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We consider a quantum-electrodynamic problem of the spontaneous emission from a two-dimensional (2D)
emitter, such as a quantum well or a 2D semiconductor, placed in a quasi-2D waveguide or cavity with
subwavelength confinement in one direction. We apply the Heisenberg-Langevin approach, which includes
dissipation and fluctuations in the electron ensemble and in the electromagnetic field of a cavity on equal footing.
The Langevin noise operators that we introduce do not depend on any particular model of dissipative reservoir and
can be applied to any dissipation mechanism. Moreover, our approach is applicable to nonequilibrium electron
systems, e.g., in the presence of pumping, beyond the applicability of the standard fluctuation-dissipation theorem.
We derive analytic results for simple but practically important geometries: strip lines and rectangular cavities.
Our results show that a significant enhancement of the spontaneous emission, by a factor of order 100 or higher,
is possible for quantum wells and other 2D emitters in a subwavelength cavity.
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I. INTRODUCTION

Enhancement of the radiative processes due to the lo-
calization of emitters in a subwavelength cavity (so-called
Purcell enhancement [1]) is a fundamental cavity quantum
electrodynamics (QED) effect which finds an increasingly
broad range of applications in areas as diverse as nanopho-
tonics, plasmonics, linear and nonlinear optical sensing, and
high-speed communications, to name a few. It has been studied
theoretically and experimentally so many times that it is hard
to believe that any further development is needed. However,
there seems to be a significant gap in the formalism for the
situations typically encountered in quantum optoelectronic
devices, when the electron ensemble is out of equilibrium
and there is strong dissipation both in the optical dipole
oscillations in a macroscopic ensemble of fermionic emitters
(e.g., electrons and holes in a semiconductor quantum well or
a layer of quantum dots, or a 2D semiconductor such as MoS2,
or monolayer graphene) and for the electromagnetic (em) field
in a cavity. Examples include subwavelength semiconductor
lasers [2–6] and other devices or circuits with subwavelength
confinement in one or more dimensions (see, e.g., [7–9]). In
this case, using a simple Purcell-type factor ∼Qλ3/V , where
Q is a quality factor of em modes in a cavity of volume V

and λ is the emission wavelength, one can drastically overes-
timate the cavity enhancement of the spontaneous emission.
Although this fact is well known, a consistent QED theory
including dissipation and fluctuations is usually replaced by a
more phenomenological rate equations approach [3]. Recent
theoretical analysis of subwavelength lasers [2] did include
QED Heisenberg-Langevin equations for the em cavity modes,
but not for the dynamics of the active medium.

Here we use a consistent Heisenberg-Langevin approach
[10,11] which includes dissipation and fluctuations in the

fermionic ensemble and in the em field of a subwavelength
cavity on equal footing. Note that the description of dissipation
and noise of a quantum field due to its interaction with an
active nonequilibrium medium requires a completely different
approach as compared to the effects of Ohmic losses or radia-
tion losses in an electrodynamic system. The latter effects can
be analyzed within a standard fluctuation-dissipation theorem
[12]. The standard description would also work for a popular
model of a dissipative reservoir as an equilibrium ensemble
of oscillators [13]. This approach would only allow one to
describe thermal emission from a medium in thermal equilib-
rium. In contrast, our formalism allows us to treat radiation
effects and obtain a correct expression for the current operator
including fluctuations due to nonequilibrium electron systems,
e.g., in the presence of pumping, beyond the applicability of
the standard fluctuation-dissipation theorem. The Langevin
noise operators that we introduce are not based on a model
of a thermal reservoir. Instead, they are derived directly from
the condition of preserving the commutation relations and
generalized Einstein relations [13]. Therefore, they can be
applied to any dissipation- fluctuation mechanism.

We apply the general formalism to the problem of spon-
taneous emission in a quasi-2D waveguide or cavity with
subwavelength confinement in one direction. Remarkably,
we are able to derive closed-form analytic results for all
relevant quantities such as spontaneous emission power for
simple but practically important geometries: strip lines and
rectangular cavities. Our results provide a general framework
and convenient formulas for the evaluation of enhancement of
radiative processes in such systems. Our results also indicate
that a significant enhancement of the spontaneous emission, by
a factor of order 100 or higher, is possible for quantum wells
(QWs) and other 2D emitters sandwiched between metal plates
in a subwavelength cavity.
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FIG. 1. Sketch of a nanocavity with thickness Lz much smaller
than wavelength. An active layer of 2D emitters is shown in dark
blue. The profile of the electric field of the fundamental TE011 mode
is sketched on the sides. The radiation can be outcoupled through the
gratings or cavity edges.

Section II describes the spatial structure of the em field
in a subwavelength quasi-2D electrodynamic structure and
develops the quantization procedure. Section III introduces
coupling to the fermionic system. Section IV derives and solves
Heisenberg-Langevin equations for the density operator of
quasiparticles and em field operators. It derives the expression
for the spontaneous emission power and its useful limiting
cases.

II. ELECTROMAGNETIC FIELD
OF A SUBWAVELENGTH CAVITY

A. Spatial structure of the em field modes

Consider a very thin layer of quantum dipole emitters
(which we will call a QW for brevity, although it can be any
fermionic system), placed inside a strip line or a cavity formed
by two metallic planes at z = ±Lz/2, where Lz � c/

√
ε̄ω,

with ε̄ a typical (average) value of the dielectric constant
ε = ε(z) of the filling (see Fig. 1). A TM-polarized em field
is described by the following components of the electric field,
magnetic field, and electric induction:

(Ex,z,By,Dx,z) = Re[(Ẽx,z(z),B̃y(z),D̃x,z(z))e−iωt+iqx],
(1)

where we assumed that the strip line is oriented along x. From
Maxwell’s equations

∇ · D = 0, ∇ × B = Ḋ

c
, ∇ × E = − Ḃ

c
(2)

together with the material equation

D = ε(z)E, (3)

we obtain

∂D̃z

∂z
= −iqD̃x, (4a)

iqB̃y = − iωD̃z

c
, (4b)

∂Ẽx

∂z
= i

ω

c
B̃y(z) + i

q

ε(z)
D̃z. (4c)

Equation (4a) yields

D̃z = D̃z

(
−Lz

2

)
− iq

∫ z

−Lz/2
D̃xdz′.

