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Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range
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We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach
resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-
boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon,
which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong
pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the
narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing
fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results
shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter
from the viewpoint of finite-effective-range corrections.
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I. INTRODUCTION

The realization of superfluidity in ultracold Fermi gases
with pairing interactions that are tunable by Feshbach
resonances is one of the most important breakthroughs
in condensed matter physics [1–5]. The Bardeen-Cooper-
Schrieffer–Bose-Einstein-condensation (BCS-BEC) crossover
phenomenon [6–9] realized in 40K [1] and 6Li [2] Fermi
gases has been extensively discussed in various fields such as
FeSe superconductors [10–12], electron-hole systems [13,14],
nuclear matter [15–18], and color superconductivity in high-
density quark matter [19–21].

In particular, the similarity between ultracold Fermi gases
and dilute neutron matter in a neutron star has recently gathered
much attention [22–25]. The idea is based on the fact that
both systems are dominated by low-energy s-wave scatterings
and the temperature T is very low compared to the Fermi
temperature TF. Since the neutron-neutron scattering length
ann = −18.5 fm [26] is negatively large and the dimensionless
interaction parameter is typically given by 1/kFann � −0.05
(where kF is the Fermi momentum) at the nucleon density in
a neutron-star-crust region ρ � 0.05 fm−3 [27], the system
property is very close to a unitary Fermi gas (1/kFa = 0,
where a is the two-body scattering length of Fermi atoms). In
this regard, ground-state thermodynamic quantities have been
measured experimentally with high precision [28–30]. More-
over, the pairing gap [31–33], critical temperature [34–36], and
thermodynamic quantities at finite temperature [36–38], which
are important information for the cooling mechanism [39–44]
as well as glitch phenomena [45–47] in a neutron star, also
have been measured near the unitarity limit.

However, in addition to the scattering length, there is
another key parameter, that is, the effective range re. While
BCS-BEC crossover physics in ultracold Fermi gases is usually
discussed with the zero-range contact-type interaction because
the effective range is negligible near the broad Feshbach
resonance, the effective range of neutron-neutron scatterings
re,nn = 2.8 fm [26] is not negligible in the relevant density
region of a neutron star. In this regard, effective-range correc-

tions should be considered if one uses them to treat an ultracold
Fermi gas as a quantum simulator of neutron star matter. There
are some theoretical studies of these corrections at T = 0 based
on quantum Monte Carlo (QMC) simulations [22,23,48] and
the effective-range dependence of the ground-state energy has
been reported. On the other hand, although its sign is generally
different, the finite negative effective range can be realized
in an ultracold Fermi gas with narrow Feshbach resonances
[49]. We note that recently the optical control of scattering
parameters with magnetic Feshbach resonance has also been
proposed [50–52] and experimentally examined in a 6Li Fermi
gas [53,54].

In this paper we show how negative-effective-range correc-
tions affect system properties in the presence of strong pairing
fluctuations near the superfluid phase transition temperature
Tc. It is well known that a precursor of the superfluid phase
transition can be seen in a strongly interacting Fermi gas
through various physical quantities, e.g., the enhancement of
specific heat [36,55] and suppression of spin susceptibility
[56–64]. These strong-coupling effects are deeply related to the
so-called pseudogap phenomenon [65–72], where the single-
particle density of states near the Fermi level shows a dip struc-
ture even above Tc. Although the pseudogap in an ultracold
Fermi gas has not been directly observed in an experiment
yet (indirectly observed in photoemission spectra [73–75]), it
exhibits when and how the Cooper pairing occurs from the
microscopic viewpoint when the temperature approaches Tc in
the normal phase. One can expect that such pairing properties
have an important role in the cooling process of a neutron
star across Tc. Actually, the pseudogap phenomenon has been
discussed also in dilute nuclear matter [76–78].

