζ ) + ρ̂1(ζ,T −)] = ρout + ρ̂1(ζ,T +). (75b)

At the classical level, ρ̂1(ζ,τ ) = 0 and Eqs. (75) then reduce
to

ρout = ρin. (76)

Using ρ̂1/
√

ρ0 = γ̂ + γ̂ †, we now look after the quantum-
fluctuation terms in Eqs. (75). Combining Eqs. (46), (48),
(49), (55), and (67), we find, after straightforward manipu-
lations [33,45],

γ̂out(ζ )=
(

v1

c0

)1/2 ∫
dk

2π
[uT (k,ζ )eikζ âin(k)

+ v∗
T (k,ζ )e−ikζ â

†
in(k)], (77)

where γ̂out(ζ ) = γ̂ (ζ,T +), âin(k) = â(k,0−), and

uT (k,ζ ) = u2(k,ζ )e−iẼkT /h̄ − v2(k,ζ )eiẼkT /h̄, (78)

vT (k,ζ ) = u(k,ζ )v(k,ζ )(e−iẼkT /h̄ − eiẼkT /h̄). (79)

The classical and quantum input-output relations (76) and (77)
fix the interdependence between the incoming and outgoing
light fields given the system’s dynamics in the fiber. From
them it is straightforward to extract the quantum coherence
properties of the randomly cross-phase-modulated beam of
light 1 exiting the nonlinear optical fiber, which we analyze
in the next section.

Noticeably, the formulation (77) is typical of a small-
amplitude quench. Indeed, the quantum field resulting from
such a quench can always be Bogoliubov expanded over the
prequench oscillators âin(k) and â

†
in(−k) with Bogoliubov-type

amplitudes uT (k,ζ ) and vT (k,ζ ) depending on the nature of the
quench and on the time T elapsed after its occurrence (see, e.g.,
Ref. [89]).

Furthermore, it should be stressed that the phonon limit
|k|ξ � 1 is implicitly considered in the latter equations,
precisely because we made use of Eq. (55) to derive them.
Correspondingly, the in-fiber Bogoliubov amplitudes u(k,ζ )
and v(k,ζ ) defined through Eq. (50) must be evaluated in this
limit. As one anticipates from Eqs. (78) and (79), this is fully
true as soon as T → ∞. In this limit indeed, the integral over
the wave number k in Eq. (77) is dominated by the Bogoliubov
modes with Ẽk → 0, and so with |k| → 0 since Ẽk ∝ |k| as
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|k| → 0. In the proper units, Eqs. (77)–(79) are actually valid
when

|k|ξ � h̄

μT
� 1, (80)

to which we restrict ourselves from now on. Returning to
the original coordinates z and t , this amounts to consider-
ing a large optical-fiber length L = v1T as well as small
angular-frequency detunings � = −v1k, precisely such that
(ξ/v1)|�| � (h̄v1/μ)L−1 � 1.

VI. POSTQUENCH COHERENCE

Assuming that the electric field measured at z = 0−
(i.e., just before the quench) is a perfect monochro-
matic plane wave, one has 〈Ê1(x,y,0−,t)〉 = E1e

−iω1t , where
〈· · ·〉 = 〈vac|· · ·|vac〉 stands for the expectation value in the
vacuum state |vac〉 of δÊ1(x,y,0−,t). According to Sec. V,
this can be translated into âin(k)|vac〉 = 0,∀k. Therefore, one
initially has

〈âin(k)âin(k′)〉 = 〈â†
in(k)âin(k′)〉 = 0 (81)

and, making use of the same-τ commutation relation in free
space (66),

〈âin(k)â†
in(k′)〉 = 2πδ(k − k′). (82)

In this section we analyze the consequences of the quench
at τ = 0 through the coherence function

g(1)(ζ − ζ ′) = 〈�̂†(ζ,T +)�̂(ζ ′,T +)〉 (83)

of the field �̂(ζ,T + = L+/v1) just exiting the fiber, where light
is imaged (see Fig. 1). In Eq. (83), the overbar refers to disorder
averaging. Thus defined, g(1) only depends on |ζ − ζ ′| since
ρout = const and ρ̄0 = const. Returning to the original space
and time variables z and t , this means that it only depends
on |t − t ′|. Note that imaging the signal at z > L amounts to
calculating the g(1) function of the field �̂(ζ,τ > T ). The latter
is given in Eqs. (66)–(71) but can alternatively be obtained
from Kirchhoff’s diffraction formula for nonmonochromatic
waves [90], as sketched in Ref. [45].