For subwavelength thickness Lzq � 1 the previous equa-
tion gives D̃z ≈ const, which corresponds to the quasielectro-
static structure of the field in the (y,z) cross section of the strip
line. From Eqs. (4b) and (4c) we can obtain

∂Ẽx

∂z
= −i

ω2D̃z

qc2
+ i

q

ε(z)
D̃z. (5)

Next we integrate Eq. (5) as
∫ Lz/2
−Lz/2 dz . . . , taking into account

D̃z ≈ const and the boundary conditions on the metal planes:
Ẽx(+Lz

2 ) = Ẽx(−Lz

2 ) = 0. As a result, we obtain the disper-
sion relation

ω2

q2c2
= 1

Lz

∫ Lz/2

−Lz/2

dz

ε(z)
. (6)

Since the direction of x axis is arbitrary, we can represent the
electric field vector as

E = Dq Fq(r)e−iωq t + c.c., (7)

where the factor Fq(r) determines the spatial structure of the
field:

Fq(r) = z0
eiqr

ε(z)
, (8)

vector q is in the (x,y) plane and Dq is a constant which in this
case corresponds to a z-independent amplitude of the electric
induction. According to the Brillouin concept, one can use
the waves defined by Eqs. (6)–(8) to construct any waveguide
and cavity modes. They have quasi-TEM polarization. In
particular, if the sides y = ±Ly/2 are also metal coated, we
consider the lowest-order (01) waveguide mode

E = Dqx
Fqx

(r)e−iωqx t + c.c., q2
x +

(
π

Ly

)2

= ω2

c2

Lz∫ Lz/2
−Lz/2 ε(z)−1dz

, (9)

where the explicit form to the factor Fqx
(r) ∝ e−iqxx is given

below. If the facets x = ±Lx/2 are metal coated as well, the
waveguide becomes a resonator and the lowest-order modes
are TE01N :

E = DN FN (r)e−iωN t + c.c.,

(
Nπ

Lx

)2

+
(

π

Ly

)2

= ω2

c2

Lz∫ +Lz/2
−Lz/2 ε(z)−1dz

. (10)

In Eqs. (9) and (10) the factors Dqx
and DN are coordinate-

independent amplitudes of the electric induction. The factors
Fq,qx ,N (r) in Eqs. (7), (9), and (10) can be written in the same
form using the index ν = q,qx,N to denote a corresponding
spatial structure

Fν(r) = z0
ζν(x,y)

ε(z)
, ζq = eiqr , ζqx

= cos

(
πy

Ly

)
eiqxx,

ζN = cos

(
πy

Ly

)
×

⎧⎨
⎩

cos
(

Noddπx
Lx

)
sin

(
Nevenπx

Lx

)
,

(11)
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where
∫
S
ζνζ

∗
ν ′d2r ∝ δνν ′ . For a particular case of a uniform

dielectric constant, Eqs. (6)–(11) are exact. Similar equations
can be derived if one simply utilizes jumps of the dielectric
constants on the sides instead of metal coating. Even without
any jump in the dielectric constants, an open end of a thin
waveguide with vertical size much smaller than wavelength is
a good reflector and therefore any radiation losses through the
facets are small and do not affect the mode spatial structure
significantly.

B. Field quantization in a subwavelength waveguide or cavity

Here we consider field quantization in a volume V = LzS,
where S = Lx × Ly . The field operator can be represented in
a standard form [14,15]

Ê =
∑

ν

[E(r)ν ĉν + E∗(r)ν ĉν
†], (12)

where ĉν and ĉν
† are boson annihilation and creation operators,

respectively, Eν(r) = z0
ζν (x,y)

ε(z) Dν , and Dν is the normalization
constant corresponding to the z-independent amplitude of the
electric induction. The value of Dν needs to be chosen in such
a way that the commutation relation for boson operators ĉν and
ĉν

† have a standard form [ĉν ,ĉν
†] = δνν ′ . In this case the field

Hamiltonian will also be standard:

Ĥf =
∑

ν

h̄ων

(
ĉν

†ĉν + 1
2

)
. (13)

To find the explicit expression for Dν we apply the phe-
nomenological procedure of field quantization in a medium
[14,16], which was justified in [17] based on a rigorous quan-
tum electrodynamics theory. According to this approach, the
normalization is determined by the requirement that the classi-
cal energy density W of the em field E = Eν(r)e−iων t + c.c.,
B = Bν(r)e−iων t + c.c., give the total energy of

∫
V

W d3r =
h̄ων . For our strip line this procedure yields the expression for
the normalization constant (see Appendix A)

|Dν |2 = 2πh̄ων∫
S
ζνζ ∗

ν d2r
∫ Lz/2
−Lz/2

1
2ε2(ων,z)ων

[
∂(ω2ε(ω,z)

∂ω

]
ω=ων

dz
,

(14)

where
∫
S
ζqζ

∗
q d2r = S,

∫
S
ζqx

ζ ∗
qx

d2r = S/2, and∫
S
ζNζ ∗

Nd2r = S/4. In the limiting case of plane waves
in a homogeneous medium Eq. (14) corresponds to a standard
normalization of the electric field [14,16,17]; indeed, taking
into account that in a homogeneous medium Dν = Eνε(ων),
Eq. (14) gives |Eν |2 = 2πh̄ων

V
2ων

[ ∂(ω2ε(ω,z)
∂ω

]ω=ων

, where V = LzS is the

quantization volume.

