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This paper theoretically and numerically studies the response characteristics of non-Hermitian resonant
photonic systems operating near an exceptional point (EP), where two resonant eigenmodes coalesce. It is shown
that a system near an EP can exhibit a non-Lorentzian frequency response, whose line shape and intensity strongly
depend on the modal decay rate and coupling parameters for the input waves, unlike a normal Lorentzian response
around a single resonance. In particular, it is shown that the peak intensity of the frequency response is inversely
proportional to the fourth power of the modal decay rate and can be significantly enhanced with the aid of
optical gain. The theoretical results are numerically verified by a full wave simulation of a microring cavity
with gain. In addition, the effects of the nonlinear gain saturation and spontaneous emission are discussed. The
response enhancement and its parametric dependence may be useful for designing and controlling the excitation
of eigenmodes by external fields.
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I. INTRODUCTION

In a quantum system interacting with the surrounding
environment, the quantum property is described by a non-
Hermitian Hamiltonian formalism [1]. The eigenvalues of the
non-Hermitian Hamiltonian are generally complex, and the
eigenmodes do not form an orthogonal basis, unlike those of
isolated (Hermitian) systems. Such non-Hermitian properties
also appear in classical wave systems such as acoustic or
electromagnetic waves in open cavities.

A remarkable feature of non-Hermitian systems is the
nonorthogonality of the eigenmodes. When a non-Hermitian
system is driven by noise, the nonorthogonality can lead
to excess system noise whose amplitude can greatly exceed
the level expected in Hermitian systems. To date, many
theoretical and experimental works in different contexts, in-
cluding Bose-Einstein condensates, lasers, fluid dynamics,
and pattern formation, have revealed that excess noise is a
common feature of non-normal (and non-Hermitian) phys-
ical systems driven by noise and manifests itself in certain
forms [2–9].

In the context of laser physics, excess spontaneous emission
noise in laser cavities has been well studied [10–16]. The
excess noise has been observed as the broadening of the laser
linewidth [17–20] and a low-frequency intensity fluctuation
[21], and it has been characterized by the Petermann factor
(PF), a measure of the nonorthogonality of the eigenmodes.
Importantly, the PF does not characterize the enhancement
in the spontaneous emission itself but rather the enhanced
coupling of the spontaneous emission to an eigenmode [14,15].
This implies that the PF can be generalized as a factor charac-
terizing the enhanced response of an eigenmode to inputs, and
the excess spontaneous emission is one aspect of the enhanced
response. Actually, a system with a large PF can exhibit an
excess excitation response for external injection in an amplifier
configuration [11–13].

It is known that the modal nonorthogonality is maximized
and the PF diverges at a degeneracy point called an exceptional
point (EP), where both the eigenvalues and corresponding
eigenmodes coalesce [16,22–24]. Recently, EPs have become
experimentally accessible in a variety of photonic systems
[25–28] and have attracted much attention. In addition to
the PF divergence, a number of unique properties related
to EPs have been found and demonstrated in the past few
years, such as asymmetric mode switching [29], the reversal
of the pump dependence of a laser [30] and the effect of loss
[31], nonreciprocal transmission [32,33], and unidirectional
invisibility [34,35]. Moreover, EPs have been used to enhance
the sensitivity of microcavity sensors [36–40].

In this paper, the response characteristics of non-Hermitian
resonant systems (optical cavities) near an EP are theoretically
and numerically studied. A linear response analysis near an EP
reveals that regardless of the PF, the actual response intensity is
limited to a finite value. Instead, a variety of cavity responses to
inputs are exhibited near an EP, mainly depending on the modal
decay rates and coupling parameters for the input waves. In
particular, when an optical cavity with gain operates at an EP,
the response intensity can be excessively enhanced with the aid
of the gain. The condition for the enhancement is derived and
discussed. These theoretical results are numerically verified by
a dynamical model describing the interaction between the light
field and a two-level gain medium. It is also discussed that the
nonlinear gain saturation and spontaneous emission limit the
enhancement in the response intensity and quality.

