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Producing superfluid circulation states using phase imprinting
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We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates
(BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular
momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light
pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of
“helicoidal” intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity
profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a
finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii
equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited
resolution.
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I. INTRODUCTION

In recent years, the variety of confinement potentials avail-
able for trapping ultracold atoms has developed dramatically.
Beyond harmonic potentials, the use of dipole traps [1],
magnetic traps, adiabatic potentials [2,3], or a combination of
them has given access to a wide range of geometries, including
optical lattices [4], low-dimensional confinement [5], box traps
for uniform gases [6], narrow channels between reservoirs
[7], ring traps [8–10], and other arbitrary trap shapes [11,12].
Taking advantage of these new tailored potentials, quantum
transport experiments with quantum gases have been carried
out [7,13–16], with strong analogies between quantum gas
setups and mesoscopic condensed matter devices [17].

In particular, annular quantum gases confined in ring
traps can sustain persistent flows with a quantized circulation
[10,18,19], which are analogous to persistent currents in super-
conducting rings with a quantized magnetic flux [20]. In such
a state, the condensate wave function presents a phase winding
2π� around the ring, giving rise to a quantized circulation
�h/m, where m is the atomic mass, h the Planck constant,
and � ∈ Z the winding number. Circulation states have been
studied in the presence of a focused laser spot providing a
rotating potential barrier, yielding a weak link along the ring
in the spirit of superconducting quantum interference devices
[13,21].

The circulation state can be prepared in different ways.
First, a potential barrier localized within the ring, produced
for example by a focused laser beam, and rotated fast enough
can excite the quantum gas and let vortices penetrate through
the barrier, producing in turn a circulating state [22,23]. While
this technique has proven its efficiency in the preparation of
circulation states with a well-defined winding number � [23], it
remains limited to relatively small values of � and necessitates
a long preparation time, which can be an issue if the lifetime of
the sample is limited or if fast operations on the wave function
are required for quantum information protocols.

Another successfully demonstrated method relies on the
direct imprint of a given phase winding with the winding
number � onto the condensate wave function. This has been
achieved by two-photon Raman transfer, one of the laser beams
being a Laguerre-Gauss beam carrying an orbital angular
momentum with a helicoidal phase [19,24]. The duration of
the Raman pulse is on the order of a few microseconds, which
makes this method very efficient for the fast preparation of
a given circulation state, determined by the order � of the
Laguerre-Gauss mode. However, this technique makes use
of the internal structure of the atomic ground state, coupling
different Zeeman substates, and makes difficult its application
to atoms confined in a magnetic trap.

In this paper we propose a phase imprinting method using a
pulsed light shift potential with a tailored helicoidal intensity
profile, where the light intensity varies linearly with the
azimuthal angle θ , but with no topological charge [25,26].
Zheng and Javanainen [27] have studied the effect of phase
imprinting a realistic phase profile, with a finite light intensity
gradient after a loop, on a one-dimensional annular gas. These
authors found that phase imprinting alone was not able to
create a well-defined circulation state if the gas is confined
in a rotationally invariant ring trap. Here we show through
numerical simulation of the Gross-Pitaevskii equation that
breaking the rotational invariance with a localized potential
barrier allows one to circumvent this issue and to establish
a controlled circulation by phase imprinting. Moreover, this
method can be faster than the stirring method and insensitive
to the magnetic sublevels, which makes it applicable to atoms
confined in magnetic potentials. Since the intensity profile can
be engineered to any pattern, this technique is more versatile
and its scope can be extended to the preparation of other target
states, beyond circulation states.

The presentation of this work is organized as follows. In
Sec. II we present the principle of phase imprinting and show
how to implement experimentally a helicoidal intensity profile
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with a spatial light modulator (SLM). In Sec. III we explore
the effect on the atomic dynamic of the phase imprint of a
realistic intensity profile with a finite resolution. This allows
us to optimize the phase profile for reaching a given circulation
state. Section IV shows the effect of dissipation in reaching
the steady state. Finally we present our conclusions in the last
section.