III. NONDISSIPATIVE DYNAMICS OF A COUPLED
SYSTEM OF PHOTONS AND ELECTRONS

A. General formalism

We will denote a quantum state of an electron in a QW or
any other 2D nanostructure by a band index m, which may
include also the subband, spin, and valley index as needed
and the 2D quasimomentum k corresponding to the motion in
(x,y) plane. The second-quantized energy of a system of such

quasiparticles is

Ĥe =
∑
mk

Wmkâ
†
mkâmk, (15)

where â
†
mk and âmk are the creation and annihilation operators

of fermions, respectively, and Wmk ≡ Wmmkk are the diagonal
matrix elements of the energy operator of a quasiparticle. The
eigenfunctions can be written as

|m,k〉 = eikr

√
S

ψm(z), (16)

where
∫
S
ei(k−k′)rd2r = Sδkk′ and

∫ l/2
−l/2 ψm(z)ψ∗

n (z)dz = δmn.
Here we assume that a 2D nanostructure occupies a region
−l/2 � z � l/2, l � Lz. The total Hamiltonian of a coupled
system of photons and electrons is

Ĥ = Ĥf + Ĥe + V̂ , (17)

where the operators Ĥf and Ĥe are given by Eqs. (13) and (15)
and V̂ is the interaction Hamiltonian, which can also be written
in the second-quantized form

V̂ =
∑

mnkk′
V̂mnk′kρ̂nmkk′ , (18)

where ρ̂nmkk′ = â
†
mk′ ânk is the density operator. Matrix ele-

ments V̂nmk′k in Eq. (18) are operators since they depend on
the quantum field.

Taking into account the quasielectrostatic structure of the
electric field in the transverse cross section of a strip line, we
can write the interaction Hamiltonian in the electric potential
approximation

V̂ = e

∫ z

−l/2
Êzdz. (19)

Using Eq. (12) for the field operator, the matrix elements of
the interaction Hamiltonian are

V̂nmk′k = −d̃nm

∑
ν

(
Dνĉνζ

(ν)
k′k + D∗

ν ĉ
†
νζ

(ν)†
k′k

)
, (20)

where d̃nm is the effective dipole moment of the optical
transition

d̃nm = −e

∫ l/2

−l/2

[
ψ∗

n (z)

(∫ z

−l/2

dz′

ε(z′)

)
ψm(z)

]
dz, (21)

ζ
(ν)
k′k = 1

S

∫
S

e−ik′r ζν(x,y)eikrd2r, ζ
(ν)†
k′k = (

ζ
(ν)
k′k

)∗
. (22)

For a homogeneous medium, in which Eν = Dν/ε, Eq. (20)
will contain a standard expression d̃nmDν = −e〈n|z|m〉Eν .

The Hamiltonian (17) gives rise to the Heisenberg equations
for photon operators

˙̂cν = i

h̄
[Ĥ ,ĉν] = −iωνĉν + i

h̄
D∗

ν

∑
mnkk′

d̃nmζ
(ν)†
k′k ρ̂mnkk′ ,

˙̂c†ν = i

h̄
[Ĥ ,ĉ†ν] = iωνĉ

†
ν − i

h̄
Dν

∑
mnkk′

d̃nmζ
(ν)
k′kρ̂mnkk′ . (23)
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We write a similar equation for the density operator using
shorthand notation |m,k〉 = |μ〉. Using the fundamental com-
mutation relation [17–19]

[ρ̂μ′η′ ,ρ̂μη] = (δμ′ηρ̂μη′ − δμη′ ρ̂μ′η), (24)

which is valid whether the creation and annihilation operators
â†

η and âμ satisfy the commutation relations for bosons or
fermions, we obtain

˙̂ρμη = i

h̄
[Ĥ ,ρ̂μη] = − i

h̄

∑
μ′

(Ĥμμ′ ρ̂μ′η − ρ̂μμ′Ĥμ′η). (25)

The resulting equation for the density operator has the same
form as the von Neumann equation, although the original
Heisenberg equation has the opposite sign in front of the
commutator [17–19]. This is to be expected because for
time-dependent Heisenberg operators â†

η and âμ the average
of dyadics ρ̂μη = â†

ηâμ over the initial quantum state should
correspond to a usual density matrix.

B. Matrix elements of the interaction Hamiltonian

The form of the interaction Hamiltonian for the fields with
different spatial structure depends on the matrix elements ζ

(ν)
k′k

defined in Eq. (22). In particular, for plane waves we obtain
ζ

(q)
k′k = δk′;k+q . For a waveguide or a cavity the corresponding

expressions for ζ
(qx )
k′k and ζ

(N)
k′k are quite cumbersome and are

given in Appendix B.
If we take into account that the de Broglie wavelength of

electrons is typically much smaller than the spatial scale of the
em field, i.e., k � |q|,qx,

πN
Lx

, πN
Ly

, the expressions for matrix
elements are simplified. Indeed, in this case we can assume
that the optical transitions are direct in momentum space and
take ζ

(ν)
k′k ≈ ανδk′k. The factor in front of the δ function is one

for plane waves; for a waveguide or a cavity one should choose

αν =
√∑

k′ ζ
(ν)
k′kζ

(ν)†
kk′ . With this choice, a resonance line which

is smeared in the quasimomentum space can be reduced to the
δ function ανδk′k while conserving the sum of intensities of
all transitions within the line. The Parseval theorem then gives∑

k′ ζ
(ν)
k′kζ

(ν)†
kk′ = S−1

∫
S
ζνζ

∗
ν d2r (see Appendix B). As a result,

the matrix element can be written in the same form for plane
waves, in a waveguide, and in a cavity,

V̂nmkk′ ≈ −d̃nm

∑
ν

(D̃ν ĉν + D̃∗
ν ĉ

†
ν)δk′k, (26)

where

|D̃ν |2 = 2πh̄ων

SG(Lz,ων)
, (27)

G(Lz,ων) =
∫ Lz/2

−Lz/2

1

2ε2(ων,z)ων

[
∂(ω2ε(ω,z)

∂ω

]
ω=ων

dz.

(28)

Note that in a uniform nondispersive medium d̃mn = dmn/ε

and G = Lz/ε.