The rest of this paper is organized as follows. In Sec. II, the
effect of the nonorthogonality of the eigenmodes on the system
response is briefly introduced. Then, a general expression of the
system response at an EP is provided in a simple 2 × 2 matrix
form, and the frequency responses are analyzed. In Sec. III,
the theoretical results are numerically verified in a full wave
simulation of a microring cavity operating near an EP. Finally,
a summary is provided in Sec. IV.
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II. LINEAR RESPONSES OF NON-HERMITIAN
SYSTEMS NEAR AN EP

A. Model and Petermann factor

We consider an optical cavity system driven by an input
field and analyze the response characteristics in the form of a
coupled mode theory. First, suppose that an optical cavity pos-
sesses n modes coupled with each other and that it is described
by an n × n non-Hermitian (effective Hamiltonian) matrix
Ĥ , which represents the resonances and modal coupling. The
non-Hermiticity of Ĥ arises from the radiation loss, absorption
loss, and gain inside the cavity. Then, we also suppose that
the slowly varying envelope of the intracavity optical field is
characterized by an n-dimensional state vector ψ ∈ Cn, and
it is excited by an input field, denoted by f ∈ Cn. The time
evolution of ψ driven by f is generally given by

i
dψ

dt
= Ĥψ + f . (1)

This coupled mode equation can be obtained from the Maxwell
equations by assuming that the optical field varies slowly in
time with respect to a reference frequency and it is expanded
by appropriate basis functions. In this study, we are interested
in how the state vector ψ responds to an input f because
typical cavity properties such as reflection or transmission can
be characterized by the response ψ .

A common way to analyze Eq. (1) is an expansion by
the eigenmodes of Ĥ . Although the eigenmodes of a non-
Hermitian matrix are generally not orthogonal, this drawback
is covered by the biorthogonality between the left and right
eigenmodes. Here, suppose that uj and vj are the right and
left eigenmode vectors of Ĥ , respectively, where j is a mode
number (j ∈ {1, . . . ,n}). uj and vj are defined as Ĥ uj =
�j uj and v

†
j Ĥ = �jv

†
j with the eigenvalue �j ∈ C, where

† denotes the Hermitian conjugate, and v
†
i · uj = 0(i �= j ).

The eigenvalue �j = ωj − iγj represents a complex-valued
eigenfrequency of mode j in the cavity; ωj ∈ R represents
the resonant frequency, whereas γj ∈ R represents the decay
(growth) rate if it has a positive (negative) value. In this paper,
we consider only γj > 0 for all j , i.e., all decaying modes.

By expanding ψ by the right eigenmodes as ψ =∑
j aj (t)uj and using the biorthogonal relation in Eq. (1), we

obtain the mode equations

i
daj

dt
= �jaj + fj , (2)

and the solution after a long time, aj (t) =
−i

∫ t
e−i�j (t−τ )fj (τ )dτ, where fj = v

†
j · f /(v†

j · uj ).
Importantly, the amplitude aj is determined by fj , and the
magnitude |fj | can be expressed as

√
Kj |v†

j · f |/(‖uj‖‖vj‖),

where Kj = (‖uj‖2‖vj‖2)/|v†
j · uj |2, and ‖ · ‖ denotes the

usual Euclidean vector norm. Kj characterizes the coupling to
mode j , and it is associated with the condition number of the
eigenvalue �j , i.e., the sensitivity to perturbations [2,41] and
the PF in the context of laser physics [20,23]. Kj � 1 is always
satisfied according to the Cauchy-Bunyakovsky-Schwarz
inequality. In particular, Kj > 1 when Ĥ is non-normal

(Ĥ Ĥ
† �= Ĥ

†
Ĥ ) [42]. Interestingly, Kj diverges just at an

EP, where uj completely overlaps another eigenvector,

e.g., uj ′ (j ′ �= j ), because of the self-orthogonality
v
†
j · uj = v

†
j · uj ′ = 0 [16]. However, Kj is no longer

valid at the EP because the eigenmode expansion breaks at the
point. In other words, any n-dimensional state vector cannot
be represented by the coalescing eigenmode basis at the EP.
The basis of the expansion can be completed by introducing
additional vectors, i.e., the associated vectors defined by the
Jordan chain relations [43,44].

B. Frequency response at an EP

As a starting point for deriving the cavity responses at an
EP, we consider them in the frequency domain. By Fourier
transforming Eq. (1) with respect to the time t , we obtain

ψ̃(ω) = M̂(ω) f̃ (ω), (3)

where ψ̃(ω) and f̃ (ω) denote the Fourier transforms of ψ(t)
and f (t), respectively. M̂(ω) = (ωÎ − Ĥ )−1 is the resolvent
of Ĥ and characterizes the response to an input wave with a
frequency of ω. Î is an identity matrix.