II. PHASE IMPRINTING

Phase imprinting is an effective technique to induce a
given dynamics in a Bose-Einstein condensate [19,28,29]. Two
approaches have been demonstrated to design the phase of the
wave function with a given space dependence. First, the phase
can be imparted by a Raman two-photon process, the phase or
angular momentum carried by the photon then being imprinted
onto the atomic wave function, giving rise to an induced atomic
momentum [30], an angular momentum [19], or both [10].
Alternatively, when a spatially dependent potential is pulsed
for a time short as compared to the time for atomic motion
(e.g., the trap period), the potential is merely imprinted on the
atomic phase. This potential can be conveniently produced by
a far-off-resonance, tailored laser pulse, as demonstrated for
instance for the preparation of a soliton [29]. In the present
work we follow the second approach to imprint an arbitrary
phase.

A. Principle of phase imprinting

We start with a gas in its ground state, described within
the mean field by the normalized wave function ψ0. A far-off-
resonance light beam, with a two-dimensional (2D) intensity
profile I (x,y), is then pulsed onto the atoms, which gives rise to
the light shift potential U (x,y) = αI (x,y) proportional to the
local light intensity, with α being a factor proportional to the
polarizability, which is given in the two-level approximation
by [31]

α = �

�

h̄�

8Is

. (1)

Here � is the detuning of the light field from the atomic
resonance, � is the transition line width, and Is is the saturation
intensity. If such a potential is pulsed for a time duration
τ , much smaller than the timescales set by the trapping
frequencies of the condensate, the wave function after the pulse
is given by

ψ(x,y,τ ) = e− i
h̄
U (x,y)τψ0(x,y). (2)

Hence in the limit of small τ , the potential will simply add
the phase ϕ(x,y) = −U (x,y)τ/h̄ to the ground-state wave
function ψ0.

This method has been used to produce a soliton in an
elongated condensate [28,29], with a stepwise intensity profile.
In our experiment we want to set an annular condensate into
rotation in a ring trap. As the superfluid velocity is related to the
phase gradient of the condensate wave function, such motion
can be described by a uniform phase gradient along the ring,
of the form ϕ(θ ) = �θ , where � is the winding number and
θ the azimuthal coordinate [25]. To imprint such a phase we

(a)

(b) (c) (d)

FIG. 1. SLM setup and generated intensity pattern: (a) Optical
setup for an SLM used in the mask mode. The CCD camera is used
here to observe the generated pattern. (b) Measured intensity pattern
obtained from the SLM in mask mode for phase imprinting, with a
beam waist of 200 μm, imaged onto the CCD camera. (c) Azimuthal
dependence of the normalized intensity profile across the red dotted
circle, radius 50 μm, of the obtained intensity profile in panel (b).
(d) Proposed scheme to break the rotational symmetry by using a
potential barrier produced with a laser beam and a subsequent phase
imprinting. The edge of the intensity profile is aligned with the
position of the barrier where the atomic density vanishes.

hence need to prepare an intensity pattern which is increasing
linearly with the angle θ [see Fig. 1(b)].

B. Tailoring the intensity pattern using an SLM

As stated in the previous section, the desired light intensity
pattern for the phase imprinting is a “helix” of intensity, with a
linear dependence on the azimuthal angle θ . Such a profile
can be generated with a spatial light modulator, a device
consisting of a matrix of pixels producing on an incident
laser a computer-controlled local phase shift onto one of the
polarization axes, the extraordinary axis [32,33]. The SLM can
work in two modes, known as “diffraction mode” and “mask
mode.” In the diffraction mode, a light beam with a polarization
parallel to the extraordinary axis of the SLM is sent on the
device. The resulting pattern is located in the Fourier plane
and results from the diffraction on the phase grid programed
on the SLM. The phase shift pattern to be programed has to
be deduced from the desired pattern by running an inversion
algorithm. By contrast, in the mask mode the polarization is
aligned at 45◦ from the SLM neutral axes. The optical setup
is thus prepared in a crossed polarizer analyzer configuration,
with two polarizing beam splitters (PBSs). The desired pattern
is programed directly on the SLM matrix, which changes the
polarization accordingly. The target profile is obtained after
filtering through the final PBS acting as an analyzer. While
part of the incident power is lost through the other output of
the PBS, this technique allows a more direct preparation of
arbitrary light patterns and has been preferred in this work,
as it achieves smoother profiles and can be fine-tuned using a
passive feedback [34].
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In order to imprint a given circulation, we have to shape the
laser beam profile such that its intensity increases linearly with
the azimuthal angle [see Fig. 1(b)]. Starting from a Gaussian
laser beam with a 1/e2 radius of 200 μm, we generate such
an intensity with an optical setup using an SLM (Hamamatsu
X10468-07) in mask mode [see Fig. 1(a)]. The useful pattern
is imaged onto the atoms after filtering the useful polarization
with a PBS. The peak intensity and the pulse duration can
be adjusted such that the phase accumulated during the pulse
peaks at an integer multiple of 2π , thus preparing a rotating
quantum gas with a well-defined winding number. The pulse
duration is set to 20 μs, much faster than the expected
dynamics. A typical single-shot picture recorded on the CCD
camera is shown in Fig. 1(b).

