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Low-lying excitations of vortex lattices in condensates with anisotropic dipole-dipole interaction

Lijuan Jia,1,2 An-Bang Wang,1,2 and Su Yi1,2,3

1CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China

(Received 4 January 2018; published 16 April 2018)

We investigated the low-lying collective excitations of quasi-two-dimensional dipolar Bose-Einstein con-
densates confined in a rotating harmonic potential using the Bogoliubov–de Gennes equation. By varying the
trap rotation frequency and dipolar interaction strength, we show how the anisotropic dipole-dipole interaction
modifies the collective excitations of the condensates. In particular, under strong dipolar interaction, the
vortex-displacement excitations differ significantly from the nondipolar case.
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I. INTRODUCTION

Owing to the fundamental importance of topological exci-
tations, the dynamics of quantized vortices has been of interest
in a wide variety of physical systems [1,2], ranging from
superfluid 4He and 3He to superconductors, quantum magnets,
liquid crystals, nuclear matter, and nonlinear optical systems
[3]. The realizations of quantized vortices and vortex lattices
in Bose-Einstein condensates (BECs) of neutral atoms [4–8]
stimulated extensive studies on the properties of the vortex
states [9]. More importantly, the unprecedented tunability
of atomic gases allows a detailed study on the collective
excitations of the vortex states. Of particular interest, a vortex
lattice supports the so-called Tkachenko waves, namely, the
vortex displacement waves in the vortex array propagating in a
direction transverse to the vortex lines [10]. Tkachenko waves
were observed in superfluid helium [11] and in the BEC of Rb
atoms [12].

In the context of atomic BECs, Tkachenko excitations
were further investigated theoretically [13–18]. However, the
studies of the collective excitations of many-vortex states in
atomic BECs have been mainly focused on systems with
short-range interactions. Since the experimental realizations
of BECs of atoms with large magnetic dipole moments
[19–22], there have been considerable theoretical investiga-
tions on the vortex states in rotating dipolar condensates
[23–35]. In the presence of the dipole-dipole interaction (DDI),
it was found that the vortex lattices may significantly deviate
from the normal triangular lattice in nondipolar condensates
[23,24]. In particular, Yi and Pu showed that the vortex cores
become anisotropic if the DDI is anisotropic on the plane
perpendicular to the rotation axis [25]. Moreover, Mulkerin
et al. calculated that the effective vortex-vortex interaction
also becomes anisotropic [26]. Interestingly, Wilson et al.
studied the stability and excitations of single-vortex states in
dipolar condensates by numerically solving the Bogoliubov–
de Gennes (BdG) equations [27], which is highly nontrivial
in the presence of the long-range interaction. Such equations
were first solved numerically by Ronen et al. in order to study
the Bogoliubov modes of a trapped BEC [36] and also by

Martin and Blakie with a modified numerical procedure [37].
However, to our knowledge, we are not aware of any studies
on the Tkachenko excitations in rotating dipolar BECs. This
naturally leads to the question of how the anisotropic DDI
modifies the collective excitations of the vortex lattices.

In this work, we investigate the low-lying collective excita-
tions of vortex arrays in dipolar condensates rotating around the
z axis. We shall focus on the quasi-two-dimensional (quasi-2D)
geometry by assuming a highly oblate trapping potential. As a
result, the Kelvin excitations are not covered here. We further
assume that the dipole moments of the atoms are polarized
along the x axis such that the DDI in the xy plane is anisotropic.
For vortex configurations under different rotation frequencies,
we show how the DDI modifies the collective excitations of
the condensates.

Of particular interest, in the strong DDI limit and under
sufficiently large rotation frequencies, vortices in the con-
densate form stripe lattices such that the intervortex spacing
along the x axis is smaller than that along the y axis. For
the lowest few excitations, each row of vortices behaves
as a rigid body which only executes horizontal oscillation.
As a result, these excitations represent the shearing motions
between neighboring rows. Moreover, for excitations with
higher energy, vortex-displacement modes (VDMs) can couple
to surface modes due to the anisotropic DDI.