Then, we consider an optical cavity operating near a
(second-order) EP, where only two eigenmodes of Ĥ coalesce.
When the frequency ω is close to the resonant frequencies of
the two eigenmodes and the influence of the other n − 2 modes
is sufficiently weak, the n-dimensional matrix problem can be
essentially reduced to a two-dimensional matrix problem near
the EP. By describing an effective 2 × 2 Hamiltonian matrix
at an EP as Ĥ 0 and using an expansion method based on the
Jordan chain relation [45], the resolvent M̂EP at the EP is given
by

M̂EP(ω) = R0(ω)Î + R2
0(ω)(Ĥ 0 − �0Î )

=
(

R0(ω) + c11R
2
0(ω) c12R

2
0(ω)

c21R
2
0(ω) R0(ω) + c22R

2
0(ω)

)
, (4)

where R0(ω) = (ω − �0)−1, and �0 is an eigenvalue of Ĥ 0 at
the EP. Further, cij is the ij component of the matrix (Ĥ 0 −
�0Î ). The derivation of Eq. (4) is shown in Appendix A.

A remarkable feature of the resolvent M̂EP is the presence
of the second-order pole R2

0 , which appears only near the EP.
From Eqs. (3) and (4), the i component of the field vector,
ψ̃i(ω), driven by f̃ (ω) = (f̃1,f̃2)T , is f̃iR0 + δiR

2
0 , where

δi = ∑
j cij f̃j . Interesting behavior can be observed for γ0 ∼

|δi/f̃i | or γ0 � |δi/f̃i |, where γ0 = − Im �0. In the former
case, the interference of the two terms can lead to asymmetric
response behavior with respect to the resonant frequency,
ω0 = Re �0, or suppression of the response amplitude, such
as Fano-Feshbach resonances [46,47]. On the other hand, in
the latter case (γ0 � |δi/f̃i |), ψ̃i can be approximated as δiR

2
0

near the resonant frequency ω0; thus, the intensity |ψ̃i |2 has
a squared Lorentzian shape, i.e., |δiR

2
0 |2 = |δi |2/[γ 2

0 + (ω −
ω0)2]2, with a peak intensity proportional to γ −4

0 , whereas the
peak intensity of a standard Lorentzian shape is proportional
to γ −2

0 . Although γ0 is generally dependent on ci and the input
wave couplings in passive cavities, it can be changed by optical
gain in active cavities. Therefore, when γ0 is reduced by the
gain, the response intensity near the resonance can be greater
than the standard Lorentzian-type responses in cavities that do
not operate at an EP.
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FIG. 1. Microring cavity coupled to a straight waveguide. The
input waves from the left and right ports in the straight waveguide
couple to the CW and CCW modes in the microring, respectively.
The two modes are also coupled to each other by backscattering.

It has been reported that a similar enhancement appears
for spontaneous emission [45,48,49]. The above discussion
suggests that the enhanced spontaneous emission is one aspect
of the enhanced cavity responses; a cavity operating at an EP
can respond strongly to other inputs.

C. Example of enhanced response

As an example of an optical cavity that can operate at
an EP, we choose a microring cavity with non-Hermitian
backscattering [50–52] and analyze the cavity response to an
incident wave with a frequency of ω. The wave is coupled to the
cavity via a waveguide (see Fig. 1). In the cavity, the wave can
propagate in the clockwise (CW) or counterclockwise (CCW)
direction along the ring waveguide. The time evolution of the
intracavity field in the CW and CCW traveling wave basis is
given by

i
d

dt

(
a1

a2

)
=

(
�0 −ε/2

−p/2 �0

)(
a1

a2

)
+

(
κ1

κ2

)
e−iωt , (5)

where a1 and a2 are the amplitudes of the CCW and CW waves,
respectively. κ1 and κ2 represent the coupling of the incident
wave to the CCW and CW waves, respectively. �0 = ω0 − iγ0

is the eigenfrequency of the ring cavity modes (CCW and CW
modes) when there are no coupling terms, i.e., ε = p = 0. ε (p)
represents the backscattering coupling from the CW (CCW)
wave to the CCW (CW) wave. In general, the magnitudes and
phases of ε and p can be controlled by placing nanoscatterers
near the cavity [50], making the cavity geometry asymmetric
[51], or introducing modulations in the refractive index and
dissipation inside a cavity [35,52].