A. General formulas

In the nonlinear optical fiber, the 1D quantum fluid of light
is weakly interacting. In this case, the coherence function (83)
is expressed in terms of the density and the phase quantum
fluctuations ρ̂1(ζ,T +) and ϕ̂1(ζ,T +) of the field �̂(ζ,T +) in
the following form [69,86]:

ln

[
g(1)(ζ − ζ ′)

ρout

]
= −1

8

〈
:

[
ρ̂1(ζ,T +)

ρout
− ρ̂1(ζ ′,T +)

ρout

]2

:

〉

− 1

2
〈: [ϕ̂1(ζ,T +) − ϕ̂1(ζ ′,T +)]2 :〉. (84)

This formula involves the background density ρ0(T +) = ρout

of the outgoing optical beam 1 and the normal ordering
: · · · : with respect to the Bogoliubov-type quantum field
γ̂ (ζ,T +) = γ̂out(ζ ) as a function of which ρ̂1(ζ,T +) and
ϕ̂1(ζ,T +) are defined [see Eq. (71)]. To obtain Eq. (84), we
proceed in two steps. First, we evaluate the average 〈· · ·〉

over the quantum fluctuations of the incoming field. To do
so, we use that ρ̂1(ζ,T +) is small and that the latter and
ϕ̂1(ζ,T +) are Gaussianly distributed at the here-considered
Bogoliubov level [69]. Second, we evaluate the average · · ·
over the classical fluctuations of the disordered potential. To
do so, we take advantage of the fact that the quantum average
〈: [· · ·]2 :〉 involving the phase fluctuations in Eq. (84) is, due
to the normal ordering, as small as the one involving the
density fluctuations [86] (indeed, this correlator looks similar
to the two-point correlation function of the velocity field,
which is weakly fluctuating). In this case, the approximation
ln exp X � X holds, which eventually yields Eq. (84). Note
that a Popov approach [91,92] for calculating the quantum
averages would have yielded the same result [86].

Inserting the input-output relations (76) and (77) into
Eq. (84) and making use of Eqs. (81) and (82), we obtain,
after multiplying by (c0/v1)ρinξ ,

c0

v1
ρinξ ln

[
g(1)(ζ − ζ ′)

ρin

]

= −
∫

dkξ

2π

|vT (k,ζ )eikζ − vT (k,ζ ′)eikζ ′ |2
2

. (85)

Note that this equation involves the second quench-modified
Bogoliubov amplitude vT (k,ζ ), but not the first one uT (k,ζ ).
This is due to the fact that we assumed all the fluctuation
modes of the incident quantum field to be in the vacuum
state. If we were in a configuration where 〈â†

in(k)âin(k′)〉 
= 0,
the g(1) function would present a uT (k,ζ ) dependence, as
for a weakly interacting dilute atomic Bose gas at thermal
equilibrium [65,66].

Plugging Eq. (79) supplemented by Eq. (50) into Eq. (85)
and making use of Eq. (31), we then get

c0

v1
ρinξ ln

[
g(1)(ζ − ζ ′)

ρin

]

= −IT (X1; ζ − ζ ′) − 3

2

G(0)

ρ̄2
0

IT [X2(ζ − ζ ′); ζ − ζ ′],

(86)

where we introduced the shorthand notations

X1 = 1, (87)

X2(ζ − ζ ′) = 1

3

[
1 + 2

G(ζ − ζ ′)
G(0)

]
. (88)

Here we made an expansion at the second order in
|δρ0(ζ )|/ρ̄0 ∼ V/μ � 1: The first term on the right-hand side
of Eq. (86) is of the order of (V/μ)0 = 1 while the second one
is of the order of (V/μ)2. These terms involve the position-
and time-dependent integral

IT (X; ζ − ζ ′)=
∫

dkξ

2π

sin2(kζT /2)

k2ξ 2

× [1 − X cos(k|ζ − ζ ′|)]. (89)

In Eq. (89), the integrand was evaluated in the large-T ,
small-k limit (80). In this form, the integral simply reduces to
a two-step trapezoidal function of |ζ − ζ ′| that is linear up to

|ζ − ζ ′| = ζT = 2s̃T = 2sT

(
1 + �s̃

s

)
(90)
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and that stays constant above:

IT (X; ζ − ζ ′)

=

⎧⎪⎪⎨
⎪⎪⎩

X

4

|ζ − ζ ′|
ξ

+ 1 − X

4

ζT

ξ
, |ζ − ζ ′| < ζT ,

1

4

ζT

ξ
, |ζ − ζ ′| > ζT .