This paper is organized as follows. In Sec. II, we introduce
our model and outline the BdG theory for dipolar condensates.
In Sec. III, we study the DDI strengh dependence of the
excitation spectra under various rotation frequencies. Finally,
we conclude in Sec. IV.

II. FORMULATION

We consider a BEC of N polarized dipoles trapped in an
axially symmetric potential

Vho(r) = 1
2m

(
ω2

⊥x2 + ω2
⊥y2 + ω2

zz
2
)
, (1)

where ω⊥ and ωz are the radial and axial trap frequen-
cies, respectively. To generate vortices, the trapping potential
rotates around the z axis with rotation frequency �. The
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particle-particle interaction potential includes the s-wave col-
lision and the dipole-dipole interaction:

Vint(r − r′) = 4πh̄2as

m
δ(r − r′) + f

μ0μ
2

4π

1 − 3(d̂ · ê)2

|r − r′|3 ,

(2)

where m is the mass of the particle, as is the s-wave scattering
length, μ0 is the vacuum permeability, μ is the magnetic
dipole moment, d̂ is a unit vector along the direction of the
polarized dipole moments, and ê = (r − r′)/|r − r′|. Finally,
f is a factor continuously tunable between −1/2 and 1 through
a fast rotating orienting field [38]. In this work, we shall only
cover the f � 0 region.

Within the mean-field treatment, the condensate wave func-
tion � satisfies the Gross-Pitaevskii equation (GPE) which, in
the frame corotating with the trapping potential, reads

i
∂�

∂t
=

[
− 1

2
∇2 + 1

2
(x2 + y2 + λ2z2) + 4πNas

a⊥
|�(r)|2

+ gd

∫
dr′ 1 − 3(d̂ · ê)2

|r − r′|3 |�(r′)|2 − �Lz

]
�, (3)

where λ = ωz/ω⊥ is the trap aspect ratio, gd =
f Nμ0μ

2/(4πh̄ω⊥a3
⊥), � (< 1) is the rotation frequency

of the trapping potential, Lz is the z component of the orbital
angular momentum operator, and the wave function � is
normalized to unit. Here we have expressed Eq. (3) in the
dimensionless form by adopting the following dimensionless
units: a⊥ = √

h̄/(mω⊥) for length, h̄ω⊥ for energy, ω−1
⊥ for

time,
√

N/a3
⊥ for wave function, and ω⊥ for frequency.

As we are mainly interested in the Tkachenko modes in
this work, it is convenient to focus on the highly oblate traps
with λ � 1. The condensate can then be treated as a quasi-2D
one, for which the motion along the z axis is frozen to the
ground state of the axial harmonic oscillator. As a result,
we decompose the condensate wave function into �(r,t) =
ψ(ρ,t)φ(z), where ρ = (x,y) and φ(z) = (λ/π )1/4e−λz2/2.
Multiplying both sides of Eq. (3) from the left by φ∗(z) and
integrating out the z variable, we obtain the 2D GPE

i
∂ψ(ρ)

∂t
= [H0 + g0|ψ(ρ)|2 + gdD(ρ)]ψ(ρ), (4)

where we have defined the 2D single-particle Hamiltonian

H0 = − 1
2∇2

⊥ + 1
2ρ2 − �Lz, (5)

g0 = 2(2πλ)1/2Nas/a⊥, and

D(ρ) =
∫

dρ ′U (ρ − ρ ′)|ψ(ρ ′)|2 (6)

is the mean field induced by the DDI, with

U (ρ − ρ ′) =
∫

dz|φ(z)|2
∫

dz′ 1 − 3(d̂ · ê)2

|r − r′|3 |φ(z′)|2

being the effective 2D dipolar interaction.
In general, the ground-state wave function ψ0(ρ) can be

obtained by numerically evolving Eq. (4) in imaginary time. It
is worthwhile to point out thatD(ρ) can be efficiently evaluated
in the momentum space by using the fast Fourier transform. To

see this, we make use of the convolution theorem to Eq. (6),
which leads to

D(ρ) = 4π

3

∫
dz|φ(z)|2F−1[(3(d̂ · k̂)2 − 1)F[|�(r)|2]],

where F[·] and F−1[·] denote the Fourier and inverse Fourier
transforms, respectively, and we have used the fact that