Backscattering coupling typically causes the splitting of the
degenerate eigenvalues of the CW and CCW modes. However,
when the backscattering couplings are highly asymmetric, i.e.,
ε �= 0 and p = 0 or ε = 0 and p �= 0, the split eigenvalues
coalesce into a single value [51]. (In this cavity, the EPs
are distributed along the line p = 0 or ε = 0 except for the
origin, ε = p = 0, in the ε-p parametric plane.) The coalesced
eigenvalue is �0 at an EP, and the corresponding eigenmode
is the CCW (CW) mode when ε �= 0 and p = 0 (ε = 0 and
p �= 0). This non-Hermitian degeneracy is different from the
degeneracy in ring cavities without backscattering, i.e., ε =
p = 0, where there are two linearly independent eigenmodes
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FIG. 2. (a), (b) Dynamics of the intensity ‖ψ‖2 = ∑
j |aj (t)|2 at

the EP (ε �= 0 and p = 0) in a microring cavity under (a) a delta-
function-like pulse with a period T = 4 × 105 and (b) a Gaussian
noise input (red curves). These results were obtained from Eq. (1)
with the 2×2 matrix of the microring cavity for γ0/γn = 0.4. For
comparison, the intensity in a ring cavity without backscattering, i.e.,
a cavity at the DP (ε = p = 0), is also shown as the blue dotted
curve for each case. In (b), f = (f1,f2)T is treated as complex white
Gaussian noise, 〈f ∗

i (t ′)fj (t)〉 = 2Dδij δ(t − t ′), where D is the noise
variance. (c) γ0/γn dependence of IEP/IDP. IEP indicates the time
average of the response intensity dynamics at the EP, whereas IDP

indicates that at the DP (ε = p = 0). Gaussian noise is applied to the
cavity.

(the CW and CCW modes) with the same eigenfrequency
�0. The normal degeneracy point has been referred to as the
diabolic point (DP).

At an EP (ε �= 0 and p = 0), the CW and CCW wave
amplitudes in the frequency domain are represented by(

ã1(ω)
ã2(ω)

)
= 1

ω − �0

(
1 − ε

2(ω − �0)
0 1

)(
κ1

κ2

)
. (6)

The CCW wave amplitude ã1 is affected by the backscatter-
ing ε, decay rate γ0, and coupling terms κ1 and κ2. When
a wave with a frequency of ω ≈ ω0 is incident upon the
cavity in the CW direction, i.e., κ1 = 0 and κ2 �= 0, the
two mode intensities near the resonance ω ≈ ω0 are given
by |ã1(ω0)|2 ≈ |εκ2|2/(4γ 4

0 ) and |ã2(ω0)|2 ≈ |κ2|2γ −2
0 . Thus,

|ã1(ω0)|2 � |ã2(ω0)|2 for γ0 � |ε|/2(= γs); that is, the CCW
wave is strongly excited by the incident wave in the CW
direction. This counterintuitive response does not arise in a
ring cavity without backscattering (ε = p = 0) or in cavities
with isolated resonances. Numerical verification is presented
in Sec. III.

D. Transient growth and excess noise

Because the cavity responses are characterized by Eqs. (3)
and (4), cavities operating near EPs can respond sensitively
to not only monochromatic inputs but also other inputs [see
Figs. 2(a) and 2(b) for examples of the responses to pulsed and
random inputs]. From Eq. (3), we note that in the presence of
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internal noise such as spontaneous emission, the cavities can
also be sensitive to the noise. This is excess noise in the cavity
and limits the response quality.

When we consider the response properties in the time
domain, we note that the impulse response corresponding to
R2

0 in Eq. (4) is given by t exp(−i�0t), whose amplitude
grows transiently on a short time scale before decaying. As
seen in Figs. 2(a) and 2(b), the transient growth is sustained
by sequential pulses or noise stimuli. Excess noise can be
characterized as the lasting transient growth due to internal
noise. According to non-normal operator theory [53], transient
growth can dominate the dynamics of the intensity ‖ψ‖2 if at

least one eigenvalue of i(Ĥ
† − Ĥ ) (the non-Hermitian part of

Ĥ ) is positive. In the 2 × 2 matrix model at an EP, the condition
is given by

γ0 < γn = 1

2

√
−(c11 + c∗

22)2 + |c∗
21 − c12|2. (7)

In a microring cavity at the EP (ε �= 0 and p = 0), the condi-
tion is γ0 < γn = |ε|/4. Figure 2(c) shows the appearance of
excess noise in a microring cavity, where the time-averaged
response intensity to Gaussian noise at an EP (ε �= 0 and
p = 0), represented by IEP, is compared to that of the response
intensity at a DP (ε = p = 0), IDP. When γ0 � γn, IEP is
γ 2

n /γ 2
0 times greater than IDP.