We numerically calculate the single-particle density of
states in a strongly interacting Fermi gas with negative ef-
fective range within the framework of the non-self-consistent
T -matrix approximation, which has been extensively used
for the study of pseudogap physics in this atomic system
[66,69,70,79]. In fact, this diagrammatic approach can quan-
titatively reproduce the recent experimental results of pho-
toemission spectra [67,80,81]. Moreover, the single-particle
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density of states in mass-balanced Fermi gases with zero
effective range obtained within the self-consistent T -matrix
approximation [59,82–84], which is one of the higher-order-
perturbation theories, is qualitatively unchanged from that
of the non-self-consistent one [84]. It is also reported that
particle-hole fluctuations, which are not considered in the
non-self-consistent T -matrix approximation, do not show
significant contributions on the radio-frequency spectra [85].
In this sense, the non-self-consistent T -matrix approximation
can be a good starting point to study pseudogap physics and
the single-particle density of states. To reproduce the finite
negative effective range associated with the narrow Feshbach
resonance, we employ the so-called coupled fermion-boson
model [82,86–89]. We obtain the pseudogap temperature Tpg,
which is a characteristic temperature where pairing fluctuations
are strongly enhanced, as a function of the negative effective
range. As an application to neutron star physics, we also
demonstrate how the effects of pairing fluctuations in the
small-positive-effective-range region can be extracted from the
results in the negative-effective-range region.

This paper is organized as follows. In Sec. II we present the
formalism of the non-self-consistent T -matrix approximation
with the coupled fermion-boson model. In Sec. III we first
review the BCS-BEC crossover physics with the negative
effective range in this model and then we present numerical
results of the single-particle density of states in the BCS-BEC
crossover regime. We make a summary of this paper in Sec.
IV. Throughout this paper, for simplicity, we set h̄ = kB = 1
and the system volume is taken to be unity.

II. FORMULATION

We start from the coupled fermion-boson model described
by the Hamiltonian [82,86–88]

H =
∑
p,σ

ξ pc
†
p,σ c p,σ +

∑
q

(εq/2 + 2ν − 2μ)b†qbq

+ gr

∑
p,q

(b†qc p+q/2,↑c− p+q/2,↓ + H.c.). (1)

Here c p,σ and bq are the annihilation operators of a Fermi
atom with the pseudospin σ = ↑,↓ and a diatomic molecular
boson, respectively, and ξ p = ε p − μ is the kinetic energy of
Fermi atoms measured from the chemical potential μ, where
ε p = p2/2m (m is an atomic mass). The threshold energy of the
diatomic molecule 2ν and the Feshbach coupling constant gr

are related to the two-body scattering length a and the effective
range re, respectively. These relations are given by

4πa

m
= −g2

r

[
2ν −

∑
p

g2
r

2ε p

]−1

≡ − g2
r

2νr
, (2)

re = − 8π

m2g2
r

. (3)

In Eq. (2), 2νr is the renormalized threshold energy. For
simplicity, we ignore the existence of nonresonant atom-atom
scatterings.

We consider strong-coupling effects in the framework
of non-self-consistent T -matrix approximation. The thermal

(a) Σf =

(b) Σb =

G0

Dgr

FIG. 1. Self-energy corrections of (a) Fermi atoms and (b) di-
atomic molecules. The single line (G0) and double line (D) represent
Green’s functions of noninteracting atoms and dressed molecules,
respectively. The shaded circle is the Feshbach coupling gr .

Green’s function of a Fermi atom G is given by

G( p,iωn) = 1

iωn − ξ p − 	f ( p,iωn)
, (4)

where ωn = (2n + 1)πT is the fermion Matsubara frequency.
Figure 1(a) shows the diagrammatic representation of the self-
energy 	f ( p,iωn), which is in the form

	f ( p,iωn) = T
∑
q,ζl

g2
r D(q,iζl)G0(q − p,iζl − iωn), (5)

where G0( p,iωn) = (iωn − ξ p)−1 is the bare Green’s function
of the Fermi atoms and ζl = 2lπT is the boson Matsubara
frequency. The thermal Green’s function of a dressed molecule
D(q,iζl) includes the self-energy correction 	b(q,iζl), shown
in Fig. 1(b) as

D(q,iζl) = 1

iζl − εq/2 − 2ν + 2μ − 	b(q,iζl)
. (6)

Here 	b(q,iζl) is given by

	b(q,iζl) = −g2
r �(q,iζl), (7)

where

�(q,iζl) = T
∑
p,iωn

G0( p + q/2,iωn + iζl)

