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Fast trimers in a one-dimensional extended Fermi-Hubbard model
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We consider a one-dimensional two-component extended Fermi-Hubbard model with nearest-neighbor
interactions and mass imbalance between the two species. We study the binding energy of trimers, various
observables for detecting them, and expansion dynamics. We generalize the definition of the trimer gap to include
the formation of different types of clusters originating from nearest-neighbor interactions. Expansion dynamics
reveal rapidly propagating trimers, with speeds exceeding doublon propagation in the strongly interacting regime.
We present a simple model for understanding this unique feature of the movement of the trimers, and we discuss
the potential for experimental realization.
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I. INTRODUCTION

Formation of clusters is at the heart of all matter around us.
Interparticle interactions lead into formation of pairs, trimers,
and clusters, but what exactly is required for larger clusters to
form? The paradigmatic model in condensed-matter physics is
the Hubbard model, describing low-energy particles moving
in a periodic potential and interacting through short-range
interactions. However, for fermionic particles and on-site
interactions, the Fermi-Hubbard model has been shown to
support trimers only in a limited range of parameters [1].
Long-range interactions are required for stabilizing larger
clusters. Indeed, the extended Fermi-Hubbard model involving
nearest-neighbor interactions is the next simplest model, but
one that is sufficiently rich to describe the formation of large
clusters over a large range of parameters.

In the last two decades, there has been significant progress
in cooling and trapping ultracold atoms in different lattice
geometries leading to the simulation of a variety of quan-
tum models [2] including the extended Bose-Hubbard model
[3]. Indeed, in addition to short-range on-site interactions,
it is now possible to engineer also long-range interactions
using ultracold molecules, Rydberg-dressed atoms, and dipolar
atoms [3–8]. Trapping dipolar atoms in optical lattices to form
itinerant models has recently been achieved experimentally [3].

Another important parameter for cluster formation is the
mass imbalance between the particles. The presence of mass
imbalance breaks the SU(2) symmetry in the system explicitly
giving rise to a variety of interesting quantum phases such
as unconventional superconductivity, exotic forms of quantum
magnetism, and trimer phases [9–12]. There are several ways to
induce mass imbalance in optical lattices such as differential
coupling of the laser field to different atom transitions [13],
applying an oscillatory magnetic-field gradient [14], or using
different atomic species or isotopes [15]. Effects of mass
imbalance in continuous systems have been extensively studied
both theoretically and experimentally, revealing the existence
of Efimov trimers and Kartavtsev-Malykh trimers at different
regimes of mass ratios and interactions [16–20].

We study trimer formation and dynamics in two-component
fermionic dipolar gas in a one-dimensional optical lattice.
Using the extended Hubbard model, in which the fermionic
atoms interact through nearest-neighbor interactions, our aim
is to understand cluster formation in a few-body system, the
stability of the trimer configuration, and how the trimers move
in the lattice. We perform both static and dynamic analysis.

In the static analysis, we consider relatively weak interac-
tions, resulting in spatially very large trimers. Depending on
the mass ratio of the two atomic components [21–25], these
trimers can be understood to consist either of a single light
atom binding two heavier atoms together by mediating an
effective attractive long-range interaction between the heavy
atoms [19,26–28], or, in the opposite mass-ratio limit, a single
heavy atom providing a pinning potential for two light atoms.
We provide a general method for determining the trimer gap,
and we consider also the use of two-particle correlators for
determining the stability of trimers.

In the dynamic studies, we consider more strongly bound
trimers, and analyze in detail the movement of an initially
localized trimer and determine how the propagation speed
depends on hopping parameters and the strength of the nearest-
neighbor interaction. We show that, despite the inherent com-
plexity of transporting a multiparticle object in the lattice,
the trimers can actually propagate faster than corresponding
dimers. We provide a simple description of both dimer and
trimer propagation that yields excellent agreement with the
essentially exact numerical results provided by matrix product
states (MPSs) method [29,30].

The results are immediately relevant for experiments on
long-range interacting ultracold atoms in optical lattices. We
consider several one- and two-particle correlators for analyzing
the presence and propagation of trimers, and we discuss the
possibility of using these in actual experimental settings.