C. Probability of spontaneous emission

Consider a spontaneous radiative transition m → n for a
quasiparticle in an open electrodynamic system, e.g., in the
space between two conducting planes or in a waveguide.
The transition probability is usually calculated using Fermi’s
golden rule [20]

Am→n = 2π

h̄2

∫
d�f |Vf i |2δ

(
Wi

h̄
− Wf

h̄
− ων

)
, (29)

where the integration
∫

d�f is taken over all final states of a
system labeled by f . The matrix element Vf i in this case is
equal to 〈1ν |V̂nmk′k|0ν〉, where |nν〉 is a Fock state of photons.
Using Eqs. (20) and (26)–(28) we obtain

Vf i = −d̃nmD∗
ν ζ

(ν)†
k′k ≈ −d̃nmD̃∗

ν δk′k. (30)

Taking into account the photon density of states, one can get,
for the radiation emitted into space between two conducting
planes,

d�f = S|q|dθdωq

(2π )2|∂ωq/∂q| ,

where θ determines the direction of vector q in the (x,y) plane.
For the radiation emitted into a waveguide,

d�f = Lxdωqx

2π |∂ωqx
/∂qx | .

The resulting expressions for the spontaneous emission prob-
abilities are

A(q)
m→n = 2π |d̃mn|2ωmn|q|

h̄G(Lz,ωmn)|∂ωq/∂q|ωq=ωmn

, (31)

A(qx )
m→n = 2π |d̃mn|2ωmn

h̄LyG(Lz,ωmn)|∂ωqx
/∂qx |ωqx =ωmn

, (32)

where ωmn is the transition frequency.
In order to use Fermi’s golden rule in a cavity, one has

to formally introduce the density of states assuming that the
modal spectrum is spread near the resonance frequency ωmn

by the linewidth �ω,

d�f = (�ω/2π )

(ωmn − ωN )2 + (�ω/2)2
dω, (33)

which results in

A(N)
m→n(�ω) = 2π |d̃mn|2

( 4ωmn

�ω

)
h̄LxLyG(Lz,ωmn)

. (34)

Equation (34) is also valid for a waveguide at a critical
frequency, i.e., for |∂ωqx

/∂qx | = 0, because such a system is
effectively a cavity. In a homogeneous medium, expressions
(31), (32), and (34) can be simplified. In this case Eqs. (21)
and (28) lead to

|d̃mn|2
G(Lz,ωmn)

= |dmn|2
Lz

2ων

[
∂(ω2ε)

∂ω

]
ω=ωmn

.

Finally, we compare the spontaneous emission probability
in a cavity with that in free space. The latter is equal to
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A(0) = 4ω3|dmn|2√ε

3h̄c3 . Their ratio is

A(N)
m→n

A(0)
≈ 3π

2

(c/ω
√

ε)3

LxLyLz

(
4ω21

�ω

)
. (35)

Note that in Eq. (35) the minimal lateral sizes of an electrody-
namic system we consider are Lx,y = πc/ω

√
ε, whereas the

value of Lz can be much smaller.
Up to a numerical factor which depends on geometry,

Eq. (35) is a widely used expression for the Purcell enhance-
ment of the spontaneous emission. However, Eqs. (31), (32),
and (34) do not include the effects of nonradiative relaxation
in an ensemble of fermions. Moreover, the above approach
does not allow one to determine the line broadening in a
cavity in a consistent way. To include all dissipation processes
consistently, we use the Heisenberg-Langevin formalism.

IV. DISSIPATIVE DYNAMICS IN AN ENSEMBLE
OF PHOTONS AND ELECTRONS

A. Heisenberg-Langevin equations
for the quasiparticle density operator

Dissipative effects in an open quantum system can be
taken into account by adding the relaxation operator R̂μη

and corresponding Langevin noise operator F̂μη to the right-
hand side of Eq. (25) [10,11,15,18,19,21]. One cannot add
dissipation phenomenologically, without including Langevin
sources, because this would violate the fundamental commu-
tation relation (24) [10,11,18,19]. For the simplest model of
transverse relaxation,

R̂μ �=η = −γμηρ̂μη. (36)

References [10,11] derived the expressions for the commutator
and correlator of the Langevin noise (for a particular case of a
two-level system)

[F̂μη(t ′),F̂ †
μη(t)] = [−γμη(ρ̂ηη − ρ̂μμ) + R̂ηη − R̂μμ]δ(t ′ − t),

〈F̂ †
μη(t),F̂μη(t ′)〉 = (2γμη〈ρ̂μμ〉 + 〈R̂μμ〉)δ(t ′ − t), (37)

where F̂ †
μη = F̂ημ and angular brackets mean in this case

the averaging over both the initial quantum state and the
statistics of a dissipative reservoir. The dissipation operator in
its simplest form of Eq. (36) implies the absence of any inertia
in a dissipative subsystem; that is why the noise operator turns
out to be δ correlated in time. Note that for degenerate fermion
distributions Eqs. (37) are valid if the evolution equation for
the density operator includes exchange effects which take care
of Pauli blocking.

The nonzero value of the relaxation operator for popula-
tions, R̂μμ �= 0 in Eq. (37), corresponds to the nonequilibrium
distribution. A steady-state distribution can be in nonequilib-
rium because of an external pumping. An incoherent pumping
generally redistributes populations over many subbands; there-
fore, within the model taking into account a limited number of
subbands such a pumping is convenient to introduce as a source
Ĵμη in the evolution equation for the density operator. This way
we can assume that there is a generalized relaxation operator
ˆ̃Rμη = R̂μη + Ĵμη on the right-hand side of Eq. (25) and

the steady-state (but not necessarily equilibrium) distribution
corresponds to the condition 〈 ˆ̃Rμμ〉 = 0 for all μ. Of course,

the modification of the relaxation operator causes the noise
operator to change. However, within the simplest model of
Eq. (36) this does not affect the general form of Eqs. (37). One
just needs to keep in mind that the relaxation constants γμη and
operators R̂μμ in Eqs. (36) and (37) contain the contribution
from incoherent pumping.