×G0(− p + q/2,−iζl)

= −
∑

p

1 − f (ξ p+q/2) − f (ξ− p+q/2)

iζl − ξ p+q/2 − ξ− p+q/2
(8)

is the lowest-order particle-particle correlation function. In
Eq. (8), f (x) = 1/(ex/T + 1) is the Fermi-Dirac distribution
function. We note that the ultraviolet divergence of summation
of p in Eq. (8) can be avoided by the renormalization of ν. In
this regard, Eq. (6) can be rewritten as

D(q,iζl)

= 1

iζl − εq/2 − 2νr + 2μ + g2
r

[
�(q,iζl) − ∑

p
1

2ε p

] . (9)

The superfluid phase transition temperature Tc is deter-
mined by the Hugenholtz-Pines condition [90] of diatomic
molecular bosons [D(q = 0,iζl = 0)]−1 = 0, which reads

m

4πa
+ 2μ

g2
r

+
∑

p

[
1

2ξ p
tanh

(
ξ p

2Tc

)
− 1

2ε p

]
= 0. (10)
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Equation (10) is equivalent to the so-called Thouless criterion
and recovers the ordinary gap equation of the single-channel
model [66] at the broad-resonance limit (gr → ∞). We deter-
mine Tc and the critical chemical potential μc = μ(T = Tc)
by self-consistently solving Eq. (10) and the particle number
equation

N = 2Nf + 2Nb

= 2T
∑
p,iωn

G( p,iωn) + 2T
∑
q,iζl

D(q,iζl), (11)

where N is the total number and Nf and Nb are the numbers
of Fermi atoms and diatomic molecules, respectively.

In this paper we calculate the single-particle density of states
of a Fermi atom given by

ρ(ω) =
∑

p

A( p,ω)

= − 1

π

∑
p

ImG( p,iωn → ω + iδ), (12)

where A( p,ω) is the single-particle spectral function and ω is
the single-particle energy. In Eq. (12) the analytic continua-
tion (iωn → ω + iδ) is numerically done by using the Padé
approximation [91] with the small number δ = 10−2εF, where
εF is the Fermi energy (for details of δ, see the Appendix).

III. RESULTS

First we show the effective-range (Feshbach coupling)
dependence of the superfluid phase transition temperature
Tc and the critical chemical potential μc in the BCS-BEC
crossover regime in Fig. 2. Here g̃r = gr

√
N/εF is the dimen-

sionless Feshbach coupling, which is connected with the scaled
effective range rekF = −32/3πg̃2

r . In the broad-resonance
regime (|rekF| <∼ 1), Tc and μc are almost equal to the results
of a previous work on the single-channel model [66]. In the
strong-coupling BEC regime (1/kFa >∼ 1), Tc and μc go
to the BEC temperature of tightly bound molecular bosons
T BEC

c = 0.218εF and half of their binding energy Eb/2 =
−1/2ma2, respectively [8,9,66]. On the other hand, in the
weak-coupling BCS regime (1/kFa <∼ − 1), Tc approaches the
famous BCS superfluid phase transition temperature T BCS

c �
0.614TFe

−π/2kFa and μc becomes close to εF [7]. We note that
our calculated Tc does not approach the prediction by Gorkov
and Melik-Barkhudarov [92] (T GMB

c � 0.277TFe
−π/2kFa) in

the weak-coupling limit since we do not incorporate the effects
of particle-hole fluctuations [93–95].

In the narrow-resonance regime, or large-negative-
effective-range region (|rekF| >∼ 1), Tc and μc deviate
from the results in the broad-resonance region. Here Tc

increases with decreasing g̃r on the weak-coupling side
(1/kFa <∼ − 0.5). This enhancement of Tc is consistent
with previous work [96] which suggests that the narrow
Feshbach resonance produces strong-pairing effects where
the two-body bound state is absent. We note that Tc

slightly decreases on the opposite side (1/kFa >∼ − 0.5).
In addition, μc approaches 0 in the whole crossover re-
gion with decreasing gr. In the large-negative-effective-
range limit re → −∞ (narrow-resonance limit gr → 0),
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FIG. 2. (a) Superfluid phase transition temperature Tc and (b)
critical chemical potential μc in the whole BCS-BEC crossover
regime with the finite effective range re. The quantity g̃r = gr