F
[

1 − 3(d̂ · r̂)2

|r|3
]

= 4π

3
[3(d̂ · k̂)2 − 1]. (7)

Straightforward calculation then gives rise to

D(ρ) = F−1
⊥ [Ũ (kρ)F⊥[|ψ(ρ)|2]], (8)

where F⊥[·] and F−1
⊥ [·] represent the Fourier and inverse

Fourier transforms in the xy plane, respectively, and

Ũ (kρ) = −2

3

∫
dkze

−k2
z /(2λ)[1 − 3(d̂ · k̂)2], (9)

where kρ = (kx,ky). In particular, for d̂ = x̂, we have

Ũ (kρ) = 4π

3

√
λ

2

[ −1√
π

+ 3
k̄2
x

k̄ρ

ek̄2
ρ erfc(k̄ρ)

]
,

where k̄x = kx/
√

2λ, k̄ρ =
√

(k2
x + k2

y)/(2λ), and erfc(·) is
the complementary error function. For simplicity, we further
assume that all dipole moments are polarized along the x axis
such that the dipolar interaction in the quasi-2D system is
anisotropic, i.e., attractive (repulsive) along the x (y) direction.
However, it should be noted that overall dipolar interaction for
the quasi-2D condensate is always attractive.

Once the ground-state wave function ψ0(ρ) is found, we
may study the collective excitations of the condensate by
employing the Bogoliubov–de Gennes theory. Specifically, we
expand the wave function into

ψ(ρ,t) = [ψ0(ρ) + pϑ(ρ,t)]e−iμt , (10)

where μ is the chemical potential of the ground state, p � 1 is
a small quantity used to control the population of quasiparticle
excitation, and ϑ(ρ,t) is expanded as

ϑ(ρ,t) =
∑

j

[uj (ρ)e−iωj t + v∗
j (ρ)eiωj t ], (11)

with (uj ,v
∗
j ) being the modes of the excitations and ωj the cor-

responding frequencies. Here mode functions are normalized
as ∫

dρ[|uj (ρ)|2 − |vj (ρ)|2] = 1. (12)

After inserting Eqs. (10) and (11) into Eq. (4), we equate terms
evolving in time according to e−iωj t and eiωj t , respectively,
which leads to the coupled BdG equations(

L11 L12

L21 L22

)(
uj

vj

)
= ωj

(
uj

vj

)
, (13)

where

L11 = LGP − μ + g0|ψ0|2 + gdχ̂1 = −L∗
22,

L12 = g0ψ
2
0 + gdχ̂2 = −L∗

21,

043614-2



LOW-LYING EXCITATIONS OF VORTEX LATTICES IN … PHYSICAL REVIEW A 97, 043614 (2018)

with LGP = − 1
2∇2

⊥ + 1
2ρ2 + g0|ψ0(ρ)|2 + gdUd(ρ) − �Lz.

Furthermore, the actions of the operators χ̂1 and χ̂2 on a
function f are defined, respectively, as

(χ̂1f )(ρ) = ψ0(ρ)
∫

dρ ′Ud(ρ − ρ ′)ψ∗
0 (ρ ′)f (ρ ′)

and

(χ̂2f )(ρ) = ψ0(ρ)
∫

dρ ′Ud(ρ − ρ ′)ψ0(ρ ′)f (ρ ′).

Following Ref. [36], we solve the BdG equations (13) with the
Arnoldi method by employing ARPACK [39], which gives rise to
the eigenfrequenciesωj and eigenmodes (uj ,vj ). To visualize a
normal mode, we analyze the evolution of the perturbed density
profile

np(ρ,t) = |ψ0(ρ) + p[uj (ρ)e−iωj t + v∗
j (ρ)eiωj t ]|2, (14)

which reveals the nature of the excitations.
For the numerical results presented below, we consider a