The equation for the density operator can be further simpli-
fied if we (i) include only two subbands, i.e., m,n = 1,2; (ii)
assume that optical transitions in the interaction Hamiltonian
are direct [see Eq. (26)], in which case the equation for
the off-diagonal density operator elements includes only the
elements ρ̂21kk and ρ̂12kk = ρ̂

†
21kk; and (iii) assume populations

to satisfy R̂11kk = R̂22kk = 0, which gives

˙̂ρ21kk + iω21(k)ρ̂21kk + γ21kkρ̂21kk

= id̃21

h̄

(∑
ν

D̃ν ĉν

)
(ρ̂11kk − ρ̂22kk) + F̂21kk, (38)

where ω21(k) = W2k−W1k
h̄

. As usual, the properties of the
Langevin source F̂21kk(t) in Eq. (38) are convenient to express
through the properties of its spectral components: F̂21kk(t) =∫

∞F̂ω;21kke
iωtdω and F̂−ω;12kk = F̂

†
ω;21kk. Taking into account

that R̂11kk = R̂22kk = 0, we can get, from Eq. (37) (see also
[10,19]),

〈F̂ †
ω;21kkF̂ω′;21kk〉 = γ21kk

π
n2kδ(ω − ω′),

〈F̂ω;21kkF̂
†
ω′;21kk〉 = γ21kk

π
n1kδ(ω − ω′), (39)

where n1k = 〈ρ̂11kk〉 and n2k = 〈ρ̂22kk〉 are constant popula-
tions supported by pumping.

B. Heisenberg-Langevin equations for field operators

Similarly to relaxation in the medium, relaxation of the em
field gives rise to the noise sources in the equations for field
operators [15]. When field absorption by fermions is included,
the noise term for the em field appears due to Langevin noise
terms in the density operator equations [10,11,19,22]. Includ-
ing any additional field absorption unrelated to absorption
in the medium should be accompanied by adding Langevin
noise terms directly to field equations. We take into account
this additional absorption for the νth mode of the field by
including phenomenological dissipative operators −�ĉν and
−�ĉ†ν on the right-hand side of the field equations (23). To
preserve the commutation relation [ĉν ,ĉ

†
ν] we need to add

the Langevin noise operator L̂(t), satisfying the commuta-
tion relation [L̂(t ′),L̂†(t)] = 2�δ(t − t ′) (see Appendix C).
Its correlator is equal to 〈L̂†(t ′)L̂(t)〉 = �2�δ(t − t ′), where
the parameter � is determined by a state of a dissipative
reservoir. When the latter is in equilibrium, we obtain [15]
� = (eh̄ων/T − 1)−1.

Next we take into account that the dissipation of a given
νth mode of the em field could also be due to absorption in
metal walls and bulk material unrelated to the active medium.
In this case we add the dissipative operators to the right-hand
side of Eq. (23), −(�r + �σ )ĉν and −(�r + �σ )ĉ†ν , together
with corresponding Langevin noise terms L̂(ν)

r and L̂(ν)
σ . Here

the factor �r describes radiative and diffraction losses out from
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the cavity and �σ describes Ohmic losses. Taking into account
Eq. (26) for the interaction Hamiltonian, we obtain

˙̂cν + (iων + �r + �σ )ĉν = id̃12D̃
∗
ν

h̄

∑
ν

ρ̂21kk + L̂(ν)
r + L̂(ν)

σ .

(40)

Here the Langevin sources can again be defined through the
properties of their spectral components

L̂(ν)
r,σ =

∫
∞

L̂(ν)
r,σ ;ωe−iωtdω, L̂

(ν)
r,σ ;−ω = L̂(ν)†

r,σ ;ω,

〈
L̂

(ν ′)†
r,σ ′;ω′L̂

(ν)
r,σ ;ω

〉 = nTr,σ
(ων)

�r,σ δνν ′

π
δ(ω − ω′),

〈
L̂(ν)

r,σ ;ωL̂
(ν ′†)
r,σ ′;ω′

〉 = [nTr,σ
(ων) + 1]

�r,σ δνν ′

π
δ(ω − ω′), (41)

where nTr,σ
(ων) = 1

eh̄ων /Tr,σ −1 and Tr,σ are the temperature of
the ambient space which controls radiative losses and the

bulk material inside the cavity. The presence δνν ′ in Eq. (41)
corresponds to the Langevin sources that are δ correlated not
only in space but also in time [10,19].

C. Spontaneous emission from an ensemble of nonequilibrium
fermions in a single-mode cavity

If we assume the populations to be given, the Heisenberg
equations for the off-diagonal elements of the density operator
can be averaged over the original state of quasiparticles. After
averaging, the off-diagonal elements will depend on the field
operators, noise operators, and populations nmk. The operators
of populations ρ̂mmkk in Eq. (38) will be replaced by c-numbers:
ρ̂mmkk ⇒ nmk (see [17,19]).

The structure of Eqs. (38) and (40) suggests the substitutions
ĉν = ĉ0ν(t)e−iων t and ĉ†ν = ĉ

†
0ν(t)e+iων t . Here ĉ0ν(t) and ĉ

†
0ν(t)

are slow amplitudes in the following sense: 〈 ˙̂c0ν〉 � ων〈ĉ0ν〉
(see [17]). Neglecting any inhomogeneous broadening of the
resonance line, a steady-state solution of Eq. (38) for a single-
mode cavity is

ρ̂21kk ≈ id̃21D̃ν

h̄

ĉ0νe
−iων t (n1k − n2k)

i(ω21 − ων) + γ21kk
+

∫
∞

F̂ω;21kke
−iωtdω

i(ω21 − ω) + γ21kk
. (42)

Substituting Eq. (42) into Eq. (40), we obtain

˙̂c0ν + (�r + �σ + iδω + γ )ĉ0ν = id̃21D̃
∗
ν

h̄

∑
k

∫
∞

F̂ω;21kke
−i(ω−ων )t dω

i(ω21 − ω) + γ21kk

+
∫

∞
L̂

(ν)
rω′e

−i(ω′−ων )t dω′ +
∫

∞
L̂

(ν)
σω′′e

−i(ω′′−ων )t dω′′, (43)

where

δω = �2Re
∑

k

n1k − n2k

(ω21 − ων) − iγ21kk
, γ = �2Im

∑
k

n1k − n2k

(ω21 − ων) − iγ21kk
, (44)

�2 = | ˜d21|2|D̃ν |2
h̄2 = | ˜d21|22πων

h̄LxLyG(Lz,ων)
. (45)

The frequency shift δω of the cold cavity mode is due to the optical transitions between electron states in a QW. We can redefine
the cavity mode frequency assuming that the effect of electrons has been included in ων from the very beginning (a hot cavity
mode). The decay rate γ describes absorption by electrons; the population inversion corresponds to γ < 0. If γ + �r + �σ < 0
the instability develops and the field grows with time; we do not consider this case here.