√
N/εF

is the dimensionless Feshbach coupling.

the system can be exactly described by the mean-field theory
since the self-energy corrections given by Eqs. (5) and (7) are
proportional to g2

r . In this case, Eq. (11) becomes

N = 2N0
f + 2N0

b

= 2
∑

p

f (ξ p) + 2
∑

q

b(εq/2 + 2νr − 2μ), (13)

where b(x) = 1/(ex/T − 1) is the Bose-Einstein distribution
function and N0

f and N0
b in Eq. (13) represent the particle num-

ber of noninteracting Fermi atoms and diatomic molecules,
respectively. One can evaluate μc from Eq. (13) with the
condition of the gapless bosonic excitation as

μc = νr = −mg2
r

8πa
, (14)

which indicates μc = 0 in this limit (gr → 0) with the non-
zero scattering length. Substituting μc = 0 to Eq. (13), one
can obtain the critical temperature of the narrow resonance
limit

T NRL
c = 0.204TF. (15)

Actually, Tc at rekF = −13.6 (g̃r = 0.5) shown in Fig. 2(a) is
very close to T NRL

c .
In the narrow-resonance regime, it is known that an ef-

fective scattering length aeff [82,97] is useful to measure the
interaction strength in the BCS-BEC crossover regime,
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FIG. 3. Superfluid phase transition temperature Tc at various
Feshbach couplings as a function of 1/kFaeff , whereaeff is the effective
scattering length defined by Eq. (16).

defined by

4πaeff

m
= − g2

r

2νr − 2μ
, (16)

since the effective-interaction strength between Fermi atoms
is given by Ueff (q,iζl) = −g2

r D(q,iζl). Indeed, using aeff , one
can find that Eq. (10) can be rewritten as

m

4πaeff
+

∑
p

[
1

2ξ p
tanh

(
ξ p

2Tc

)
− 1

2ε p

]
= 0. (17)

Equation (17) is in the same form as the ordinary BCS gap
equation in the single-channel model [66]. Figure 3 shows
Tc as a function of 1/kFaeff at various Feshbach couplings.
Although Tc quantitatively changes if one tunes gr in the
intermediate region (−1 <∼ 1/kFaeff <∼ 1), the weak-coupling
and strong-coupling regimes, except for the above region, do
not depend ongr . In this regard, in the case of narrow resonance,
it is appropriate that the weak-coupling BCS regime and the
strong-coupling BEC regime are defined as 1/kFaeff <∼ − 1
and 1/kFaeff >∼ 1, respectively.

Figure 4 shows the effective-range dependence of 1/kFaeff

in the crossover region (1/kFa = −0.5, 0, and 0.5) at T = Tc.
We also show the Feshbach coupling dependence of 1/kFaeff in
the inset of Fig. 4. In the narrow-resonance limit, one can find
that 1/kFaeff � 0.31 (where μc = 0) at each scattering length.
This is the reason why the narrow Feshbach resonance induces
a strong attraction between Fermi atoms and Tc is enhanced by
the negative effective range in the region where 1/kFa <∼ 0
shown in Fig. 2(a).

In Fig. 5 we show the Feshbach coupling dependence of
particle numbers in the crossover region. The particle number
of Fermi atoms 2Nf is divided into two parts

2Nf = 2N0
f + 2δNf

= 2
∑

p

f (ξ p) + 2T
∑
p,iωn

[G( p,iωn) − G0( p,iωn)],

(18)

where the second term 2δNf is the fluctuation corrections; δNf

monotonically increases with increasing interaction strength

FIG. 4. Effective range dependence of the inverse effective scat-
tering length 1/kFaeff at 1/kFa = −0.5 (dashed line), 0 (dotted line),
and 0.5 (solid line) at T = Tc. The inset shows 1/kFaeff as a function
of the dimensionless Feshbach coupling g̃r . In each figure, we use the
same line style at each scattering length.