condensate of N = 3 × 104 Cr atoms [19]. We assume that
the s-wave scattering length of the Cr atom is tuned to as =
2.83 nm via Feshbach. The radial trap frequency is taken to be
ω⊥ = (2π )100 Hz and the trap aspect ratio is λ = 10. With
these specifications, the dimensionless contact interaction
strength becomes g0 	 966 which, for simplicity, is fixed in all
numerical calculations. Consequently, the free parameters of
the system reduce to the dimensionless the interaction strength
gd and the rotation frequency �. By noting that the magnetic
dipole moment of the Cr atom is 6 Bohr magneton, it can
be easily shown that the interaction ratio gd/g0 may range
from 0 to 0.2, a region that shall be covered by the numerical
computations. In fact, with the help of Feshbach resonance, this
parameter regime is also experimentally accessible in both Dy
and Er condensates [21,22].

III. RESULTS

A. General structures of the excitation spectra

To explore the structure of the excitation spectrum, we
first consider a simpler case corresponding to a rather small
rotation frequency � = 0.3. Figure 1 plots the frequencies of
the low-lying excitations as a function of the dipolar interaction

FIG. 1. Frequencies of the low-lying excitations versus the dipo-
lar interaction strength for rotation frequency � = 0.3. From left
to right, the insets show the density profiles of the ground states
corresponding to gd/g0 = 0.02, 0.12, and 0.16, respectively.

strength. Clearly, according to the behavior of the excitation
spectra, the gd axis is divided into three regions which, as
shown in the insets, correspond to three different types of
ground states. In the weak DDI region, the condensate contains
Nv = 2 vortices. As one increases gd , these two vortices move
away from each other and for sufficiently large gd the vortex
number reduces to 1. Eventually, the condensate becomes free
of vortex for sufficiently large gd . In addition, the condensate
collapses when gd > 0.18g0. The underlying reason for the
decrease of Nv with growing gd is because the overall DDI
in the quasi-2D condensate is attractive, which energetically
favors higher condensate density. The appearance of vortices,
however, lowers the density of the condensate by depleting
atoms in the vortex cores. Therefore, under a given rotation
frequency, the number of vortices decreases as gd is increased.

As to the excitation spectrum, a visible feature in Fig. 1
is that the frequencies of two modes denoted by the dash-
dotted lines at ωj/ω⊥ = 0.7 and 1.3 are independent of the
interaction strength, which suggests that these two modes
may relate to the condensate’s center-of-mass motions. Indeed,
by analyzing the time-dependent density of those modes, we
find that the vortices remain stationary while the condensate
density performs circular motion around the center of the trap.
Moreover, to obtain the mode frequencies, it is convenient to
consider the single-particle Hamiltonian H0 defined in Eq. (5).
After diagonalizing H0, we obtain the Fock-Darwin levels

εnr ,m = (|m| + 2nr ) − m�, (15)

where nr � 0 and m are two integers. As we are dealing
with the classical center-of-mass motion, we have ignored the
zero-point energy in Eq. (15). In fact, only the lowest two
frequencies, ε0,1 = 0.7 and ε0,−1 = 1.3, represent the dipole
modes of a 2D system which possesses two degrees of freedom.
Next, we consider the modes represented by the dashed lines
which possess relatively high frequencies. Simple analysis
reveals that these modes represent the surface excitations of the
condensate. Because the DDI breaks the axial symmetry, these
modes can only be roughly identified by the angular momenta
of the excitations as m ≈ 2, 3, and 4 in ascending order of the
frequencies.

Finally, we examine the vortex-displacement excitations
(solid lines in Fig. 1) which, in the rotating frame, represent
the elliptical motions of the vortex cores around the respective
equilibrium positions. Let us first consider the simplest case
with a single vortex. Without DDI, the vortex core of the VDM
executes a clockwise circular precession around the center
of the axially symmetric trap. Such circular precession is
required by the orbital angular momentum conservation and
its frequency was found in several references [40–43]. In the
presence of the anisotropic DDI, we find that the trajectory of
the vortex core becomes an ellipse with its major axis being
along the x direction, i.e., the direction of the polarized dipole
moments. Moreover, as the DDI strength is increased, the
ellipse becomes more eccentric.