The steady-state solution of Eq. (43) has the form

ĉ0ν = id̃12D̃
∗
ν

h̄

∑
k

∫
∞

F̂ω;21kke
−i(ω−ων )t dω

[i(ων − ω) + �r + �σ + γ ][i(ω21 − ω) + γ21kk]

+
∫

∞

L̂
(ν)
rω′e−i(ω′−ων )t dω′

[i(ων − ω′) + � + �σ + γ ]
+

∫
∞

L̂
(ν)
σω′′e−i(ω′′−ων )t dω′′

[i(ων − ω′′) + � + �σ + γ ]
. (46)

Next we use the Hermitian conjugate of Eq. (46) to find the value of 〈ĉ†0ν ĉ0ν〉, assuming that the statistics of noise operators
F̂21kk(t), L̂(ν)

r (t), and L̂(ν)
σ (t) are independent of each other. Using Eqs. (39) and (41) we obtain

〈ĉ†0ν ĉ0ν〉 = �2
∑

k

∫
∞

dω

π

γ21kkn2k

[(ων − ω)2 + (�r + �σ + γ )2]
[
(ω21 − ω)2 + γ 2

21kk

]
+ �r

�r + �σ + γ
nTr

(ων) + �σ

�r + �σ + γ
nTσ

(ων). (47)

For simplicity, we neglect the last two terms in Eq. (47), which describe the contribution of the em background of a
surrounding medium and thermal radiation of the material inside a cavity. The power emitted by electrons into the outside space is
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P = 2�r h̄ων〈ĉ†0ν ĉ0ν〉:

P = h̄ων�
2
∑

k

∫
∞

dω

π

2�rγ21kkn2k

[(ων − ω)2 + (�r + �σ + γ )2]
[
(ω21 − ω)2 + γ 2

21kk

] . (48)

Equation (48) for the spontaneous emission power is the main result of this section. It has two obvious limiting cases.
(i) The transition line is much narrower than the cavity resonance: �r + �σ + γ � γ21kk. In this case we can get, from Eq. (48),

P = h̄ων

[
A

(N)
2→1(�ω)�ω=�ω

(1)
eff

] �r

�r + �σ + γ

(�r + �σ + γ )2

(ων − ω21)2 + (�r + �σ + γ )2

∑
k

n2k, (49)

where A
(N)
2→1(�ω) is the probability of the spontaneous emission in a cavity given by Eq. (34) and �ω

(1)
eff = 2(�r + �σ + γ ).

The second factor in Eq. (49) determines the fraction of the radiation which escaped outside. The third factor is due to a
position of the narrow transition line within a broader cavity mode line. The last factor is a number of radiating particles:∑

k n2k ⇒ S
(2π)2

∫
n2kd

2k.
(ii) The transition line is much wider than the cavity resonance: �r + �σ + γ � γ21kk. In this case

P = h̄ων

[
A

(N)
2→1(�ω)�ω=�ω

(2)
eff

] �r

�r + �σ + γ

∑
k

〈γ21〉γ21kkn2k

(ων − ω21)2 + γ 2
21kk

. (50)

Instead of the cavity linewidth 2(�r + �σ + γ ) Eq. (50) contains the homogeneous linewidth �ω
(2)
eff = 〈γ21〉, where the right-hand

side is an average value of γ21kk. Now the third factor is due to the position of the narrow cavity mode line within a broader
transition line. Therefore, the effective quality factor is determined by the greater of the two values �r + �σ + γ or 〈γ21〉. The
spontaneous emission efficiency is proportional to the factor �r

�r+�σ +γ
, where γ is the decay rate of the field due to absorption by

electrons. Since γ depends on the electron density, the spontaneous emission efficiency per particle also depends on their density.
One can further simplify Eq. (48) if relaxation constants γ21kk do not depend on k, i.e., γ21kk ≡ γ21,

P = h̄ων�
2
∫

∞

dω

π

2�rγ21

[(ων − ω)2 + (�r + �σ + γ )2]
[
(ω21 − ω)2 + γ 2

21

] ∑
k

n2k. (51)

Here γ is defined by Eq. (44); for γ21kk ≡ γ21 it becomes

γ = �2 γ21

(ω21 − ων)2 + γ 2
21

∑
k

(n1k − n2k), (52)

where �2 is given by Eq. (45). Using Eq. (34), one can rewrite Eq. (51) as

P = h̄ωνA
(N)
2→1

∑
k

n2k, (53)

where

A
(N)
2→1 = 2π |d̃21|2

( 4ω21
�ωeff

)
h̄LxLyG(Lz,ων)

(54)

and

1

�ωeff
=

∫
∞

dω

4π

2�rγ21

[(ων − ω)2 + (�r + �σ + γ )2]
[
(ω21 − ω)2 + γ 2

21

] . (55)

For a cavity filled with a uniform and dispersionless medium with dielectric constant ε one can further simplify Eq. (53) as

P =
[
h̄ωνA

(0)
∑

k

n2k

][
6

π2

(λ/2
√

ε)3

LxLyLz

]
Qeff , (56)

where A(0) = 4ω3|d21|2√ε

3h̄c3 is the spontaneous emission rate into free space filled with dielectric medium ε and Qeff = ω21
�ωeff

is the
effective quality factor. The term in the first set of brackets on the right-hand side of Eq. (56) is the power of spontaneous emission
into free space; the term in the second set of brackets is the geometric enhancement due to a subwavelength cavity.