(91)

Inserting the explicit expression (91) for X = X1 [Eq. (87)]
and X = X2(ζ − ζ ′) [Eq. (88)] into Eq. (86), we obtain a
closed analytical expression for the coherence function (83),
as detailed below.

1. Case where |ζ − ζ ′| < ζT

The g(1) function depends on |ζ − ζ ′| and is given by

c0

v1
ρinξ ln

[
g(1)(ζ − ζ ′)

ρin

]

= −1

2

θ̃eff

μ

|ζ − ζ ′|
ξ

− 1

4

G(0)

ρ̄2
0

ζT

ξ

+ 1

4

(
1 − |ζ − ζ ′|

ζT

)
G(ζ − ζ ′)

ρ̄2
0

ζT

ξ
. (92)

Since μ is an energy, the quantity θ̃eff may be referred to
as a temperature in units of the Boltzmann constant. It weakly
deviates from its disorder-free counterpart θeff = μ/2 as

θ̃eff = θeff + �θ̃eff , (93a)

�θ̃eff

θeff
= 1

2

G(0)

ρ̄2
0

=
√

π

4

(V
μ

)2
σ

ξ

[
eσ 2/ξ 2

(
1 − 2

σ 2

ξ 2

)

× erfc

(
σ

ξ

)
+ 2√

π

σ

ξ

]
. (93b)

The last equality in Eq. (93b) follows from Eqs. (33). When
σ/ξ � 1 or σ/ξ � 1, the disorder-induced relative correction
to θeff reduces to

�θ̃eff

θeff
�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
π

4

(V
μ

)2
σ

ξ
,

σ

ξ
� 1,

1

2

(V
μ

)2(
1 − 1

σ 2/ξ 2

)
,

σ

ξ
� 1.

(94)

From Eq. (92), one may extract the behavior of the g(1)

function at very short |ζ − ζ ′|:
c0

v1
ρinξ ln

[
g(1)(ζ − ζ ′)

ρin

]
� −1

4

[
1 + 3

2

G(0)

ρ̄2
0

] |ζ − ζ ′|
ξ

+ 1

8

ζT

ξ

∂2
(
G

/
ρ̄2

0

)
∂|ζ − ζ ′|2 (0)(ζ − ζ ′)2.

(95)

2. Case where |ζ − ζ ′| > ζT

The g(1) function stays locked to the value it takes at
|ζ − ζ ′| = ζT [Eq. (92) for |ζ − ζ ′| = ζT ] and then no longer
depends on |ζ − ζ ′|:

c0

v1
ρinξ ln

[
g(1)(ζ − ζ ′)

ρin

]
= −1

4

[
1 + 3

2

G(0)

ρ̄2
0

]
ζT

ξ
. (96)
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FIG. 4. The solid curves show the normalized coherence function
of the disordered 1D quantum fluid of light as a function of |ζ − ζ ′|/ξ
for different values of the dimensionless time μT/h̄ elapsed after the
occurrence of the quench, as given in Eqs. (92) and (96) supplemented
by Eqs. (33), (57), (90), and (93) for V/μ = 0.5 and σ/ξ = 1; the ab-
scissas of the curves’ siding edges equal ζT /ξ = (2μT/h̄)(1 + �s̃/s)
[cf. Eqs. (90) and use s/ξ = μ/h̄]. The dashed curves show the
corresponding behaviors in the strict absence of disorder, that is, when
V = 0; in this case, �s̃ = 0 and the abscissas of the curves’ siding
edges equal 2μT/h̄.

According to Eqs. (95) and (96), the curve’s points of
abscissas |ζ − ζ ′| = 0 and |ζ − ζ ′| = ζT belong to the straight
line of slope − 1

4 [1 + 3
2G(0)/ρ̄2

0 ].