When the ground state has two vortices, mutual interaction
between vortices enriches their motions. In fact, as shown in
Fig. 1, there are now two VDMs. For the low-frequency mode,
two vortices move out of phase; while for the high-frequency
mode, they move in phase. This observation is in agreement
with that in the nondipolar condensates [44]. However, as
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FIG. 2. Density profiles of the ground states with � = 0.5 and for
various DDI strengths. From (a) to (g), the relative dipolar interaction
strengths are gd/g0 = 0.005, 0.055, 0.085, 0.12, 0.135, 0.15, and
0.175, respectively.

one increases gd , the frequency of the in-phase (out-of-phase)
mode decreases (increases). Eventually, as shall be shown, the
frequency of the out-of-phase mode becomes larger than that
of the in-phase mode (see Fig. 3).

B. Vortex-displacement excitations

In this section, we shall focus on the VDMs in the rotating
condensates. To this end, we increase the rotation frequency
to � = 0.5 such that the condensate contains more vortices.
Figure 2 shows the density profiles of the ground states under
various DDI strengths. As can be seen, the number of vortices
Nv drops from Nv = 8 to 2 when gd is increased gradually.
In the weak DDI limit with Nv = 8 and 7, the vortices form a
pattern with Nv − 1 vortices located on a ring plus one vortex at
the center. However, with growinggd , the pattern of the vortices
may deviate significantly from the triangular lattices in the
nondipolar condensates. As an example, for the three-vortex
state in Fig. 2(f), instead of forming an equilateral triangle as
in the nondipolar case, all three vortices evenly distribute over
a line segment on the x axis with the middle vortex located at
the center of the trapping potential. This result is in agreement
with the previous study [25].

For a many-vortex state, the number of VDMs is equal
to the number of vortices [18]. These VDMs, according to
Campbell [45] and Simula [18], can be classified into four
types that are briefly summarized as follows. The common
mode (C) refers to the center-of-mass excitation of the vortices.
In the frame corotating with the trapping potential, the whole
vortex array of the common mode executes retrograde circular
motion around the trap center as a rigid body. We note that
the common mode is shared by all vortex configurations. The
Tkachenko mode (T) is another universal collective excitation
which reveals itself as a torsional oscillation of the vortex
lattice around the trap center. In nondipolar condensates, the
Tkachenko mode typically has the lowest excitation energy.
When the condensate consists of a ring of vortices and a central
single vortex (or a cluster of vortices), the quadratic modes
(Q) appear for which the central vortex executes rigid-body
oscillation while the vortices in the ring are able to move
relative to each other. Finally, the rational modes (R) refer

FIG. 3. Excitation frequencies of the VDMs as functions of the
DDI strength. From left to right, distinct shaded regions correspond to
ground states with 8, 7, 6, 5, 4, 3, and 2 vortices. T, C, Q, and R label
the Tkachenko, common, quadratic, and rational modes, respectively.
O denotes modes that do not fall into these four types. For the 7-, 3-,
and 2-vortex states, movies of np(ρ,t) perturbed by different modes
are shown in the Supplemental Material [46].

to motion of the vortices with the central vortex remaining
stationary.

Figure 3 shows the excitation frequencies of the VDMs
as functions of the dipolar interaction strength for rotation
frequency � = 0.5. Again, the spectra along the gd axis are
divided into seven regions according to the number of vortices
in the condensate. For small gd , our results are in agreement
with those for nondipolar condensates. As an example, for
the seven-vortex state, the excitation spectrum is very similar
to that obtained in Ref. [18] for a nondipolar condensate
except that the fourth lowest mode is now a rational mode
as compared to the quadratic one. In addition, the Tkachenko
mode has a lower excitation energy than that of the common
mode. When the DDI strength is increased, vortices do not
form a ring pattern, consequently, some of the VDMs cannot
be described by the four types of modes introduced above.
Another feature different from these results in Ref. [18] is that
the common modes may have the lowest excitation energy.
As the number of vortices continuously drops to three and two
with increasinggd , the situation becomes much simpler. For the
three-vortex state, the lowest excitation is a common mode for
which all three vortices execute the elliptic motion around the
respective equilibrium position simultaneously. For the next
mode with higher frequency, the vortex at the center remains
stationary, while two endpoint vortices execute mutually out-
of-phase motion, in analog to the out-of-phase mode in the
two-vortex state. Therefore, this mode can be categorized as
either Tkachenko or rational mode. For the highest frequency
mode, the center vortex executes the clockwise elliptic motion,
while two endpoint vortices move anticlockwise, indicating
that it is a quadratic mode. Finally, for the two-vortex state,
the in-phase (common) mode now has lower excitation energy
than the out-of-phase (Tkachenko) mode.
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FIG. 4. Density profiles of the ground states under the DDI
strength gd/g0 = 0.15 for � = 0.7 (a) and 0.9 (b).