C. Overcoming the finite optical resolution

In the ideal case the imprinted phase ϕ should gradually
increase with the azimuthal angle θ from ϕ = 0 at θ = θ0 to
ϕ = 2π� at θ = θ0 + 2π , for a targeted winding number � ∈
Z, and be discontinuous at the starting angle θ0. This implies in
turn an intensity profile with a discontinuity at θ = θ0. Such a
discontinuity in intensity, however, is not possible to produce in
practice. The range in angle �θ over which the intensity goes
back to zero is set by the diffraction limit. In our optical setup
this limitation is illustrated in Fig. 1(c) in which the intensity
at a fixed radius of 50 μm is plotted against the azimuthal
angle, showing a range �θ of ∼0.5 rad. This value depends
on the radius at which the azimuthal profile is plotted, and
the final resolution on the annular gas will thus depend on
the ring radius. As a result of the rapid intensity decay on
a finite range, the imprinted phase will induce a high atomic
velocity in the direction opposite to the desired rotation, and the
total angular momentum will vanish 〈Lz〉 = 0, in agreement
with the results of Ref. [27]. Moreover, this phase imprint with
a large local gradient induces high-energy excitations in the
sample, with velocities possibly larger that the critical velocity
of the superfluid.

In order to overcome the issue related to the resolution
limit, we propose to remove the atomic density in the region
�θ , where the phase gradient is large but finite. This can be
done by focusing a far-off-resonant blue-detuned light beam
which repels the atoms and breaks the rotation invariance
[see Fig. 1(d)].

After phase imprinting, in order to allow the rotation, the
barrier needs to be removed fast enough to prevent the quantum
gas from getting reflected at the barrier. However we expect that
an abrupt barrier removal will create excitations in the gas. The
barrier removal time can thus be optimized. Another degree
of freedom that we can adjust is the imprinted phase profile
itself, which can also deviate slightly from a linear profile to
compensate for the effect of the subsequent barrier removal. In
the following we present a simulation of this transition from a
broken rotational invariance to its restoration by numerically
solving the Gross-Pitaevskii equation (GPE) for a condensate
in a 2D ring trap. The goal of this calculation is, by analyzing
the final state, to find the optimal barrier removal time and
the optimal phase profile to be imprinted to reach the desired
state.

III. GPE SIMULATIONS

We describe the dynamics of the trapped condensate with
the mean-field model given by the Gross-Pitaevskii equation.
We restrict the description to two dimensions, in the horizontal
plane containing the ring trap. This applies directly to 2D
annular quantum gases, which can be prepared in hybrid optical
and adiabatic potentials [8]. We expect that our results will also
be valid for three-dimensional quantum gases, as the dynamics
will essentially occur within the ring plane.

A. Initial state preparation

The ring trap is described by a rotationally invariant,
radial harmonic confinement with angular frequency ωr and
harmonic oscillator length ar = √

h̄/(Mωr ), where M is the
atomic mass. From now on we use dimensionless variables,
scaled with the radial harmonic units, such that the unit of
length is ar , the unit of time is ω−1

r , and the unit of energy is
h̄ωr . The ring radius in these units is denoted r0, and the ring
trap potential simply reads Vring(r) = (r − r0)2/2. With these
units, the dimensionless 2D Gross-Pitaevskii equation in the
ring, with a time-dependent barrier, reads

i
∂ψ

∂t
=

[
−1

2
∇2 + V (r,θ,t) + g̃N |ψ |2 − μ

]
ψ. (3)

Here ψ is the condensate wave function normalized to unity, N
is the atom number, g̃ is the 2D interaction strength [35], and
μ is the chemical potential in units of h̄ωr . The 2D trapping
potential formed by the ring trap and the time-dependent barrier
is given in polar coordinates (r,θ ) by

V (r,θ,t) = 1
2 (r − r0)2 + VB(t) e

− (θ−θB )2

2σ2
θ , (4)

where VB(t) is the time-dependent height of the potential
barrier in units of h̄ωr , θB is the center of the barrier in the
azimuthal coordinate, and σθ is the angular width of the barrier.