B. Prethermalization in disorder

In Fig. 4 we plot (c0/v1)ρinξ ln[g(1)(ζ − ζ ′)/ρin] as a func-
tion of |ζ − ζ ′|/ξ for different values of (i) μT/h̄ � 1 but fixed
values of (ii) V/μ � 1 and (iii) σ/ξ � μT/h̄. The condition
(i) is the limit of long postquench duration discussed in the last
paragraph of Sec. V B. The condition (ii) is the limit of weak
disorder assumed from the third paragraph of Sec. IV A. In the
limit (iii) finally, the system feels the presence of a sufficient
number of random scatterers after the occurrence of the quench
so as to consider the effect of the disordered potential relevant.

At τ = 0+, right after the quench, one may show that the
coherence function of �̂(ζ,τ ) equals (ρin)− for all |ζ − ζ ′|.
This means that the beam of light 1 remains as fully coherent
as before entering the fiber. The g(1) function starts being
affected by the quench a significant duration T after its
occurrence. Focusing on one of the solid curves of Fig. 4, three
regimes depending on |ζ − ζ ′| may be identified. At very short
ranges, g(1) displays a nontrivial |ζ − ζ ′| dependence given
in Eq. (95). Afterward and up to |ζ − ζ ′| = ζT , its natural
logarithm linearly decays, which corresponds to an exponential
decay for g(1). This interesting regime is entirely described by
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the first row on the right-hand side of Eq. (92) and is discussed
in detail below. Finally, for |ζ − ζ ′| > ζT , the g(1) function
no longer depends on |ζ − ζ ′|. Its constant value is given in
Eq. (96) and is also the subject of discussions in the following
paragraphs.

As T increases, ζT is pushed to larger values of |ζ − ζ ′|
and the long-range, |ζ − ζ ′| > ζT , plateau of the g(1) function
decreases, which we will discuss later. This evolution continues
until the system reaches, in the limit μT/h̄ = ∞, a state where
g(1)(ζ − ζ ′) is exponential across the whole 1D system [putting
aside its short-range behavior (95)]:

g(1)(ζ − ζ ′) ∝ ρin exp

[
−π

v1

c0

|ζ − ζ ′|
ρin�2(θ̃eff )

]
, (97a)

�(θ̃eff ) =
(

2πh̄2

mθ̃eff

)1/2

. (97b)

Apart from the velocity ratio v1/c0, Eq. (97a) is strictly
identical to the long-range g(1) function of a dilute gas of
thermal, weakly interacting boson atoms in the 1D degenerate
regime 1/ρin � �(θ̃eff ), with ρin the uniform density of the
gas and �(θ̃eff ) the thermal de Broglie wavelength [68,93]. As
a result, the state described above may be interpreted as the
thermal equilibrium state of the system, reached a long time
after the quench.

The effective temperature θ̃eff of this thermalized state is
explicitly formulated in Eqs. (93). In the absence of disorder,
θ̃eff = θeff = μ/2 = gρ̄0/2 is nothing but the mean interaction
energy of the photons in the fiber, which is the usual energy
deposed by a steplike interaction quench in a clean quantum
nonlinear Schrödinger system (see, e.g., Refs. [22,24,25]). In
the presence of disorder, it is natural that the energy provided
by the quench and so θ̃eff are enhanced with respect to the con-
figuration without disorder since the quench also involves the
disordered-potential term in Eq. (18a). At the second order in
the weak-disorder parameter V/μ � 1, the disorder-modified
θ̃eff turns out to be positively shifted from its unperturbed
counterpart θeff by the random fluctuations G(0) = δρ2

0 (ζ ) of
the mean density of photons in the fiber, as shown by the first of
the equalities in (93b). The second one provides its explicit σ/ξ

dependence. In Fig. 5 we plot �θ̃eff/[(V/μ)2θeff ] as a function
of σ/ξ and indicate its asymptotic σ/ξ � 1 and σ/ξ � 1
behaviors given in Eq. (94). The fact that �θ̃eff ∝ V2σ when
σ/ξ � 1 and that �θ̃eff ∝ V2 when σ/ξ = ∞ can be under-
stood in the same way as for �s̃ (see Sec. IV B).