The integral in Eq. (55) is a product of two Lorentzians which can be easily evaluated analytically but is a bit cumbersome.
Assuming for simplicity an exact resonance between the transition frequency and the cavity resonance ων = ω21, we obtain

Qeff = ω21�r

2(�r + �σ + γ )(γ21 + �r + �σ + γ )
→ ω21

2(γ21 + �r )
, (57)

where the last expression is in the limit �r � �σ + γ .

043801-7



MIKHAIL TOKMAN et al. PHYSICAL REVIEW A 97, 043801 (2018)

0 1 2 3 4
0

2

4

6

8

FIG. 2. Normalized effective Q factor as a function of the normal-
ized cavity linewidth �r/γ21 at exact resonance ω21 = ων . Four curves
correspond to four different values of the total intracavity absorption
rate (�σ + γ )/γ21: 0.01, 0.1, 1, and 10, from top to bottom curve.

For a fixed transition linewidth γ21 we normalize Qeff by the
Q factor of the radiative transition ω21

2γ21
and plot the normalized

Q factor Qnorm = 2γ21

�ωeff
as a function of the cavity linewidth

�r for different values of the total normalized intracavity
absorption rate (�σ + γ )/γ21 (see Fig. 2). As shown in Fig. 2,
the total magnitude of the intracavity absorption rate should be
kept below the total linewidth γ21 of the emission line. Figure 2
also shows that it makes no sense to increase the Q factor of the
cavity mode ων

2�r
beyond the value of �r corresponding to the

peak value of the effective Q factor Qeff . For smaller values
of �r the intracavity quantum efficiency will stay roughly
the same, limited by the dissipation rate γ21 of the optical
polarization, whereas the radiation power outcoupled from the
cavity reduces proportionally to �r . The effective Q factor
quickly drops down with detuning of the cavity mode from the
emission line (see Fig. 3).

For midinfrared intersubband transitions in multiple QW
nanocavities at h̄ω21 ∼ 100–200 meV and full linewidth
2γ21 = 10 meV [23] the maximum Qeff ∼ 50–100 and the
geometric enhancement in Eq. (56) can add another factor of
10–100. For tetrahertz intersubband transitions Qeff is similar

�4 �2 0 2 4
0

2

4

6

8

FIG. 3. Normalized effective Q factor as a function of frequency
detuning at �r = γ21. Three curves correspond to three different
values of the total intracavity absorption rate (�σ + γ )/γ21: 0.01, 0.1,
and 1, from top to bottom curve. They are plotted for the values of the
normalized cavity linewidth �r/γ21 = 0.1, 0.3, and 1, respectively,
which correspond to the maximum Qeff in Fig. 2.

whereas the geometric enhancement is a factor of 10 higher.
For a near-infrared interband transition in semiconductor QWs
the frequency is ∼5–10 times higher, but the linewidth is 2–3
times higher as well, so Qeff can be about 100–300. This
example also suggests that an optimal radiative loss from a
cavity (or a cavity mode linewidth) for semiconductor 2D
emitters should be of the order of 5–10 meV. Two-dimensional
semiconductors such as MoS2 have excitonic emission lines
that are quite broad, up to 50–100 meV. They are ideally suited
for integration with plasmonic nanocavities which have a
relatively low Q factor but a very small effective mode volume.
As an example, Ref. [24] reports a 2000-fold enhancement in
the photoluminescence intensity from the MoS2 monolayer
in a plasmonic nanocavity formed by a gold substrate and a
patch silver nanoantenna. Since the emission line of MoS2 was
so broad (about 30 nm at 660 nm wavelength), according to
Eqs. (56) and (57) the authors made an optimal choice of using
a plasmonic nanocavity with strong radiative outcoupling and
comparably broad nanocavity modes, but with an ultrasmall
effective mode volume of ∼10−3(λ/

√
ε)3. All results in this

section are applicable to a waveguide at the cutoff frequency.

V. CONCLUSION

Using a consistent Heisenberg-Langevin approach, we de-
rived general analytic formulas describing the spontaneous
emission of 2D emitters placed in plane-parallel subwave-
length cavities or waveguides. We found that a significant
enhancement of the outcoupled spontaneous emission and
quantum efficiency of semiconductor quantum devices can be
achieved for realistic device parameters. The present formal-
ism can be extended to the nonlinear optical processes in 2D
subwavelength cavities [25].
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APPENDIX A: ELECTROMAGNETIC FIELD
QUANTIZATION IN A SUBWAVELENGTH CAVITY
FILLED WITH A LAYERED DISPERSIVE MEDIUM

We start from the expression for the energy of a classical
em field in a nonmagnetic medium [14,26]

W = B2

8π
+ 1

4π

∫ t

C

E Ḋdt. (A1)

According to Eq. (12), in our case the electric field and electric
induction vectors are equal to

E = z0Dν

ζν(x,y)

ε(ων,z)
e−iων t + c.c.,

D = z0Dνζν(x,y)e−iων t + c.c. (A2)

For a nonuniform medium with frequency dispersion the spa-
tial distribution of the field depends explicitly on the frequency
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ων ; this fact requires certain modification of the approach
used in [14,22] to calculate the field energy W . Assume an
adiabatically slow turning on of the electric induction at the
moment of time t = C, i.e., Dν ⇒ Dν(t), Dν(C) = 0, and
Ḋν � ωνDν . In this case one can write

Ḋ = z0ζν(x,y)e−iων t (−iωνDν + Ḋν) + c.c.,

E ≈ z0ζν(x,y)e−iων t

[
Dν

ε(z,ων)
+ iḊν

∂

∂ω

(
1

ε(z,ω)

)
ω=ων

]

+ c.c. (A3)

In addition, we take into account that for monochromatic
fields E = Eν(r)e−iων t + c.c., B = Bν(r)e−iων t + c.c., and
D = Dν(r)e−iων t + c.c. in a cavity or under periodic boundary
conditions the flux of the complex vector Eν × B∗

ν through a
surface enclosing volume is equal to zero. This allows us to
prove that (see also [17,27])∫

V

Bν B∗
νd

3r =
∫

V

Dν E∗
νd

3r. (A4)

Using Eqs. (A1)–(A4) we can get∫
V

Wd3r = |Dν |2
4π

∫
S

ζνζ
∗
ν d2r

×
∫ +Lz/2

−Lz/2

[
2

ε(z,ων)
− ων

∂

∂ω

(
1

ε(z,ω)

)
ω=ων

]
dz.