The structure of the work is the following: in Sec. II we
describe the theoretical model used for studying the system.
In Sec. III we describe the static properties of the trimers:
trimer gap and the size of the trimer. These are studied in
weakly interacting systems, since that is the regime where the
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trimer stability is nontrivial, as strong attractive long-range
interaction tends to lead into formation of large clusters. In
contrast, in Sec. IV we study the propagation of trimers and
dimers in the lattice by releasing initially tightly trapped atoms
into a larger homogeneous lattice. These studies are done with
strong interactions to have more stable trimers that can survive
the release without breaking. We show the surprising result
that strongly bound trimers can move faster than dimers along
the one-dimensional lattice, and we explain the finding with
a simple model that involves near-degenerate trimer states.
Section V is devoted for analyzing the experimental relevance
of the results. The intriguing results regarding rapidly moving
trimers should be within easy reach experimentally as there is
no need for low temperatures. We conclude by summarizing
the key results in Sec. VI.

II. MODEL HAMILTONIAN

We consider a two-component fermionic system in a lattice
with nearest-neighbor interactions which can be described by
the extended Fermi-Hubbard model. Additionally, we consider
the two fermionic species to possess different masses, reflected
in the different tunneling amplitudes. The Hamiltonian describ-
ing such a system is

H = −
∑
〈ij〉,σ

tσ (c†i,σ cj,σ + H.c.) + U
∑

i

ni,↑ni,↓

+
∑

〈i,j〉,σ
V ni,σ nj,σ +

∑
〈i,j〉

V ′ni,↑nj,↓. (1)

Here, ci,σ (c†i,σ ) are the annihilation (creation) operators at site
i of fermionic species σ (=↑ / ↓). The first term denotes the
tunneling to the nearest-neighbor sites with a spin-dependent
tunneling amplitude tσ . The second term expresses the on-site
interaction between opposite spins. The third and fourth terms
take into account the nearest-neighbor interactions between the
same and different species respectively.

We concentrate on the experimentally more relevant case
in which inter- and intraspecies nearest-neighbor interactions
are equal, i.e., V = V ′. In addition, the on-site interaction U

is assumed to be small, although we also discuss the effect of
relaxing both of the assumptions.

The hopping ratio is defined as tratio = t↓/t↑, where we have
fixed t↑ = 1, and varied t↓. That means that the mass of ↓ atoms
is changed from heavy (for small tratio) to light (for tratio close
to or above unity) [31]. For static simulations, the lattice size
has been kept to 100 sites, whereas for the dynamics studies
the typical lattice size is 53 sites.

To study the above-mentioned system in one dimension, we
have used the matrix product states (MPSs) method which has
proved to be extremely accurate in lower dimensions for both
static and dynamic investigations [32–34]; we have used the
maximum bond dimensions to be 1000 resulting in an error
of less than 10−12. For dynamical studies, the Krylov-based
time evolution [35] was used with a tolerance in the Lanczos
procedure to determine the matrix exponential set to less than
10−6 and maximum bond dimensions to 500.

III. STATIC TRIMER: ENERGY AND CORRELATIONS

For studying individual trimers, we consider a single ↑
atom and two ↓ atoms. We concentrate on the case of a
light ↑ atom, which then effectively mediates an interaction
between the two ↓ atoms. Such a setting has been studied
earlier assuming only on-site interactions. For the case of equal
masses, or the hopping ratio tratio = 1, the system with only
on-site interactions has been shown to have no trimers [1].
However, for mass-imbalanced systems, the trimer formation
has been studied and predicted [11,36,37] to occur over a large
range of parameters.

Earlier studies in the one-dimensional extended Hubbard
model using the quantum Monte Carlo method found the
tendency of atoms forming large clusters [38]. Since in this
work we consider systems of at most three atoms, the forma-
tion of larger clusters is not included. However, even if the
ground state of the system was one big cluster, in practice
the system would consist of multiple smaller clusters, as
the binding energies decrease with increasing cluster size in
one-dimensional lattice. Trimers are therefore highly relevant,
even if the true ground state would be something quite different.
In such a case, it will be very interesting to see how the various
cluster configurations propagate. Our results suggest that, with
suitable interaction parameters, the trimers and singlons (i.e.,
single particles) are the only fast moving configurations.