from 1/kFa = −0.5 [Fig. 5(a)] to 1/kFa = 0.5 [Fig. 5(c)]. On
the other hand, 2δNf monotonically decreases with decreas-
ing gr at each scattering length and the total Fermi atomic
number becomes dominated by the noninteracting part 2N0

f .
In the narrow-resonance limit, 2N0

f at T = T NRL
c (μc = 0)

approaches a constant value given by

2Nf � 2N0
f = 2

∑
p

f (ε p)

� 0.0937N. (19)

In contrast to 2Nf , the particle number of diatomic molec-
ular bosons 2Nb increases with decreasing gr and finally
reaches N − 2N0

f � 0.906N in the narrow-resonance limit.
This interplay of 2Nf and 2Nb and the suppression of the
fluctuation contribution 2δNf in spite of the strong attraction
between atoms are characteristic features of narrow Feshbach
resonances that cannot be seen in broad Feshbach resonances.

Figure 6 shows the single-particle density of states ρ(ω) in
the crossover regime at T = Tc with a negative effective range,
where ρ0(ω = 0) = mkF/2π2 is the single-particle density of
states at the Fermi level in a noninteracting Fermi gas at T = 0
[98]. On the weak-coupling side 1/kFa = −0.5 [Fig. 6(a)],
one can see that the pseudogap phenomenon appears as a
dip structure around ω = 0 at the broad resonance (rekF =
−0.034). This pseudogap size is enhanced with decreasing
gr in the broad resonance region (g̃r >∼ 1). However, the
pseudogap closes with decreasing gr in the narrow resonance
region (g̃r <∼ 1). This fact can be understood by considering the
static approximation [66,99] given by

	f ( p,iωn) � −
2
pgG0(− p,−iωn), (20)

where


2
pg = −T

∑
q,iζl

g2
r D(q,iζl)

= g2
r Nb (21)

is the so-called pseudogap parameter which is directly related
to gr as well as Nb. We note that this approximation is justified
near Tc where D(q = 0,iζl = 0) diverges. By substituting
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FIG. 5. Contributions to the particle number as a function
of the dimensionless Feshbach coupling g̃ at (a) 1/kFa = −0.5,
(b) 1/kFa = 0, and (c) 1/kFa = 0.5 at T = Tc. The particle number of
diatomic molecules 2Nb/N (solid line) and the Fermi atomic number
2Nf/N (dash-dotted line) are shown. We also compare the fluctuation
corrections of the Fermi atomic number 2δNf/N (dashed line) and
noninteracting contributions 2N0

f /N (dotted line). In each figure, we
use the same line style.

Eq. (20) into Eq. (4) we obtain

G( p,iωn) � iωn + ξ p

(iωn)2 − ξ 2
p − 
2

pg

. (22)

Equation (22) shows that G( p,iωn) becomes similar to the
BCS Green’s function even above Tc due to strong pairing
fluctuations. In this regard, the pseudogap size is determined
by 
pg where μ > 0. Since Nb monotonically increases with
decreasing gr as shown in Fig. 5, 
pg also increases in the
broad-resonance region. However, in the narrow-resonance
region, 
pg is proportional to gr and disappears at gr → 0
because Nb becomes almost constant. In the intermediate-
coupling region shown in Fig. 6(b), the pseudogap size be-
comes larger compared to the weak-coupling side except in

0
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(a)
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FIG. 6. Single-particle density of states ρ(ω) at T = Tc with
various effective ranges: (a) 1/kFa = −0.5, (b) 1/kFa = 0, and
(c) 1/kFa = 0.5. Here ρ0(0) is the single-particle density of states
at the Fermi level in an ideal Fermi gas at T = 0.

the deep-narrow-resonance limit (g̃r <∼ 0.1). This result is
simply due to the stronger pairing interaction and is consistent
with the previous work on the single-channel model [66]. As
is the case with the weak-coupling side, the pseudogap size
decreases with decreasing gr in the narrow resonance regime.
On the other hand, on the strong-coupling side 1/kFa = 0.5
[Fig. 6(c)] where μc < 0, the gap size in ρ(ω) is given by

2
√

μ2
c + 
2

pg. This value depends on μc rather than 
pg. In the

strong-coupling limit with the broad resonance, this energy
gap is given by the binding energy of bound molecules where
2|μc| � Eb = 1/ma2 [7,66]. In the narrow-resonance regime
where μc < 0, the energy gap monotonically disappears since
both μc and 
pg approach 0 with decreasing gr.