We use the split-step fast Fourier transform method [36] on
a Cartesian square grid of 128 points in each direction. The
grid size in dimensionless units is 30 and the trap ring radius is
r0 = 7. The coupling constant and the atom number are such
that g̃N = 1000. The initial ground state ψ0(r,θ ) is found by
computing the evolution in imaginary time in the presence of
the barrier, whose width is set to σθ = 0.22 and whose initial
height is VB(t = 0−) = V0 = 10. The chemical potential with
these figures is found to be μ = 5.8. The barrier width and
height are chosen to allow a density drop larger than 80% in
the whole zone of width �θ where the phase varies rapidly,
such that the number of atoms affected by the sharp phase
gradient remains very small. The presence of the barrier breaks
the rotational symmetry of the ring as shown in Fig. 2(a).

On the initial condensate prepared in the ground state of
GPE in the presence of the barrier ψ0, an helicoidal phase
profile is imprinted instantaneously. In order to take into
account the practical limitations induced by the finite optical
resolution limit, we model the imprinted phase ϕ(θ ) with a
piecewise linear function [27], increasing from 0 to 2π� over
the range 2π − �θ and then going back to zero over the
small angle �θ = 2π/10, slightly above the experimentally
measured value of 0.5 rad, as shown in Fig. 2(c). The position
of the barrier is chosen to match this rapid phase change, such
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FIG. 2. (a) Ground-state density profile for broken rotational
symmetry computed in the simulation; (b) phase profile imprinted on
it to create an � = 1 circulation state represented in two dimensions or
(c) as a function of θ . This is the starting point for the simulations in
the presence of an initial barrier. The color scale for the phase profile
is the same for all 2D phase plots.

that θB = 2π − �θ/2. The phase imprint process is very fast as
compared to the atomic motion, and in the simulation the initial
wave function ψ0(r,θ ) is simply multiplied by the imprinted
phase factor: ψ(r,θ,t = 0+) = ψ0(r,θ ) exp [iϕ(θ )]. Thanks to
the annular shape of the gas, this phase profile does not lead to
any discontinuity of the wave function in the center. This wave
function is then evolved in real time through Eq. (3), which
describes the barrier removal and the subsequent evolution in
the ring-shaped potential alone (see Fig. 3).

B. Optimum barrier removal and phase profile

After the initial state preparation, the numerical simulation
is divided into two more steps (see Fig. 3). In a first step,
the barrier is removed, with a linear ramp in intensity, right
after phase imprinting. The evolution is thus computed in the
presence of a time-varying potential. In a second step, after the
barrier has been removed completely, which occurs at a time
t = t ′, the wave function is evolved until time tend = 100 (in
dimensionless units) in the static ring potential Vring alone. For
our later analysis, we save 100 frames of the evolution after
the barrier removal, between t ′ and tend, and extract the angular
momentum for each (see below). We then optimize the barrier
ramp and the imprinted phase pattern from these results.

In order to analyze the result in terms of angular momentum
transfer, we expand the total angular momentum into states of
pure circulation such that Lz(t) = ∑

m Km(t)m in units of h̄,
where m ∈ Z specifies the circulation state. Km is thus the total
population in the states with a given angular momentum mh̄.
We compute these expansions for all of the 100 frames we

FIG. 3. Optimization algorithm to transfer the system into the
desired state. The time evolution is divided into three main sequences:
ground-state computation, barrier removal, and evolution in the
smooth ring potential. In the third sequence the wave function is
statistically analyzed and optimization is done on the barrier removal
ramp to reach the desired output state.
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FIG. 4. (a) Density and (b) phase profiles after the phase imprint
of Fig. 2(c) and for an optimized barrier removal time of t ′ = 0.5,
after the full evolution in the ring trap (t = 100). Phase color scale
is as in Fig. 2. (c) Time evolution of the population in different m

circulation states.

extracted, by taking a Fourier transform in the azimuthal space
of the radially averaged wave function. Preparing a persistent
current with the winding number � would correspond to the
case where K� = 1 and Km = 0 for all m 
= �. We use the
following cost function C to optimize the barrier removal ramp
and the phase pattern:

C = 〈(1 − K�)4〉20<t<tend . (5)