C. Low-lying excitations at the strong DDI limit

In the strong DDI limit, the condensate is significantly
stretched along the x axis. Then, under sufficiently large
rotation frequency, vortices form striped lattices such that the
intervortex spacing along the x axis is smaller than that along
the y axis. In Fig. 4, we present the typical density profiles for
striped vortex lattices with gd/g0 = 0.15 and under two dif-
ferent rotation frequencies � = 0.7 and 0.9. Correspondingly,
Table I lists the frequencies of the low-excitation modes, which
can be analyzed by decomposing a collective motion into the
intra-row and inter-row excitations.

Let us first consider the lower rotation frequency case with
� = 0.7. This condensate contains ten vortices that are evenly
divided into two rows. For a five-vortex row, the intra-row
VDMs can also be described by the terms introduced in

TABLE I. Frequencies of the low-lying excitations for � = 0.7
(left column) and 0.9 (right column). The DDI strength is gd/g0 =
0.15. The notation labeling the different excitations is explained in
the main text. Movies showing the dynamical behavior of all listed
modes can be found in the Supplemental Material [46].

� = 0.7 � = 0.9

Mode ωq (ω⊥) Label Mode ωq (ω⊥) Label

1 0.0415 C(i) 1 0.0088 C(iii)
2 0.0684 C′(o) 2 0.0216 C′(ioi)
3 0.2517 T(i) 3 0.0519 C′(oio)
4 0.3000 Dipole 4 0.0576 C′(ooo)
5 0.3271 T(o) 5 0.1000 Dipole
6 0.5170 Q(i) 6 0.1176 T(iii)
7 0.5489 Surface 7 0.1583 T(ioi)
7′ 0.5489 Surface 8 0.1999 T(oio)
8 0.5750 Q(o) 9 0.2233 T(ooo)
9 0.5803 Surface 10 0.2442 Surface
10 0.7717 Surface 11 0.2801 Surface
11 0.7744 R(o) 11′ 0.2801 Surface
12 0.7885 Surface 12 0.2931 Q(iii)
12′ 0.7885 Surface 13 0.3216 Q(ioi)
13 0.8207 R(i) 14 0.3507 Q(ooo)
14 0.8838 Surface 15 0.3521 Q(oio)
15 0.9343 Surface 16 0.3959 Mixed
16 0.9617 Surface 17 0.4223 Mixed
17 0.9778 Mixed 18 0.4491 Mixed
18 0.9934 Mixed 19 0.4544 Surface
19 1.0153 Mixed 19′ 0.4544 Surface
20 1.0330 Mixed 20 0.4932 Mixed

mode 1 2 3 5

6
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-9 0 9y
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FIG. 5. Snapshots of the density profiles np(ρ,t) [Eq. (14)] per-
turbed by different excitation modes. Other parameters are gd/g0 =
0.15 and � = 0.7.