We note that in the case of the broad-resonance limit
(re → 0), 
pg is related to Tan’s contact C [100–102], which
can be represented by C = m2
2

pg [103]. In the coupled
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FIG. 7. Single-particle density of states ρ(ω) at 1/kFa = 0 at
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Here Tpg is the pseudogap temperature defined as the temperature
where the dip structure in ρ(ω) disappears. The effective range is
set to (a) rekF = −0.034 (g̃r = 10), (b) rekF = −3.40 (g̃r = 1), and
(c) rekF = −16.3 (g̃r = 0.5).

fermion-boson model, it is given by [104]

C = m2g2
r Nb = −8πNb

re
. (23)

Although Tan’s relation is developed in the case of the zero-
range contact potential, how the finite effective range affects
C in the whole BCS-BEC crossover region is an interesting
problem left for future work.

Figure 7 shows the temperature dependence of ρ(ω) at
1/kFa = 0, where rekF = −0.034 [Fig. 7(a)], rekF = −3.40
[Fig. 7(b)], and rekF = −16.3 [Fig. 7(c)] [98]. The pseudogap
is gradually smeared due to thermal fluctuations with increas-
ing T and the dip structure disappears at high temperature.
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FIG. 8. Superfluid phase transition temperature Tc (solid line) and
pseudogap temperature Tpg (dashed line) as a function of the effective
range re at 1/kFa = 0. The dotted line shows the linear fitting of Tpg

in the small negative effective range region (|rekF| <∼ 0.05). The inset
shows Tc and Tpg versus the dimensionless Feshbach coupling g̃r .

In the high-temperature region (T >∼ 0.5TF), ρ(ω) qualita-
tively corresponds to the density of states in a noninteracting
Fermi gas given by ρ0(ω) = m

2π2

√
2m(ω + μ). In the narrow-

resonance region [rekF = −16.3 as shown in Fig. 7(c)], the
pseudogap structure disappears at lower temperature than in
the case of the broad Feshbach resonance since the pseudogap
size is also smaller at T = Tc. In this paper we introduce
the pseudogap temperature Tpg [66], which is a characteristic
temperature where the dip structure in ρ(ω � 0) disappears,
shown as the dotted lines in Fig. 7. Although the definition
of this characteristic temperature has some ambiguity because
the pseudogap is a crossover phenomenon without any distinct
changes of properties like a phase transition, one can expect
that the system properties are dominated by strong pairing
fluctuations which cannot be explained by the mean-field
theory or the Fermi-liquid theory below Tpg. Actually, a similar
characteristic temperature can be observed via the temperature
dependence of thermodynamic quantities such as specific heat
[55] and spin susceptibility [61].

Figure 8 shows the negative-effective-range dependence
of Tc and Tpg at 1/kFa = 0. In the broad-resonance region
(rekF >∼ −1), Tpg is slightly enhanced with decreasing re,
reflecting the increase of 
pg. In the narrow resonance regime
(rekF <∼ −1), Tpg gradually decreases with decreasing re

and as shown in the inset of Fig. 8, Tpg coincides with Tc

around g̃r � 0.08, where the corresponding effective range is
given by rekF � −5.3 × 102. Beyond this value, the system
properties can be described by the mean-field theory even
near Tc.

Using the results shown in Fig. 8, we demonstrate appli-
cations to dilute neutron matter which has a positive effective
range in the neutron-neutron scattering. At 1/kFa = 0, it is
known that the ground-state energy E(rekF) with a small
effective range can be expressed as [48,105]

E(rekF)

EFG
= ξB + ζ rekF + O

(
r2

e k2
F

)
, (24)
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where EFG = 3
5NεF is the ground-state energy of an ideal