III. FULL WAVE SIMULATIONS

A. Dynamical model

In this section, we numerically check the validity of the
response enhancement presented in the previous section. This
numerical verification is important because the linear response
model is based on a simple (2 × 2 matrix) model, i.e., a
two-mode approximation near an EP; however, in realistic
systems, multiple modes may be involved. Moreover, to reduce
the decay rate γ0 and achieve an excess enhancement in the
response intensity, loss compensation by optical gain is needed.
However, amplification by the gain is inevitably accompanied
by spontaneous emission noise. In addition, an actual gain
material is nonlinear and saturates the amplified light intensity.
Therefore, the numerical simulations are conducted using a
dynamical model incorporating these effects. In this paper, we
use a model describing the dynamics of the slowly varying
envelope E of the electric field inside a cavity, the polarization
field ρ, and the population inversion component W in a two-
level gain medium [54,55]:

∂E

∂t
= i

2

[
∂2

∂x2
+ n2(x)

n2
0

]
E + ξρ + Ein, (8)

∂ρ

∂t
= −(γ⊥ + ia)ρ + γ⊥WE + F1, (9)

∂W

∂t
= −γ‖(W − W∞) − 2γ‖(Eρ∗ + E∗ρ) + F2, (10)

where space and time are made dimensionless by the scale
transformations n0ωsx/c → x and ωst → t , respectively. ωs

is a reference frequency close to the transition frequency ωa of
the two-level gain medium. In Eqs. (8)–(10), E, ρ, W , and all
of the other parameters are also made dimensionless. Further,
n is the refractive index inside the cavity, n0 is the spatially

averaged refractive index, ξ = 2π/n2
0 is a coupling constant,

and a represents the gain center. (The relationship between
a and the actual transition frequency ωa is given by a =
ωa/ωs − 1.) The two relaxation parameters, γ⊥ and γ‖, are
the transverse and longitudinal relaxation rates, respectively.
W∞ represents the pumping power, which is effectively used
to reduce the cavity loss.

In Eq. (8), Ein represents the input field, which is coupled
to the intracavity field E. F1 and F2 represent spontaneous
emission noise from the gain medium, and they are modeled
as complex white Gaussian noise [56,57]. The specific forms
of F1 and F2 are similar to those reported in Ref. [57].

B. Cavity model and parameters

For verification, we choose a microring cavity, which is
discussed in Sec. II C. The cavity is modeled as a one-
dimensional ring waveguide with a length of L. A periodic
boundary condition is imposed on the intracavity field as
E(x,t) = E(x + L,t), where x denotes the coordinate along
the ring waveguide. Tuning to an EP in the ring cavity is
possible by modulating the complex-valued refractive index
n2(x) inside the cavity [52]:

n2(x) = n2
0[1 + ε exp(2ik0x) + p exp(−2ik0x) + 2iβ],

(11)

where k0 = 2πm0/L (m0 is an integer) represents the resonant
wave number of the cavity for ε = p = 0, and β represents the
absorption loss rate. The refractive index modulation induces
strong linear coupling between the nearly degenerate eigen-
modes with the +k0 (CCW) and −k0 (CW) wave components.
In particular, when ε �= 0 and p = 0, the two eigenmodes
collapse to a single mode, which can be expressed as the CCW
mode of the wave number k0. Because the physical meanings
of ε and p are the same as those described in Sec. II C, we use
the same notation.

In this simulation, the following parameters are fixed:
L/(2π ) = 10, n0 = 3.0, k0 = 1(m0 = 10), ξ = 2π/n2

0, β/ξ =
10−3, a = 0, γ⊥ = 0.1, and γ‖ = 10−3. For these parameters,
the resonant frequency 0 corresponding to the wave number
k0 at the EP is set to be equal to the gain center a , and
the modes with 0 are selectively pumped. The effective
decay rate, including the effect of the gain, is defined as
γ0 = β − ξW∞ [54] and is changed by W∞. In this paper,
W∞ is kept below the threshold pumping power Wth = β/ξ ,
and γ0 is always positive.

C. Response characteristics

In this section, for simplicity, we omit the noise terms F1

and F2, and we consider the case in which two input waves
with a frequency of  are coupled to the cavity, as shown in
Fig. 1, i.e., Ein = κ1 exp(ik0x − it) + κ2 exp(−ik0x − it),
where κ1 and κ2 represent the CCW and CW wave components
of the input waves in the cavity, respectively. To analyze the
responses to the input waves, we measure the intensities of the
CCW and CW wave components of the field E as ICCW =∑

m>0 |am|2 and ICW = ∑
m<0 |am|2, respectively, where

am = 1/L
∫ L

0 E(x,t)e−ikmxdx, and km = 2πm/L (m ∈ Z),
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FIG. 3. (a) Time-averaged response intensities of the CCW and
CW waves at the EP (ε = 1.8β and p = 0), ĪCCW and ĪCW, under the
CW wave input condition (κ1 = 0, κ2 = 10−7β). 0 is the degenerate
resonant frequency at the EP. The theoretical curves of the CCW and
CW wave intensities obtained from Eq. (6) are shown as the blue and
pink solid curves, respectively. (b) Intensity IEP = ĪCCW + ĪCW at the
EP under the same CW wave input condition. For comparison, the
intensity IDP at the DP (ε = p = 0) is also shown. The theoretical
curves obtained from Eq. (6) at the EP and DP are shown as the blue
and pink solid curves, respectively. In (a) and (b), W∞ = 0.95 × 10−3,
and γ0/γs = 1

18 .

and calculate the time averages of ICW and ICCW after relax-
ation to a steady state.