Sec. III B. Interestingly, a different type of common mode
(C′) appears for which all vortices roughly execute horizontal
oscillations. It should also be noted that since both rows are
away from the trap center, the intra-row Tkachenko mode now
represents the torsional oscillation of the row around the center
of the row, instead of the trap center. For low-lying collective
excitations, it is found numerically that the intra-row excitation
modes are always the same for both rows. As to the inter-row
excitations, there are only two types of relative motion between
rows: in-phase (i) and out-of-phase (o) motions. Therefore, we
may denote a VDM with an upper-case letter for the intra-row
excitation accompanied by a lower-case letter (in parentheses)
for the inter-row motion (see Table I). To visualize these
modes, we plot, in Fig. 5, the instantaneous density profiles
perturbed by different VDMs. As can be seen, the notation
introduced above indeed captures the features of the VDMs in
this system. In particular, since both rows in the C′(o) mode
execute horizontal motion, mode 2 actually represents the
inter-row shearing motion. For convenience, we also present
the movies of np(ρ,t) for all modes listed in Table I in the
Supplemental Material [46].

One should note that, in Table I, some of the modes do
not belong to the VDM. For example, mode 4 is a dipole
mode whose frequency is exactly that obtained with Eq. (15).
Modes 7 and 7′ are two degenerate surface modes, for which
the positions of the vortices remain stationary. To gain more
insight into these modes, we plot |u7(ρ)|2 and |v7(ρ)|2 in
Figs. 6(a) and 6(b), respectively. As can be seen, u7 and v7 only
occupy two separated regions that are away from the center
of the condensate where n0(ρ) is very small. Therefore, only
the surface of the condensate is perturbed by the excitation,
while all vortices remain unperturbed by the excitation (see
Supplemental Material [46]). Additionally, the fact that |u7|2
and |v7|2 are highly anisotropic suggests that mode 7 is a
superposition of many surface modes with different angular
momenta. It should also be noted that in Table I, we can only
identify eight VDMs although ten are expected. It turns out
that some VDMs with higher excitation frequency are coupled
to the surface mode. As a concrete example, we consider
mode 17 whose mode functions |u17(ρ)|2 and |v17(ρ)|2 are
plotted in Figs. 6(c) and 6(d), respectively. The fact that
|u17| � |v17| allows us to focus on u17 for the perturbed
density np. To analyze these mode functions, we note that
for a pure VDM, u(ρ) is nonzero only in the vicinities of
vortex cores, because only the positions of the vortex cores are
supposed to be perturbed by u(ρ). Figure 6(c) instead shows
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FIG. 6. Excitation mode functions |uj (ρ)|2 (left panels) and
|vj (ρ)|2 (right panels) for j = 7 (upper panels) and 17 (lower panels).
Other parameters are gd/g0 = 0.15 and � = 0.7.

that u17 is nonzero not only in the vicinities of the vortex cores,
but also at the surface of the condensates. Therefore, mode
function u17 represents a superposition of VDM and surface
modes.

Finally, for � = 0.9, the ground state contains 30 vortices
which are divided into four rows. It is found that the notation
introduced for the VDMs in the � = 0.7 case is still applicable
except that we now need three lower-case letters (see Table I)
to describe the relative motions of the neighboring rows. Of
particular interest, the excitations within the lowest two sets
of VDMs (C and T) are arranged according to iii, ioi, oio,
and ooo in ascending order of the frequency, indicating that it
costs more energy to excite the out-of-phase inter-row motions.

In fact, the out-of-phase inter-row excitations unavoidably
change the inter-row vortex spacing. Then, because the DDI
interaction is repulsive along the y, it is natural to find that
out-of-phase inter-row motions cost more energy.

IV. CONCLUSIONS

In conclusion, we have numerically studied the low-lying
collective excitations of a quasi-2D rotating condensate with
anisotropic dipolar interaction. We have shown how the ex-
citation spectra of the vortex states depend on trap rotation
frequency and DDI strength. In the fast-rotating and strong
DDI limit, vortices form stripe lattices due to the broken
rotational symmetry. As a result, the low-lying Tkachenkon
waves take the form of various shearing motions between
neighboring rows, which is distinct from Tkachenkon modes
of conventional vortex lattices with isotropic interactions.
Moreover, for excitations with higher energy, Tkachenkon
modes also couple to the surface modes due to the anisotropic
DDI. Since our results cover the parameter regime accessible
to current experiments, we hope this study will stimulate
experimental efforts aimed at observing Tkachenkon waves
in dipolar condensates.
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