A. Trimer energy

An important quantity that characterizes the behavior of
trimers is the trimer gap, defined as the energy needed to break
a single trimer. The trimer gap is usually defined as [11,36,37]

�tr = − lim
L→∞

[EL(N↑ + 1,N↓ + 2) + EL(N↑,N↓)

−EL(N↑ + 1,N↓ + 1) − EL(N↑,N↓ + 1)], (2)

where EL(N↑,N↓) is the ground-state energy with spin popula-
tions N↑,N↓ in a system of L sites. It is essential to explain the
above definition of a trimer gap before we proceed to describe
how it has to be modified in the presence of nearest-neighbor
interactions. The trimer gap is the energy separation between
the trimer state and the lowest-lying dimer state. The first term
on the right-hand side in Eq. (2) denotes the energy of a system
of N↑,N↓ atoms and a trimer consisting of one ↑ and two ↓
atoms. This trimer can break into a dimer consisting of one
↑ and one ↓ atoms, and a singlon of one ↓ atom. The third
and fourth terms on the right-hand side denote the energies of
N↑,N↓ atoms and a doublon, and N↑,N↓ atoms and a singlon
respectively. The trimer gap of a single trimer will thus be
obtained by adding the energy for N↑,N↓ as given by the
second term. Unless one is interested in many-body effects, one
can choose N↑ = N↓ = 0. However, the definition in Eq. (2)
misses the possibility of formation of larger clusters, but also
the many different possibilities of the trimer to break into. This
is particularly important in the presence of nearest-neighbor
interactions, in which case the trimer can break into a dimer
consisting of two ↓ atoms situated at neighboring sites and a
singlon of ↑ atom. Furthermore, nearest-neighbor interactions
make large cluster formation much more likely, and hence there
is need for generalizing the trimer gap to larger clusters.
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FIG. 1. Energy of a single trimer. (a) V = V ′ = −0.5 t↑,U =
0, (b) V = V ′ = −0.5 t↑,U = −0.5 t↑, (c) V = V ′ = −0.5 t↑,U =
0.5 t↑, having the same legends, and (d) V = −0.5 t↑,V ′ = 0, U = 0
and U = −0.5 t↑. Shown are the energies of a trimer (configuration
N↑ = 1,N↓ = 2), an ↑ − ↓ dimer separated from a single atom
(configurations N↑ = 1,N↓ = 1 and N↑ = 0,N↓ = 1), and a ↓↓
dimer separated from a single atom (configurations N↑ = 0,N↓ = 2
and N↑ = 1,N↓ = 0), except for the last case in which the intraspecies
dimer is unstable in absence of interactions. The separation of the
two lowest lines is the trimer gap. In order to better show the effect
of interactions, the total energy of the corresponding noninteracting
system (roughly equal to −t↑ − 2t↓) has been subtracted from all
energies.

Here we define the trimer gap as the lowest energy sep-
aration of any possible combination which conserves the
particle numbers. That is, we solve the energy spectrum of
the ground-state energies of all combinations EL(N1,N2) for
all N1 ∈ [0, . . . ,N↑] and N2 ∈ [0, . . . ,N↓]. These energies
are then summed pairwise such that the sum of the particle
numbers of the two configurations equals N↑, N↓:

EL(N↑ − N1,N↓ − N2) + EL(N1,N2). (3)

In the case of trimers studied in this work, i.e., for N↑ =
1,N↓ = 2, this corresponds to the total energy of a configu-
ration in which the trimer is broken into two parts, one with
N1 ↑ atoms and N2 ↓ atoms, and the other part containing
the rest of the atoms. By calculating these for all combinations
N1 = 0,1 and N2 = 0,1,2, one can identify the trimer gap as
the energy separation between the two lowest energies. Notice
that this definition works also for larger clusters, giving the
energy spectrum of all partitions of the system into two parts.

Figure 1 shows the energy of a single trimer as a function
of the hopping ratio tratio = t↓/t↑ for different combinations of
on-site U and nearest-neighbor interactions V,V ′. The trimer
gap (energy gap between the trimer and lowest-lying dimer
configuration) is large for low hopping ratios, where the kinetic
energy of the two ↓ atoms is small. However, with increased
mobility, the trimer becomes less strongly bound, shown as a
decreasing trimer gap. Figure 1 shows also the dependence of
the trimer and dimer energies on the on-site interaction strength
U . As one would expect, repulsive on-site interaction U makes
trimers and interspecies dimers less strongly bound. However,

qualitatively the ground-state properties of the trimer do not
seem to depend on the choice of on-site interaction U .