Here, we consider the responses at the EP (ε �= 0 and p = 0)
under the CW wave input condition, i.e., κ1 = 0 and κ2 �= 0.
In Fig. 3(a), the time-averaged intensities ĪCCW and ĪCW under
the input condition are plotted as a function of the frequency
. ε and W∞ are set so that γ0 is smaller than the critical value
γs(=|ε|/2), which is provided in Sec. II C. For a relatively
low input intensity, i.e., κ2 = 10−7β, the numerical results
correspond well to the theoretical results obtained from Eq. (6);
the frequency response intensities of the CCW and CW waves
have a squared Lorentzian shape and conventional Lorentzian
shape, respectively. We can see that the CCW wave intensity
at the resonance ( = 0) is two orders of magnitude greater
than the CW wave intensity [see Fig. 3(a)].

According to Eq. (6), the response characteristics at an EP
can be controlled by varying the input waves. For example,
under the CCW wave input condition (κ1 �= 0 and κ2 = 0), the
CCW wave intensity is not enhanced, as shown in Fig. 4(a), and
the frequency response intensity has a Lorentzian shape. On the
other hand, when two input waves with well-controlled phases
and amplitudes are simultaneously coupled to the cavity, the
interference of the two input waves leads to an asymmetric
response curve for κ1 = ±ε/(2γ0)κ2 [Figs. 4(b) and 4(c)] or
suppression of the response intensity at the resonance ( =
0) for κ1 = −iε/(2γ0)κ2 [Fig. 4(d)]. This suggests the pos-
sibility of switching of the excited mode by optical injection;
however, its further study is beyond the scope of this paper.

D. Response enhancement and its limitations

In what follows, we consider only the CW wave input
condition (κ1 = 0 and κ2 �= 0) and compare the response
intensity at the EP to that in a ring cavity with the same
radius, the same loss rate γ0, and the same coupling strength
κ2 but without non-Hermitian backscattering, i.e., the response
intensity at the DP (ε = p = 0).

Figure 3(b) shows an example that compares the frequency
response intensity at the EP, IEP, and that at the DP, IDP, which
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FIG. 4. (a) Time-averaged response intensity ĪCCW under the
CCW wave input condition (κ1 = 10−7β and κ2 = 0). (b)–(d) Time-
averaged response intensities ĪCCW and ĪCW under a bidirectional wave
input condition with (b) κ1 = ε/(2γ0)κ2, (c) κ1 = −ε/(2γ0)κ2, and
(d) κ1 = −iε/(2γ0)κ2, where κ2 = 10−7β. In (a)–(d), ε = 1.8β, p =
0, W∞ = 0.95 × 10−3, and γ0/γs = 1

18 . The theoretical curves of the
CCW and CW wave intensities obtained from Eq. (6) for each input
condition are shown as the blue and pink solid curves, respectively.

are calculated as ĪCCW + ĪCW. To quantitatively evaluate the
enhancement, the enhancement factor η was defined as the
ratio of each peak intensity at the resonance ( = 0), i.e., η =
IEP/IDP. For κ2 = 10−7β and γ0/γs = 1

18 , we obtain η ≈ 325.
The parametric dependence of η is summarized in Figs. 5

and 6. For a low input intensity, i.e., κ2 = 10−7β0, η is
inversely proportional to γ 2

0 when γ0/γs < 1 (Fig. 5), and it
is proportional to |ε|2 [Fig. 6(a)], as predicted by the linear
theory. However, for a relatively large input intensity, i.e.,
κ2 > 10−4β, the enhancement is reduced. This is the result
of the nonlinear gain saturation because, in our case, gain
saturation has a significant effect on the intensity amplification
when γ0 � √|εκ2|, according to the nonlinear steady-state
analysis of Eqs. (8)–(10). The gain saturation may also change
the positions of the EPs in the parametric spaces. Consequently,
the saturation effect limits the enhancement in the response
intensity. However, we note that it also makes the enhancement
less sensitive to the deviation from the EPs (i.e., |p| > 0) [see
Figs. 6(b) and 6(c)].
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FIG. 5. Enhancement factor η versus γ0/γs . η is measured under
the CW wave input condition (κ1 = 0) at the resonance  = 0. The
theoretical curve is given by η = γ 2

s /γ 2
0 + 1.
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FIG. 6. Enhancement factor η plotted in the ε-p plane. (a) κ2 =
10−7β, (b) κ2 = 10−4β, and (c) κ3 = 10−3β. In (a)–(c), W∞ = 0.95 ×
10−3 and arg(ε/p) = 0.