Using this figure of merit, we first optimize the barrier
removal ramp with the fixed phase profile shown in Fig. 2(c)
for � = 1. We find that the minimum value of C is obtained for a
rather short optimal removal time of t ′ = 0.5 (see Fig. 4). The
final circulation � = 1 is prepared, and the final state is free
from vortex excitations in the bulk [see Figs. 4(a) and 4(b)].
However, large oscillations in the populations in the different
m circulation states are still present [see Fig. 4(c)]. While this
optimization allows us to get rid of vortices in the bulk, we find
that the cost function after the optimization is not very much
reduced as compared to an abrupt removal (t ′ = 0) [34]. In fact
the critical parameter to optimize is instead the phase profile
imprinted, as we show below. In order to reduce the number
of parameters to be optimized, we present in the following
the results of the phase profile optimization obtained with an
abrupt removal of the barrier (t ′ = 0). The results obtained
with a nonzero value of t ′ have been checked to be similar, as
soon as phase profile optimization is performed.

We then optimize the phase imprint profile itself, for an
abrupt removal (t ′ = 0). The idea of this approach is to include
in the phase imprint an additional term to compensate for the
acceleration that the barrier removal will induce. Using the
SLM we can generate any desired intensity distribution with
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FIG. 5. The evolution of the population in different m circulation
states using a nonlinear imprint obtained from optimization as
described in the main text for � = 3 (top panel), � = 2 (middle panel)
and � = 1 (bottom panel) states. The insets show the imprints that
lead to the time evolution in the main figures.

a resolution only limited by the diffraction limit of the optical
system. The phase profile is thus written in the interval (0,2π −
�θ ) in the form of a truncated Fourier series whose coefficients
are to be optimized for a given target winding number �:

ϕ(θ ) = �θ +
nmax∑
n=1

[
Cn cos

(
nθ

2

)
+ Sn sin

(
nθ

2

)]
. (6)

In the interval (2π − �θ,2π ), it decreases linearly back to its
value ϕ(0) at θ = 0.

We optimize the contribution of the Fourier components
Cn and Sn using the steepest gradient descent [37]. We set the
frequency cutoff to nmax = 4 for � = 1 and 2 or to nmax = 6 for
� = 3 as going higher does not give significant improvement
in the optimization. In any case, the finite optical resolution
would limit nmax to nmax = 10 to be consistent with our choice
of �θ = 2π/10.

C. Results

Figure 5 shows the results of the optimization of the phase
profile for three target states: � = 1, � = 2, and � = 3. The
insets show the nonlinear imprints ϕ(θ ) obtained through the
optimization algorithm. The total phase difference imprinted
is close to 2π × �, although a bit larger. These imprints can be
easily produced using an SLM. After imprinting these phase

FIG. 6. Generation of a moving gray soliton using phase imprint-
ing and barrier removal on a 1D annular gas. A phase jump of π

is imprinted at t = 0 (top row) and it stabilizes to a phase jump
of 0.63π with some density perturbations moving in the opposite
direction (bottom row). Phase color scale is as in Fig. 2.

patterns and at the end of the time evolution, the population
K� in the target state is K� ∼ 0.9, with some fluctuations. The
excess energy added in this process relative to the energy of the
ideal circulating states is 0.2768, 0.3137, and 0.5441 (in units
of h̄ωr ) for the cases of � = 1, � = 2, and � = 3, respectively.
They are at least ten times smaller than the chemical potential
and will scarcely increase the temperature of the system in
typical experimental conditions. This excess energy can be
removed through evaporation.

We also simulated this method of phase imprinting for
the preparation of a gray soliton in a quasi-1D ring. This
approach has been used before for an elongated condensate
confined in a cigar-shaped trap [28,29]. The dynamics of a
gray soliton depends on the amplitude of the phase jump [38]
and corresponds to a static, dark soliton, when the phase jump
reaches π . In principle the phase jump of the soliton can be
tuned to any value in a straightforward way using the SLM.
By adjusting this phase we can create a dark soliton, stationary
with respect to the background fluid, or a moving soliton at any
subsonic velocity. As solitons are stable only in 1D systems,
we perform these simulations using g̃N = 100, which reduces
the chemical potential below the radial confinement energy,
and we compute the ground state of the quasi-1D annular gas
in the presence of a barrier of width σθ = 0.07 and height
V0 = 2.5. We then imprint the phase with an imperfect phase
jump aligned with the barrier position and remove the barrier
abruptly. Figure 6 shows a gray soliton created by imprinting
a phase jump of �ϕ = π that stabilizes to a phase change of
0.63π across the density dip, which rotates around the ring
trap. We end up with a gray soliton because the width of
the barrier (limited by the imperfect phase profile) is larger
than the intrinsic soliton width, set by the healing length. We
observe that adding a barrier significantly helps to get rid of
the density waves reported in Ref. [28] using the same method
of phase imprinting. We note that by optimizing the shape of
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FIG. 7. Evolution of the population in the m = � states after
a phase imprint optimized for a given target value �. Damping is
introduced by setting γ = 0.01. The final density (left inset) and phase
(right inset) profiles at the end of evolution are shown for the case
� = 1. Phase color scale is as in Fig. 2.