The trimer configuration has the lowest energy for all cases
we have studied. However, since the energy of the doublon
+ singlon configuration is done by calculating the energies of
the doublon and singlon independently, the density-dependent
Hartree energy is ignored. Hartree energy should be present
even without actual pair formation and it can be estimated for
a ↓ singlon interacting with an ↑↓ dimer as

��Hartree = 2V + 2V ′

L
, (4)

where the interaction terms 2V and 2V ′ arise from interac-
tions of the singlon with both of the atoms comprising the
dimer and the prefactor 2 from the nearest-neighbor range
of the interaction. The factor 1/L comes from the mean-field
densities, assuming even distribution over a lattice of L sites.
As an example, for V = V ′ = −0.5 t↑ and L = 53 we have
��Hartree = −2.0 t↑/53 ≈ 0.038 t↑. In the partitioning scheme
used here, the trimer can be considered stable if the calculated
trimer gap is larger than the mean-field Hartree energy shift.
Hence, for the weak interactions considered in Fig. 1 the
trimer state can be considered stable at least for t↑/t↓ < 0.4.
However, for larger hopping ratios the picture is less clear and
there is need for other criteria besides the energy spectrum
for determining the stability of the trimer state. We do expect
lattice size to have some effect in the weakly bound trimer
regime. Due to numerical complexity of the calculations, we
have been able to do only preliminary finite-size scaling studies
and hence our calculations are not sufficient for determining
the actual phase diagram in this regime.

Finally, notice that the energy spectrum considered here
involves only ground-state energies of various configurations.
One can, and will, have multiple excited trimer states. These
will be important for the trimer dynamics, as will be discussed
in Sec. IV.

B. Trimer size

Another possibility for identifying trimers is to consider
various two-particle correlators. The asymptotic long-range
behavior of the doublon correlator 〈c†i,↓c

†
i,↑ci+j,↑ci+j,↓〉 has

been shown to yield information of the trimer state in the case
of on-site interactions [11]. For trimers the correlator decays
exponentially whereas for the dimer state only algebraically.
However, the doublon correlator involving only atoms in
the same site does not describe very well dimers of atoms
interacting through nearest-neighbor interactions, as is the case
in the present work.

Instead of the on-site doublon correlator, we can try to
identify trimers by considering the distance of the two ↓ atoms.
The average distance is a measure of the size of the trimer. That
is, we define

rsize =
∑

i,d 〈ni,↓ni+d,↓〉d∑
i,d �=0 〈ni,↓ni+d,↓〉 . (5)

Notice that the d = 0 term has been neglected in the de-
nominator, since the correlator 〈ni,↓ni,↓〉 describes a single-
particle on-site self-correlation. The corresponding term in the
nominator vanishes due to the weight factor d. Figure 2 shows

043624-3



A. DHAR, P. TÖRMÄ, AND J. J. KINNUNEN PHYSICAL REVIEW A 97, 043624 (2018)

0.2 0.4 0.6 0.8 1tratio

0

3

6

9

12

15

r si
ze

(a)

0.2 0.4 0.6 0.8 1tratio

0

3

6

9

12

r si
ze

(b)

0.2 0.4 0.6 0.8 1tratio

0

3

6

9

12

15

18

r si
ze

(c)

0.2 0.4 0.6 0.8 1tratio

0

5

10

15

20

25

r si
ze

(d)

FIG. 2. Average size of a trimer. (a) V = V ′ = −0.5 t↑,U =
0, (b) V = V ′ = −0.5 t↑,U = −0.5 t↑, (c) V = V ′ = −0.5 t↑,U =
0.5 t↑, and (d) V = −0.5 t↑,V ′ = 0, U = 0.

the calculated trimer size for a few chosen weakly interacting
configurations.

Comparing with the calculated trimer energies in Fig. 1 we
see that as the trimer becomes less strongly bound, the trimer
size grows accordingly. Due to weak interactions considered
in these static calculations, the trimer size is surprisingly
large, with the two majority atoms being even over ten lattice
sites away on average. This is the case also in the absence
of intraspecies interactions [see Fig. 2(d)]. In this case the
interaction binding the two ↓ atoms has to be provided by
the mediating ↑ atom.