E. Effects of spontaneous emission noise

As demonstrated in the previous subsections, the reduction
in the decay rate γ0 by the gain is indispensable for enhancing
the response intensity. However, the presence of the gain
inevitably results in spontaneous emission noise; therefore, the
response to the input waves as well as the spontaneous emission
may both be enhanced if the condition in Eq. (7) is satisfied.
An example of the enhanced spontaneous emission spectrum
for γ0 < γn at the EP is shown in Fig. 7(a). The spectrum was
calculated by taking into account the noise terms F1 and F2 in
Eqs. (9) and (10) in the case of κ1 = κ2 = 0. The figure also
shows the fitting curves, which were obtained by comparing
the integrals of the numerical spectra and the theoretical curves
(see Appendix B for the details). One can see that the emission
spectrum at the EP can be well fitted by a squared Lorentzian
curve, and the amplitude is greater than that of the spectrum
measured at the DP. The squared Lorentzian shape is general
at a second-order EP in any non-Hermitian photonic system
with gain, and it can be experimentally observed.

Figure 7(b) shows the spectra under the CW wave input
condition at the resonance  = 0. One can clearly see that
the response intensity to the input wave at the EP can be more
than an order of magnitude greater than that at the DP, although
the spontaneous emission is also enhanced. The signal-to-noise
ratio is not degraded in this case. These results suggest the
experimental realization of the enhancement in the response to
input signals by using EPs.

IV. SUMMARY AND DISCUSSION

The response characteristics of non-Hermitian optical cav-
ities near EPs were analytically studied on the basis of Eq. (4).
Although the K factor (PF) diverges at these points, the actual
response amplitude is limited to a finite value. Importantly,
optical cavities operating at an EP can exhibit a non-Lorentzian
frequency response due to the interference between the first
and second poles in the resolvent, which mainly depends on
the decay rate γ0, the input field f , and the non-Hermitian
system parameters cij [see Eq. (4)]. This is a unique property
of systems operating near an EP. When a system and the input
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FIG. 7. (a) Each emission spectrum at the EP (ε = 1.8β and
p = 0) and DP (ε = p = 0). The spectrum at the EP is fitted by a
squared Lorentzian curve, whereas the spectrum at the DP is fitted by
a Lorentzian curve. The fitting curves are shown as the blue dotted
curves. (b) Emission spectra when an input wave with a frequency of
0 is coupled to the cavity in the CW direction. In (a) and (b), κ =
10−3β, W∞ = 0.9 × 10−3, and γ0/γn = 2

9 .

channel are appropriately designed and the decay rate γ0 is
reduced by gain, one can observe a significant enhancement in
the response near the coalescing resonance at the EP compared
to normal systems with the same loss and same coupling
parameters for the input waves. The results of the linear
theory were numerically verified in a microring cavity with
non-Hermitian backscattering by using a dynamical model
taking into account the effects of the gain and spontaneous
emission. With the aid of the gain, the intracavity intensity
can respond strongly to an input field as well as optical
noise. Although the gain saturation occurring under a strong
input field leads to a decrease in the response intensity, the
intensity is still much higher than that of a standard optical
cavity that has the same input wave coupling strength to each
eigenmode but does not operate at the EP. Even when the
spontaneous emission is enhanced, the signal-to-noise ratio
does not decrease because of the excess response to input
signals, as far as a gain saturation effect is not dominant. These
results suggest the possibility of experimental observation of
the enhanced response behavior by using EPs. For example, an
enhancement in a microring cavity operating at an EP could be
observed in an add-drop configuration with input and output
waveguides if asymmetric backscattering is so strong that the
condition γ0 < γs is satisfied.