Importantly, the present Bogoliubov approach of quantum
fluctuations accounts neither for the interactions between the
excitations of the quantum fluid of light nor for the interactions
between these excitations and the classical background fluid.
Such interactions are nevertheless expected to occur at very
long times, leading to damping in the many-body quantum
system. In this respect, although referred to as thermalized,
the thermal state described in the two preceding paragraphs
does not correspond to the actual thermal equilibrium state
of the postquench system but rather to some quasistationary
intermediate thermal state usually referred to as prethermalized
[13–28]. The investigation of true thermalization (although
possibly blocked by localization phenomena in the presence
of disorder [29–32]) requires going beyond Bogoliubov’s
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FIG. 5. In the main plot, the red curve shows the normalized
disorder-induced correction to the prethermalization temperature
as a function of σ/ξ , as given in Eq. (93b). The blue curves
show the asymptotic behaviors when σ/ξ � 1 (dashed curve)
and when σ/ξ � 1 (solid curve), as given in Eq. (94). The in-
set shows the corresponding long-range, |ζ − ζ ′| > ζT , plateau of
(c0/v1)ρinξ ln[g(1)(ζ − ζ ′)/ρin] as a function of σ/ξ for different
values of V/μ, as given in Eq. (96) supplemented by Eqs. (33), (57),
and (90) for μT/h̄ = 20.

theory, at best to account for the full many-body quantum
dynamics (18). This goes beyond the scope of the present paper
and is left to future work.

According to what precedes, a given point ζ in the disor-
dered 1D quantum fluid of light establishes thermal correla-
tions with another point ζ ′ as long as their separation distance
|ζ − ζ ′| is smaller than the characteristic length ζT given in
Eqs. (90). The latter linearly scales with the time T elapsed
after the quench as well as with the disorder-renormalized
Bogoliubov speed of sound s̃ given in Eqs. (56). This means
that the prethermalized state emerges in a light-cone way in
the system, s̃ being the characteristic propagation velocity of
the thermal correlations. This may be understood as follows.
From the entrance of the nonlinear optical fiber, a spontaneous
degenerate four-wave mixing occurs in the beam of light of
carrier angular frequency ω1, with two coherently correlated
sidebands symmetrically peaked around ω1 + �s > ω1 (the
signal) and ω1 + �i = ω1 − �s < ω1 (the idler) [60]. Within
the z ←→ t mapping, this equivalently means that the quench-
induced excitation process of the 1D quantum fluid of light
consists in the spontaneous emission of coherently corre-
lated Bogoliubov fluctuations with opposite wave numbers
ks = −�s/v1 = −k < 0 and ki = −�i/v1 = �s/v1 = k > 0
along the ζ = v1t − z axis [see the definition of k as a
function of � right before Eq. (64)]. These quasiparticles
propagate faster than the sound waves, even in the presence
of disorder (provided the latter is not too strong). As a result,
if a Bogoliubov excitation with k and another one with −k are
respectively located at ζ and ζ ′ a time T after the quench, the
two must be separated at least by

|ζ − ζ ′|sound = |s̃T − (−s̃T )| = 2s̃T = ζT (98)

to be coherently correlated. As a consequence, coherence
cannot exist for |ζ − ζ ′| < ζT . In this case, it is automat-
ically replaced with thermal correlations since the quench
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effectively heats the system. Such a light-cone-like correlation
spreading is a widely observed phenomenon, e.g., in cold
atomic vapors [5,26], condensed-matter [94–101], quantum
field [102–104], and quantum information [105] theory.

As mentioned before, the g(1) function no longer decays
when |ζ − ζ ′| > ζT . In this case, it is locked to the value it
takes at |ζ − ζ ′| = ζT , given in Eq. (96) in logarithmic units.
At a finite T , even though this long-range plateau is nonzero,
it is nevertheless smaller than ρin. This indicates that the
system partially lost its coherence after the occurrence of the
quench, precisely due to the concomitant generation of thermal
fluctuations, as detailed in the preceding paragraphs. As T

increases, it is pushed to zero until the system becomes fully
incoherent in the limiting case where μT/h̄ = ∞. In Fig. 5 we
fix the value of μT/h̄ and plot the corresponding long-range
plateau of (c0/v1)ρinξ ln[g(1)(ζ − ζ ′)/ρin] as a function of σ/ξ

for different values of V/μ. The loss of long-range coherence
is as significant as the amplitude of the disordered potential is
large, as intuition suggests.