To obtain some scale for the average distance, one can
consider a simple uncorrelated system, in which atoms are
not interacting and quantum statistics is ignored. In such case,
all correlators are equal 〈ni,↓ni+d,↓〉 = 〈ni,↓〉〈ni+d,↓〉 = L−2,
and Eq. (5) can be solved analytically. For large L, one obtains
runcorrelated

size = L/3, which for the lattice of L = 100 sites yields
an average distance of 33. Clearly the average distances shown
in Fig. 2 are lower than this. Indeed, it appears that average
distance is a better signature of bound trimers than the trimer
gap.

Notice that the ↓ − ↓ correlator yields also the size of
the ↓ − ↓ dimer, and is therefore not a very good way for
distinguishing the trimer state from the ↓ − ↓ dimer. However,
as seen from the energy spectrum, the trimer state is mainly
competing with the ↑ − ↓ dimer state in the weakly bound
regime.

In the following we will consider trimer dynamics with
much more deeply bound trimers (originating from interactions
of the order V ∼ −10 t↑). Even for a hopping ratio close to
unity, such strongly bound trimers have typical sizes of at most
a few lattice sites.

IV. TRIMER DYNAMICS

We study the propagation of a trimer by initially trapping
the trimer of two heavy ↓ particles and one light ↑ particle in a
small box of three lattice sites and then releasing it into a larger
uniform lattice (quenching the box potential to zero). For this
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FIG. 3. Expansion of atoms for V = −2,U = 0. Top left: density
of the minority atom (↑) as a function of time shows the expansion
of the gas with a speed of roughly 13 sites in time 50h̄/t↑, i.e.,
0.26t↑/h̄. Top right: the density of the majority atoms (↓) shows the
same expansion. Bottom left: The same minority atom density in
logarithmic scale shows much smaller but also faster single-particle
wave front that propagates at speed of roughly 20 sites in time 10h̄/t↑,
i.e., speed of 2t↑/h̄. Bottom right: The majority atom density in the
logarithmic scale shows single-particle propagation speed of roughly
1t↑/h̄. Here hopping ratio is t↓/t↑ = 0.5, which matches well with
the observed single-particle propagation speeds.

purpose, an additional site- and time-dependent potential term
needs to be added to the Hamiltonian:

H = −
∑
〈ij〉,σ

tσ (c†i,σ cj,σ + H.c.) +
∑

i

ni,↑ni,↓

+
∑

〈i,j〉,σ
V ni,σ nj,σ +

∑
〈i,j〉

V ′ni,↑nj,↓ +
∑

i

Vtrap,i(t)ni,

(6)

where Vtrap,i = 0 for i corresponding to the three central lattice
sites, and Vtrap,i = 50 t↑ for all other values of i at t = 0. After
solving the ground state, the trap Vtrap,i is switched off and the
time evolution is obtained.

While the static analysis above was done for weakly
interacting trimers, here we consider stronger interactions. The
reasons for this are twofold: trapping the atoms in a small
box of three sites would have only a small overlap with the
actual ground-state wave function if the trimer size is very
large, as shown in Fig. 2. Hence the trimer would be broken
by the sudden release from the trapping potential. Second, as
stronger interactions make the trimer smaller in size, we can
more easily follow the propagation of the trimer by considering
the movement of individual atoms.

A. Trimer expansion

Figure 3 shows the expansion of the initially trapped atoms
out into the uniform lattice. It shows three different propagation
cones: two single-particle expansion cones corresponding to
the hoppings of unpaired ↑ and ↓ atoms, and then a much
slower cone that shows in a similar way in both components.
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FIG. 4. The ln〈n↓,in↓,j 〉 (left) and ln〈n↑,in↓,j 〉 (right) density
matrices for U = 0.0,V = −10,tratio = 0.3 at time T = 80 show the
broad diagonal contribution from trimer propagation and the much
weaker dimer propagation appearing as a diagonal fork in the ↑↓
correlator.

The fast propagation cones are visible only in the logarithmic
scale, but show clearly the expected single-particle propagation
speeds of the two components. In the linear scale, only the
slowly propagating cone is visible. Since this cone appears
identical in both ↑ and ↓ densities, it suggests that the ↑ and ↓
atoms remain bound and the cone is due to the slow propagation
of some kind of cluster. However, a question remains: does the
slow cone describe the propagation of a dimer or a trimer?