A further enhancement is possible if a system can operate
at a higher-order EP because the resolvent or Green’s function
has higher-order poles [48,58].
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The response theory presented in this work is applicable to
a variety of photonic systems, including optical microcavities,
parity-time symmetric systems, optomechanical resonators,
and plasmonic systems that can operate at an EP. The re-
sponse characteristics at an EP shown in this work, e.g., the
enhancement in or suppression of the response amplitude, will
be useful for controlling the excitation of eigenmodes, the
output from resonator sensors at EPs [37–40], extraordinary
optical transmission [59], or the light-matter interactions inside
microcavities.
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APPENDIX A: DERIVATION OF EQ. (4)

The resolvent M̂EP at an EP is derived by assuming that M̂

can be described by a 2 × 2 matrix involving a pair of nearly
degenerate modes, j = 1 and 2. Although expressions similar
to M̂EP have been reported in Refs. [45,46,58], the 2 × 2 matrix
form derived in this work allows for a simple insight into the
relationship between the response functions and the matrix Ĥ .

Here, let �j and uj be an eigenvalue and the right eigen-
vector of mode j , respectively. The resolvent M̂ is rewritten
using an eigenvector matrix P̂ = (u1,u2) as follows:

M̂(ω) = (ωÎ − Ĥ )−1 = P̂ (ωÎ − �̂)−1P̂
−1

=

⎛
⎜⎜⎜⎝

R1 + R1 − R2

det P̂
u12u21 −R1 − R2

det P̂
u11u12

R1 − R2

det P̂
u21u22 R2 − R1 − R2

det P̂
u12u21

⎞
⎟⎟⎟⎠,

(A1)

where �̂ = diag(�1,�2), Rj = (ω − �j )−1, and uj =
(u1j ,u2j )T .

Note that det P̂ and R1 − R2 both become zero at an EP,
where the two eigenvalues coincide, and their eigenvectors
completely overlap each other. The convergence of (R1 −
R2)/ det P̂ can be analyzed by applying perturbation theory
near an EP to the above equation [45]. Suppose that Ĥ 0,�0, and
u0 = (u10,u20)T are the Hamiltonian at an EP, the coalesced
eigenvalue, and the corresponding eigenvector, respectively.
According to [43,44], �j and uj can be expressed as �0 ± �

and uj = u0 ± �uJ + O(|�|2), respectively, near an EP.
� is the deviation from �0, and uJ = (u1J ,u2J )T is an
associated vector, which satisfies a generalized eigenvalue
equation (Ĥ 0 − �0Î )uJ = u0. By using u0 and the associated
vector uJ , det P̂ is obtained as −2�J + O(|�|2), where
J is the determinant of the matrix P̂ J = (u0,uJ ). We omit the
second order of |�|2 near an EP and obtain

M̂(ω) ≈
⎛
⎝Ra + c11Rd c12Rd

c21Rd Ra + c22Rd

⎞
⎠, (A2)
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FIG. 8. Integrals of the noise spectra shown in Fig. 7(a). The
integrals of the spectra at the EP and DP are fitted by S1 and S2,
respectively.

where Ra = (R1 + R2)/2 and

Rd = 1

2�

(
1

ω − �1
− 1

ω − �2

)

= 1

(ω − �0)2 − �2
. (A3)

When � → 0, Ra → R0, and Rd → R2
0 . In the above, c11 =

−u10u20/J , c12 = u2
10/J , c21 = −u2

20/J , and c22 = −c11.
These coefficients correspond to the matrix components of
(Ĥ 0 − �0Î ). This can be easily confirmed by calculating
(Ĥ 0 − �0Î ) = P̂ J (T̂0 − �0Î )P̂

−1
J , where

T̂0 =
⎛
⎝�0 1

0 �0

⎞
⎠. (A4)

APPENDIX B: FITTING OF THE SPONTANEOUS
EMISSION SPECTRA

Because the emission spectra shown in Fig. 7(a) fluctuate,
the integrals of the spectra are compared to those of the
theoretical spectra. This fitting method is similar to that used in
Ref. [57]. According to the linear theory presented in Sec. II,
the emission spectrum at the EP is represented by a squared
Lorentzian curve when γ0 � γn, whereas the spectrum at
the DP (ε = p = 0) is a Lorentzian curve. The integral of a
Lorentzian curve, L(ω) = A1/[γ 2

0 + (ω − 0)2], is

S1(ω) =
∫ ω

−∞
L(ω)dω = A1

γ0

[
θ (ω) + π

2

]
, (B1)

where A1 is a fitting parameter, and θ (ω) = tan−1[(ω −
0)/γ0]. The integral of a squared Lorentzian curve, L2(ω) =
A2|ε|2/(4[γ 2

0 + (ω − 0)2]2), is

S2(ω) =
∫ ω

−∞
L2(ω)dω

= A2|ε|2
8γ 3

0

[
θ (ω) + 1

2
sin 2θ (ω) + π

2

]
, (B2)

where A2 is a fitting parameter. The fitting results are shown
in Fig. 8.
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