VII. QUANTUM NATURE OF THE DECOHERENCE
AND ORDERS OF MAGNITUDE

The quench-induced loss of macroscopic coherence we
predict is a quantum effect that stems from the mismatch of
the vacua of the quantum light field between the exterior of
the fiber (free-space vacuum) and the interior (Bogoliubov
vacuum). This can be explicitly seen, yet in the absence of
disorder (V = 0), by reformulating Eq. (96) in terms of the
original optical parameters of the problem. This gives

g(1)(|ζ − ζ ′| > ζT )

ρin
= e−L/Lc , (99a)

Lc = 1

(8π5)1/2h̄c0

[
λ5

1A3
1|D1|

(P1)in|(ñ2)1|3
]1/2

, (99b)

where λ1 = 2πc0/ω1 is the wavelength of beam 1 in free
space, (P1)in = 1

2c0ε0|A1(0−,t)|2 is its input power, and
(ñ2)1 = (n2)1/[ 1

2c0ε0(nL)1] is the Kerr-nonlinearity coefficient
at ω1 in intensity units. The proportionality of the inverse of
the coherence length Lc to h̄ signals the quantum nature of the
decoherence mechanism described in this paper [technically,
this h̄ dependence stems from the finite value of the quantum
commutator (5b)]. In the classical limit h̄ → 0, e−L/Lc → 1,
so the light field remains fully coherent upon crossing the fiber.

At weak disorder, Eqs. (99) also provide a good numerical
estimate for the quench-induced loss of macroscopic coher-
ence. As an example, we consider a A1 = 10 μm2 thick, L =
500 km long silica-based telecom fiber illuminated by an in-
frared laser beam of wavelengthλ1 = 1.55 μm and peak power
(P1)in = 1 kW. In this case, the group-velocity-dispersion
parameter |D1| � 27.95 ps2 km−1 and the Kerr-nonlinearity
coefficient |(ñ2)1| � 3.46×10−5 μm2 kW−1 [60] [which gives
|(ñ2)1|(P1)in/A1 � 3.46×10−6 for the nonlinear shift of the
refractive index]. We then find a decoherence 1−g(1)(|ζ −ζ ′|
> ζT )/ρin � 1%. It is as expected small, since it is of quantum
origin, but it may be enhanced to almost 30% by taking a
(ñ2)1 barely 10 times larger than the standard Kerr-nonlinearity
coefficient for silica. Such an order of magnitude for (ñ2)1

is relatively commonly encountered, e.g., in silicon photon-
ics [106].

Note that the approach presented in this paper could be
used as well to describe a classical nonequilibrium dynamics
through a nonlinear fiber. In this case, the fluctuations around
the monochromatic plane-wave pump in Eq. (59) would be
of purely classical origin. Such fluctuations are naturally
present in most experiments and should give rise to a loss
of coherence as well, but of classical origin. Due to the h̄

independence of these classical fluctuations, we suspect the
effect to be observable on propagation distances shorter than
the length scales needed to see quantum effects at standard
optical nonlinearity (compare, e.g., Refs. [46] and [47,57,59]
on the kinetic relaxation of a quantum or classical beam of
nonlinear light).

VIII. CONCLUSION

Using a general theory for the quantum propagation of a
paraxial beam of quasimonochromatic light in a dispersive,
inhomogeneous, and nonlinear dielectric medium, we inves-
tigated the quantum coherence of a randomly cross-phase-
modulated quantum light field emerging from a lossless 1D
optical fiber with a quadratic dispersion relation and a local
Kerr nonlinearity.

In this theory, the space propagation of the quantum field is
mapped onto a time evolution and the actual time parameter is
identified as a space coordinate. The group-velocity dispersion
of the fiber generates a mass term. The instantaneous power
of the auxiliary beam of light responsible for cross-phase
modulation serves as a spatially correlated disordered potential
once properly randomized as a function of time by means
of a light modulator. Finally, self-phase modulation provides
effective photon-photon interactions.

In this all-optical setup, we entirely reformulated our predic-
tions in the language of many-body quantum physics, precisely
in terms of the response of a 1D quantum fluid of light to a
disorder and interaction quench at the entrance of the fiber.
Our work then illustrates the interest of nonlinear photonics as
a powerful platform for simulating the postquench nonequilib-
rium dynamics of disordered many-body quantum systems.