To distinguish these two cluster configurations in the dy-
namics, higher-order correlators need to be considered. While
actual three-body correlators are numerically very challenging
to analyze, the combination of the two density-density corre-
lators 〈ni,↓nj,↓〉 and 〈ni,↑nj,↓〉 will be sufficient.

B. Density-density correlators

Figure 4 shows the two density-density correlator matrices.
Both correlators show a very prominent broad diagonal
feature that has the same extent in both correlators. Since
the contributions near the diagonal describe nearby lying
atoms, and since both ↓ − ↓ and ↑ − ↓ correlators show an
identical feature, it is very likely that this is due to trimers.
This interpretation is all the more convincing considering that
the two dimers (↓ − ↓ dimer and ↑ − ↓ dimer) have quite
different propagation speeds due to different hopping rates of
↑ and ↓ atoms. Besides the broad trimer feature, one can also
see weaker but faster (longer) diagonal contributions in both
density matrices: a single diagonal line in ↓ − ↓ correlator
and a two-pronged diagonal fork in the ↑ − ↓ correlator.
The former describes simply tails of the single-particle
density profile (which could arise either from ↓ singlons
or ↑ − ↓ dimers), and the latter is from nearest-neighbor
↑ − ↓ dimers. Here on-site interaction is vanishing U = 0 but
nearest-neighbor interaction is strong V = −10 t↑, meaning
that on-site dimers (doublons) are not stable.

From the density matrices, such as the ones shown in
Fig. 4, one can determine the propagation speed of trimers
but also identify the actual process through which the
trimer propagates. The diagonal elements in the density
matrix 〈ni,↑ni,↓〉 correspond to the on-site doublon density
distribution in the lattice. Since ↓↑ dimers are bound only
through the nearest-neighbor interaction (since on-site
interaction U = 0), they do not contribute to the on-site
doublon density. In contrast, trimers provide the main
contribution for that correlator, and hence we can use it for
quantifying the trimer propagation speed.
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FIG. 5. Trimer dynamics: the diagonal elements of the ↑ - ↓
correlator, 〈n↑,in↓,i〉 for U = 0.0,tratio = 0.7,V = −10.0 (left) and
V = −20.0 (right) at different times after the release from the initial
strong confinement, shows the trimer propagation wave front.

C. Trimer propagation speed

Figure 5 shows the diagonal elements of the ↑ - ↓ correlator,
i.e., the on-site doublon density distribution. From these plots,
we can determine the distance that the trimer has propagated by
calculating the full width at half maximum (FWHM) for a given
time step. Although the profiles here are far from Gaussian
distributions, the FWHM does provide a simple and transparent
measure of the extent of the distribution. For strongly bound
trimers, the propagation speed is found to be only weakly
dependent on the nearest-neighbor interaction V (for V = V ′)
and scales roughly as a square of the hopping ratio t2

ratio; see
Fig. 6.

This is quite different from the propagation of dimers,
whose propagation speed scales as ∼ 1

V
[39]; see Fig. 7. Notice

that the slope of the fitted linear function (very close to 0.3
for V = −20 t↑) differs from what would be expected for
on-site dimers. For localized dimers interacting through strong
on-site interaction U , the propagation speed is 4t↑t↓/U , where
the denominator U comes from the energy of the virtual
intermediate state and the prefactor 4 arises from two different
orderings in which the transport of the dimer can take place.
In the case of nearest-neighbor interactions (with U = 0),
one additional process allows the dimer to move: a nearest-
neighbor dimer having an ↑ atom in the left site and a ↓ atom in
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Trimer

FIG. 6. Trimer propagation speed as a function of the hopping
ratio t↓/t↑ for nearest-neighbor interaction strengths V = −10 and
V = −20. Quadratic fits show the clear quadratic dependence on
the hopping ratio, but only a weak dependence on the interaction
strength V .
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FIG. 7. Doublon propagation speed as a function of the hopping
ratio t↓/t↑ for nearest-neighbor interaction strengths V = −10 and
V = −20. The doublon speed depends linearly on the hopping ratio,
but it also depends strongly on the interaction strength. For strong
interactions, the speed is inversely proportional to V .

the right site can hop to the right by having the ↑ atom hop twice
to the right. This changes the orientation of the dimer from
↑↓ configuration to ↓↑ configuration, effectively utilizing the
degeneracy of the dimer state. Having three possible orderings
for the transport of the dimer instead of two yields propagation
speed of 6t↑t↓/V . For V = −20, this yields slope 6/20 = 0.3
as seen in Fig. 7.