the imprinted phase it should be possible to control the final
phase jump and hence the soliton properties.

IV. INCLUDING DAMPING

The Gross-Pitaevskii equation describes the evolution of the
quantum gas dynamics in the absence of losses or damping.
In order to take into account the effect of dissipation in the
experiment, due to atom loss or to the finite trap depth leading
to evaporation, we include a small imaginary part to the
time evolution, using the dimensionless parameter γ , which
describes a phenomenological damping [39].

The dimensionless GPE including the phenomenological
damping term is now given by

i
∂ψ

∂t
= (1 − iγ )

[
−1

2
∇2 + V (r,θ,t) + g̃N |ψ |2 − μ

]
ψ.

(7)

This phenomenological approach with γ > 0 can be used
to simulate the damping of the excitations when evaporation
is on and to find the metastable state the system converges to.
For the damping coefficient γ = 0.01, also used in Ref. [13],
the atomic state converges towards a stable circulation state.
We have checked that the choice of γ does not influence much
the final state but rather the rate at which it is reached. The
simulation including dissipation is run in the three cases � = 1,
� = 2, and � = 3, analogous to the one presented in Fig. 5 in
the absence of dissipation. The results for the evolution of the
population in the m states are shown in Fig. 7 together with
the final density and phase profile in the insets. The dissipation
helps to remove the remaining fluctuations of population in
the various m states and helps the system to converge to a state
where nearly all the population is concentrated in states with
an angular momentum quantum number m = �. The role of
the barrier is nonetheless essential and we checked that a mere
phase imprint without the density depletion does not converge

efficiently to a state with a nonzero circulation, even if damping
is introduced.

V. CONCLUSIONS

In summary, we have presented a practical method to set an
annular quantum gas into a given circulation state using phase
imprinting. In order to overcome the practical diffraction limit
arising from the tailored light profile, we have simulated the
behavior of the condensate after a realistic phase imprint in the
presence of a barrier. Our simulations show that it is possible
to prepare a given circulation state as well as other designed
dynamical states like solitons by carefully engineering the
phase imprint. While optimizing the barrier removal time alone
allows us to suppress bulk vortex excitations, we find that
the optimization of the phase pattern is crucial to achieve a
high fidelity in the preparation of the target circulation. For
example we reach a population in the � = 1 circulation states
of K� = 0.9988 for an optimized phase profile when damping
is introduced (see Fig. 7).

The phase imprinting method is also fast as compared to the
adiabatic rotating barrier method. Following the protocol of
Ref. [13] we simulated the preparation of an � = 1 circulation
state by rotating a barrier for a full round trip along the annulus
at the frequency � = 1/r2

0 in dimensionless units, which takes
a time tstirr = 2π/� = 2πr2

0 � 300 for our parameters. With
this slow stirring protocol (as compared to the fast phase
imprinting) the � = 1 state is achieved with a fidelity above
0.9. Interestingly the transfer of circulation during the stirring
process involves oscillations between the different m states,
reminiscent of what happens for the linear phase profile [see
Fig. 4(c)], with a slightly longer period. When the stirring time
is reduced by a factor of 2 to tstirr = 150, these oscillations
are more pronounced. The population K1 in the target state
still oscillates around 0.85 long after the end of the stirring
time, up to the end of the simulation at t = 250, such that
the effective preparation time is not improved. The main
improvement of our phase imprint optimization has been to
reduce these oscillations, achieving faster convergence to the
desired state (see Fig. 5). It would be interesting to study
whether an optimization of the rotating barrier protocol could
allow one to prepare well-defined circulation states faster than
the slow timescale tstirr = 2π/�.

In a future work it would be very interesting to extend
the phase imprint optimization method presented here to the
precise control of soliton creation, in particular to create
multiple solitons with well-defined relative velocities, which
would give access to the study of solitonic collisions [40,41].
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