We specifically focused on the case where both the
disordered potential and the photon-photon interactions are
weak. At the exit of the fiber, the coherence function of the
transmitted quantum field features a peculiar prethermalization
dynamics in the disordered 1D quantum fluid of light. As
a result of the quench, thermal correlations are produced
in the system, spreading in a light-cone way at the
disorder-renormalized Bogoliubov speed of sound. They are
exponentially distributed with a temperature depending on the
disorder and the interaction energies deposed by the quench,
and their emergence is accompanied by a disorder-dependent
loss of macroscopic coherence. This highlights a fundamental
limit to the coherent propagation of a quantum-fluctuating
light along a 1D nonlinear fiber.
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APPENDIX A: CROSS-PHASE MODULATION
FROM A SINGLE-BEAM EFFECTIVE MODEL

Equation (3) may be derived within the framework of a
specific single-beam phenomenological model. Within this
model, the cross-phase modulation induced by the beam of
light 3 − α = 2 or 1 is encapsulated in the linear refractive
index seen by the beam of light α = 1 or 2, in such a way the
latter perceives the overall effective refractive index

neff (r,ω)= nL(ω) + �nL(x,y,ω) + (�nL)′(r,ω)

+ �nNL(r,ω). (A1)

In Eq. (A1) the subscripts L and NL refer to the contri-
butions to the envelope Dα(r,t) = ε0[neff (r,ωα)]2Eα(r,t) of
α’s complex electric displacement field that are, respectively,
linear and nonlinear in Eα(r,t). The ω-dependent refractive
index nL(ω) = (ω/c0)−1k(ω) is responsible for the chromatic
dispersion of the fiber’s core. Its x- and y-dependent correction
�nL(x,y,ω) originates from the refractive-index mismatch
between the core and the cladding and makes α transversally
confined, aligned with the z axis. The second linear shift,
which phenomenologically describes cross-phase modulation,
is explicitly defined as

(�nL)′(r,ω) = 2n2(ω)|E3−α(r,t)|2. (A2)

Finally, �nNL(r,ω) = n2(ω)|Eα(r,t)|2 is the usual nonlinear
contribution responsible for self-phase modulation.

Writing Maxwell’s equations for the single beam of light α

and assuming that �nL(x,y,ω), (�nL)′(r,ω), and �nNL(r,ω)
are small compared to nL(ω) in the expansion (A1), it is
straightforward to show that the time Fourier transform

Eα(r,ω) =
∫

dtEα(r,t)eiωt (A3a)

= Fα(x,y)Aα(z,ω − ωα)eikαz (A3b)

of α’s complex electric field (1) satisfies the following
Helmholtz equation:

∂2Eα

∂x2
+ ∂2Eα

∂y2
+ ∂2Eα

∂z2
+ [neff (r,ω)ω/c0]2Eα = 0. (A4)

Plugging Eq. (A3b) into Eq. (A4), one gets(
∂2Fα

∂x2
+ ∂2Fα

∂y2

)
Aα + Fα

(
∂2Aα

∂z2
+ 2ikα

∂Aα

∂z

)

+ Fα{[neff (r,ω)ω/c0]2 − (kα)2}Aα = 0, (A5)

where Aα = Aα(z,ω − ωα).
Making use of Eq. (A1) as a perturbative expansion around

nL(ω), of k(ω) = nL(ω)ω/c0 given in Eq. (2), and remember-
ing that Aα(z,ω − ωα) slowly varies over scales ∼2π/kα and
is strongly peaked around ωα , we reduce Eq. (A5) to, after

projection onto Fα(x,y),

i
∂Aα

∂z
= −Dα

2
(ω − ωα)2Aα − 1

vα

(ω − ωα)Aα

− ωα

c0

∫
dxdy�nNL(r,ωα)|Fα|2Aα

− ωα

c0

∫
dxdy(�nL)′(r,ωα)|Fα|2Aα

+
∫

dxdy

[
1

2kα

(∣∣∣∣∂Fα

∂x

∣∣∣∣
2

+
∣∣∣∣∂Fα

∂y

∣∣∣∣
2)

− ωα

c0
�nL(x,y,ωα)|Fα|2

]
Aα. (A6)

Using �nNL(r,ωα) = (n2)α|Fα(x,y)|2|Aα(z,t)|2 and
(�nL)′(r,ωα) = 2(n2)α|F3−α(x,y)|2|A3−α(z,t)|2, and
absorbing the last double integral, Aα independent, into
the phase of Aα(z,ω − ωα), we eventually obtain Eq. (3) in
the time Fourier domain.