We have been unable to formulate a similar simple descrip-
tion for the trimer propagation. As will be seen below, trimer
propagation occurs through near-degenerate states, and it does
not utilize intermediate virtual states with high energy cost.
Indeed, for sufficiently strong interactions, trimers propagate
faster than dimers, as seen by comparing Figs. 6 and 7.

D. Model for trimer propagation

The surprising faster propagation speed (for sufficiently
strong interactions) of trimers can be analyzed further by
considering the various two-particle correlators. Figure 8
shows the time dependence of the average distance between
the two ↓ atoms, i.e., the average distance in Eq. (5) calculated
for subsequent time steps. The figure shows first of all that
the average distance is and remains quite small, showing that
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FIG. 8. Left: the average distance between the two ↓ atoms
shows oscillations corresponding to transitions between different
trimer states for U = 0.0,V = −20.0 and tratio = 0.7. Right: Fourier
transform of the average distance shows strong peaks at frequencies
ω = 3.0 t↑ and ω = 1.3 t↑, yielding energy separations of the various
trimer states.

FIG. 9. Degenerate states of deeply bound trimers for equal
nearest-neighbor interactions between like and opposite spins
(V = V ′) and in absence of on-site interactions (U = 0). All con-
figurations have the total interaction energy of 2V . The topmost state
is connected to the next state through hopping of the ↓ atom, but the
rest of the states are connected through the hopping of the ↑ atom.
In addition to the states shown here, the mirror images of the four
lower configurations are also degenerate in a symmetric way, and
translationally symmetric states have been neglected (i.e., states with
the same configuration as the ones shown here, but shifted along the
lattice).

trimers are very strongly bound and they survive the release
from the box with very high probability. It also shows clear
oscillations that, with the help of Fourier transform, can be seen
to correspond to a few dominant frequencies ω ≈ 3.05 t↑ and
1.27 t↑. These frequencies correspond to energy separations of
transitions between various trimer states.

Figure 9 shows five different trimer configurations that all
have the same interaction energy of 2V in the absence of on-site
interaction U . The states are coupled through hopping of the
↑ atom or either of the ↓ atoms. These couplings hybridize
the states, but the eigenstates and eigenenergies can be easily
obtained within this deeply bound limit. It is the separations
between these eigenenergies that is observed in the oscillation
frequencies of Fig. 8. The model can be made even simpler
by observing that the correlator for the distance between the
two ↓ atoms is sensitive only to the hoppings of the ↓ atoms,
i.e., to the transitions of between the two topmost states in
Fig. 9. We can thus artificially separate the space spanned by
the trimer configurations depicted in Fig. 9 in two subspaces
corresponding to different ↓-atom configurations. One of the
subspaces consists only of the topmost state (the symmetric
↓↑↓ state) in Fig. 9, whereas the other subspace is spanned
by all other states, which are all coupled by the hopping of
the ↑ atom. Solving the eigenspectrum of the latter yields
eigenenergies ±0.618 t↑ and ±1.618 t↑ and the corresponding
eigenstates �n. These eigenstates �n are then coupled with
the symmetric ↓↑↓ state through the coupling t↓. At the
simplest level these couplings can be described as a collection
of two-level systems coupling the symmetric ↓↑↓ state with
each of the eigenstates �n separately. That is, the couplings
are described by the Hamiltonian(

0 t↓
t↓ En

)
, (7)
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FIG. 10. Left: The near degeneracy of the trimer configurations
shown in Fig. 9 allows the trimers to propagate without intermediate
virtual states involving high energy cost. The starting configuration is
the same as the final configuration, except for a single lattice site shift
to the right along the lattice. Right: For sufficiently large interactions
V  t↑, the propagation of dimers is slower than for trimers, since
dimer propagation necessarily involves virtual states with a broken
nearest-neighbor dimer.

where En is the eigenenergy of the eigenstate �n. For t↓ =
0.7 t↑, we finally obtain eight eigenenergies for the full system:
±0.2608 t↑, ±0.4562 t↑, ±1.074 t↑, and ±1.879 t↑. While not
all of the energy separation combinations can be resolved in
the Fourier spectrum in Fig. 8, the dominant peaks can be
easily identified as the separations of 1.879 t↑ − (−1.074 t↑) ≈
2.94 t↑, and 0.2608 t↑ − (−1.074 t↑) ≈ 1.33 t↑.