After we impose the requirement
∫
V

Wd3r = h̄ων and take
into account the relation

2

ε
− ω

∂

∂ω

(
1

ε

)
= 1

ε2ω

∂(ω2ε)

∂ω

we arrive at the normalization condition (14).

APPENDIX B: MATRIX ELEMENTS OF THE
INTERACTION HAMILTONIAN FOR FERMIONS

COUPLED TO AN ELECTROMAGNETIC FIELD IN A
CAVITY OR WAVEGUIDE

The explicit form of the matrix elements in Eq. (22) is (i)
in the waveguide

ζ
(qx )
k′k = δk′

x ,kx+qx
Yk′

y ,ky
, (B1)

where

Yk′
y ,ky

=
sin

[(
ky + π

Ly
− k′

y

)Ly

2

]
(
ky + π

Ly
− k′

y

)
Ly

+
sin

[(
k′
y + π

Ly
− ky

)Ly

2

]
(
k′
y + π

Ly
− ky

)
Ly

,

and (ii) in the cavity

ζ
(N)
k′k = Yk′

y ,ky
Xk′

x ,kx
, (B2)

where

X
(odd)
k′
x ,kx

=
sin

[(
kx + Noddπ

Lx
− k′

x

)
Lx

2

]
(
kx + Noddπ

Lx
− k′

x

)
Lx

+
sin

[(
k′
x + Noddπ

Lx
− kx

)
Lx

2

]
(
k′
x + Noddπ

Lx
− kx

)
Lx

,

X
(even)
k′
x ,kx

= i
sin

[(
k′
x + Nevenπ

Lx
− kx

)
Lx

2

]
(
k′
x + Nevenπ

Lx
− kx

)
Lx

−i
sin

[(
kx + Nevenπ

Lx
− k′

x

)
Lx

2

]
(
kx + Nevenπ

Lx
− k′

x

)
Lx

.

These expressions are presented in a form which shows
explicitly the factors of the type sin(Ax)

x
.

When calculating the radiated power by an ensemble of
fermions we need to know the squares of matrix elements
summed over electron k states, in particular

∑
k′
y
Yk′

y ,ky
Yky,k′

y

and
∑

k′
x
Xk′

x ,kx
Xkx,k′

x
. Taking into account that

∫ +∞

−∞

sin2 x

x2
dx = π,

∫ +∞

−∞

cos2 x

( π
2 )2 − x2

dx = 0,

we obtain

∑
k′
y

Yk′
y ,ky

Yky,k′
y

⇒ Ly

2π

∫
∞

Yk′
y ,ky

Yky,k′
y
dk′

y = 1

2
,

∑
k′
x

Xk′
x ,kx

Xkx,k′
x

⇒ Lx

2π

∫
∞

Xk′
x ,kx

Xkx,k′
x
dk′

x = 1

2
. (B3)

Since
∫
S
ζqx

ζ ∗
qx

d2r = S/2 and
∫
S
ζNζ ∗

Nd2r = S/4, Eqs. (B3)

give the equation
∑

k′ ζ
(ν)
k′kζ

(ν)†
kk′ = S−1

∫
S
ζνζ

∗
ν d2r , which is

used in Sec. II B.

APPENDIX C: COMMUTATION RELATIONS FOR
LANGEVIN SOURCES

Consider a quantum oscillator described by the Hamiltonian
Ĥ = h̄ω(ĉ†ĉ + 1/2). After substituting ĉ = ĉ0e

−iωt and ĉ† =
ĉ
†
0e

−iωt the Heisenberg equations of motion take the form
˙̂c0 = 0 and ˙̂c†0 = 0. The simplest model of interaction with
a dissipative reservoir modifies these equations as follows:
˙̂c0 + �ĉ0 = 0 and ˙̂c†0 + �ĉ

†
0 = 0. However, this modification

leads to violation of the boson commutation relation [ĉ0,ĉ
†
0] =

1. To resolve this issue and preserve the commutator one has
to add the Langevin sources to the right-hand side of the
Heisenberg equations [15]

˙̂c0 + �ĉ0 = L̂, ˙̂c†0 + �ĉ
†
0 = L̂†. (C1)

Langevin noise operators in Eq. (C1) describe fluctuations in
a dissipative system. Note that 〈L̂〉 = 0; the notation 〈· · · 〉
means averaging over the statistics of the dissipative reservoir
and over the initial quantum state |�〉 within the Heisenberg
picture.

The operator L̂ is usually defined together with the relax-
ation constant � within a given model of the reservoir [15].
However, the commutation relations for a noise operator can
be obtained directly from the given form of the relaxation
operator if we require that standard commutation relations
[ĉ0,ĉ

†
0] = 1 and [ĉ0,ĉ0] = 0 be satisfied at any moment of time.

Indeed, let us substitute the solution of the operator-valued
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equations (C1)

ĉ0 = ĉ0(0)e−�t +
∫ t

0
e�(t ′−t)L̂(t ′)dt ′,

ĉ
†
0 = ĉ

†
0(0)e−�t +

∫ t

0
e�(t ′−t)L̂†(t ′)dt ′ (C2)

into the commutators. It is easy to see that the standard commu-
tation relations will be satisfied if, first of all, the field operators
at the initial moment of time, ĉ0(0) and ĉ

†
0(0), commute with

the Langevin operators L̂(t) and L̂†(t) in any combination.
Second, the following condition has to be satisfied:

[L̂,ĉ
†
0] = [ĉ0,L̂

†] = �. (C3)

Substituting Eq. (C2) into Eq. (C3) and using the identity∫ t

0 X(t ′)δ(t − t ′)dt ′ = X(t)/2, we arrive at

[L̂(t ′),L̂†(t)] = 2�δ(t − t ′). (C4)
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