Note that �nNL(r,ωα) and (�nL)′(r,ωα) defined above are
time dependent, which may a priori appear suspect within the
present angular-frequency derivation. This time dependence
can be taken into account as we presently do if the spectral
bandwidths of the pulses α and 3 − α are small fractions of ωα

and ω3−α [60], which is actually the case here.

APPENDIX B: FLUX OF THE POYNTING VECTOR
OF A CROSS-PHASE-MODULATED OPTICAL BEAM

In this appendix we derive an expression for the flux of beam
1’s Poynting vector within the single-beam effective model
used in the text and detailed in Appendix A.

Taking the electric field E1(r,t) along the x axis and the
magnetic field H1(r,t) along the y axis, i.e.,

E1(r,t) = Re[E1(r,t)ei(k1z−ω1t)]x̂, (B1)

H1(r,t) = Re[H1(r,t)ei(k1z−ω1t)]ŷ, (B2)

the Poynting vector �1(r,t) = E1(r,t)×H1(r,t) gets aligned
along the z axis:

�1(r,t) = Re[�1(r,t)]ẑ, (B3a)

�1(r,t) = 1
2E

∗
1 (r,t)[H1(r,t) + H∗

1(r,t)e−2i(k1z−ω1t)]. (B3b)

In the experiment, the photodetectors are not able to instan-
taneously record (B3) but instead perform an average over a
few (at least one) time periods 2π/ω1 of the carrier wave. As
a result, we now make use of the corresponding time-average
angular brackets 〈· · ·〉t = (2π/ω1)−1

∫ 2π/ω1

0 dt(· · ·). Since the
envelopes E1(r,t) and H1(r,t) are almost t independent over a
duration of the order of 2π/ω1, we readily get

〈�1(r,t)〉t � 1
2E

∗
1 (r,t)H1(r,t). (B4)

The E1(r,t) dependence of H1(r,t) may be obtained from
Maxwell-Ampère’s law in the slowly-varying-envelope ap-
proximation, i.e.,

H1(r,t) � ω1

k1
D1(r,t) = c0

(nL)1
D1(r,t). (B5)
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In this equation,

D1(r,t) = ε0

∫
dω

2π
[neff (r,ω)]2

×E1(r,ω − ω1)e−i(ω−ω1)t (B6a)

� ε0[neff (r,ω1)]2E1(r,t) (B6b)

is the envelope of the complex electric displacement field.
Inserting (B6b) into (B5) and then (B5) into (B4), we end up
with

〈�1(r,t)〉t � 1

2
c0ε0

[neff (r,ω1)]2

(nL)1
|E1(r,t)|2. (B7)

From now on, we implicitly neglect the �nNL(r,ω1)∝
|E1(r,t)|2 dependence of neff (r,ω1) so that the right-hand side
of Eq. (B7) is simply proportional to |E1(r,t)|2. This is a good
approximation provided both the Kerr-nonlinearity coefficient
and beam 1’s intensity are small. With this, the flux of (B7) is

expressed as∫
dxdy〈�1(r,t)〉t

� 1

2
c0ε0(nL)1F(v1t − z)|A1(z,t)|2, (B8)

where

F(v1t − z)=
∫

dxdy

[
1 + �nL(x,y,ω1)

(nL)1

+ (�nL)′(r,ω1)

(nL)1

]2

|F1(x,y)|2. (B9)

This quantity only depends on v1t − z since
(�nL)′(r,ω1) ∝ |A2(z,t)|2 and since A2(z,t) is assumed
to propagate according to Eq. (15).

Upon quantization, we use Eq. (B8) with |A1(z,t)|2 replaced
with Â

†
1(z,t)Â1(z,t). This yields Eq. (73) in the optical fiber

(0 < z < L) and Eq. (74) in free space (z < 0 or z > L).
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