The simple explanation for the rapid propagation of the
trimers in the strongly interacting limit is thus that the trimer
propagation can occur through various near-degenerate trimer
configurations, as shown in Fig. 10. In contrast, the dimer
necessarily has to propagate via virtual states involving broken
pairs either through on-site doublon state or by next-nearest-
neighbor configuration. This analysis can be extended to larger
clusters as well.

V. EXPERIMENTAL CONSIDERATIONS

A. Nearest-neighbor interactions and dipolar atoms

The choice of equal intra- and interspecies nearest-neighbor
interactions V = V ′ probably describes best systems in which
the two fermionic components are identical atoms in different
hyperfine states, such as erbium 167Er or 161Dy atoms, both
having strong magnetic moments of 7μB and 10μB respec-
tively, and hence the potential for strong nearest-neighbor
interactions. The mass imbalance, which is not crucial for many
of the phenomena considered in this work, can be realized by
state-dependent optical lattices [40] or by utilizing magnetic
modulation [14]. Strong nearest-neighbor interactions pose
also further complications, as the next-nearest-neighbor inter-
actions will become important. This will provide a still broader
spectrum of bound states and will enhance the formation of
larger clusters. In such a case, the rather short-sized trimers
considered here in the dynamic studies will provide only a
subset of interesting multimer dynamics.

As strong attractive long-range interactions tend to favor
large cluster formation, reaching low temperatures in the ex-
periment is not required. Indeed, even an equilibrium state may
be unwanted, and the interesting trimer propagation physics
considered here may be most easily studied by performing an
interaction quench from a weakly interacting regime to strong
interactions.

B. Role of on-site interactions

The analysis here was done mainly for the case of vanishing
on-site interactions U = 0. While the on-site interaction can
be tuned using Feshbach resonances [41–46], complete sup-
pression of the interaction is unlikely in actual experiments,
especially if the nearest-neighbor interaction is strong. Adding
on-site interactions will lift the degeneracy of the five trimer
configurations in Fig. 9. Such addition can easily be incorpo-
rated in the simple model. However, as seen in the above model,
the degeneracy of the trimer spectrum is already lifted by the
particle hoppings, and thus no qualitative changes is expected
as long as the on-site interaction U is much weaker than the
nearest-neighbor interaction V .

C. Detecting trimers

This work considered various one- and two-particle ob-
servables for analyzing trimer stability and propagation. It is
likely that experimental works on trimer formation would first
involve strongly bound trimers, and hence a large and observ-
able trimer gap. This can be probed by various spectroscopic
methods [47]. However, the average distance between the ↓
atoms in a dilute sample should be observable in ultracold gas
microscope setups [48–53], and thus provide a way to detect
weakly bound trimers.

Even if the true many-body ground state would involve large
atom clusters, in practice the trimers and other smaller clusters
will be present as excited states. In such a case the trimers
should be clearly observable, due to their high propagation
speed. This is particularly the case when the trimers (and
singlons) are the only rapidly propagating entities, as larger
clusters and dimers are slowed down by the required virtual
intermediate states involving high energy costs.

VI. CONCLUSION

In conclusion, we have studied the two-component one-
dimensional extended Fermi-Hubbard model with nearest-
neighbor interactions. In addition, we included mass imbalance
between the two fermionic species. We focused on the static
and dynamic properties of trimers. By looking at the energy
spectrum, we redefined the measure of trimer gap general-
izing it to systems with nearest-neighbor interactions. The
spectroscopic analysis of the trimer state was supplemented
by the study of two-particle correlators, providing a measure
of the size of the trimer. The two methods provide a way for
experimental observation of trimers.

To understand how trimers propagate, we looked at relevant
one- and two-point correlators. We observed different wave
fronts propagating at different speeds, and attributed them to
the single particle, doublon, and trimer motion. We further
investigated the propagation speeds, and concluded that the
trimers move faster than the doublons in the strong interaction
limit. We provided a model to explain this behavior, underlying
the role played by the near degeneracy of the trimer ground
state. Finally we discussed experimental realization with ultra-
cold dipolar atoms in optical lattices by which our predictions
can be verified.
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