Fermi gas. In Eq. (24), ξB and ζ are the Bertsch parameter [106]
and the linear coefficient with respect to rekF, respectively.
In addition, ξB and ζ were determined by QMC simulations
[23,48,105]. Moreover, ξB has been precisely measured in
other experiments [28,36,107]. Analogously, we expand Tpg

with respect to rekF and determine the linear coefficient from
the fitting of Tpg in the small-negative-effective-range region
(|rekF| <∼ 0.05). As a result, we obtain

Tpg(rekF)

TF
= 0.320 − 0.052rekF + O

(
r2

e k2
F

)
. (25)

In the small-effective-range region, one can expect that Eq. (25)
is valid even for the positive effective range. In this sense,
from Eq. (25) one can find that pairing fluctuations seem to be
suppressed by the positive effective range since Tpg decreases
with increasing re (>0). This estimation is expected to be
reasonable since the positive effective range suppresses the
magnitude of the scattering phase shift which characterizes
the interaction strength. It can be important information for
astrophysical simulations or studies of the cooling process
of a neutron star [43]. We emphasize that this characteristic
temperature originating from strong pairing fluctuations can
be determined in cold-atom experiments through the measure-
ment of thermodynamic quantities such as spin susceptibility,
which is now experimentally accessible [108–110].

We note that the same analysis can be applied to Tc, but it is
necessary to consider the effects of particle-hole fluctuations
[93–95] to obtain the correct effective-range dependence of
Tc. Indeed, the non-self-consistent T -matrix approximation
overestimates Tc � 0.24TF in the unitarity limit (1/kFa = 0,
re = 0) compared to the experimental value 0.167(13)TF [36].
Although the particle-hole fluctuations may affect Tpg, we
expect that our result for Tpg is qualitatively unchanged since
the non-self-consistent T -matrix approximation can success-
fully explain the effects of pairing fluctuations on the recent
experimental results of photoemission spectra in the pseudogap
regime [80,81].

IV. SUMMARY

We have investigated theoretically the effects of pairing
fluctuations in a strongly interacting Fermi gas with neg-
ative effective range. Within the framework of the non-
self-consistent T -matrix approximation with the coupled
fermion-boson model for the narrow Feshbach resonance,
we have discussed the negative-effective-range corrections
on the single-particle density of states at the superfluid
phase transition temperature Tc in the BCS-BEC crossover
regime.

On the weak-coupling side 1/kFa <∼ 0 where the critical
chemical potential is positive (μc > 0), the negative-effective-
range corrections induce strong pairing effects and the pseu-
dogap size at Tc is enhanced in the broad-resonance regime
(|rekF| <∼ 1). On the other hand, on the strong-coupling side
1/kFa >∼ 0 where μc < 0, the effective interaction strength
is weakened due to the presence of the negative effective
range and the pseudogap size monotonically decreases with
decreasing re. Approaching the narrow-resonance limit (re →
−∞ and gr → 0), the system’s properties are exactly described

by the mean-field theory and the pseudogap disappears at each
scattering length.

At 1/kFa = 0, we have shown the negative-effective-
range dependence of the pseudogap temperature Tpg,
which is one of the characteristic temperatures where
strong pairing fluctuations affect physical quantities. While
in the broad-resonance region (|rekF| <∼ 1) Tpg in-
creases with decreasing re, the pseudogap region (Tc <

T < Tpg) disappears in the deep-narrow-resonance regime
(rekF <∼ − 5.3 × 102).

From the negative-effective-range dependence of Tpg in the
broad-resonance region, we have obtained Tpg/TF = 0.320 −
0.052rekF + O(r2

e k2
F). This equation is expected to be valid

even in the small-positive-effective-range region, indicating
that pairing fluctuations are suppressed by the small positive
effective range. Since the effects of strong pairing fluctuations
near Tc in interacting fermions are quite nontrivial and crucial
for an ultracold Fermi gas as well as neutron star physics,
our strategy suggests that the experimental realization of a
strongly interacting Fermi gas with negative effective range
can contribute toward the further understanding of such inter-
disciplinary topics.

The negative-effective-range dependence of other physical
observables remains as an interesting topic for future work.
The diagrammatic approach presented in this paper can be
extended to study thermodynamic quantities such as spin
susceptibility. It would also be interesting to study how the
negative-effective-range region connects to the positive side
in the BCS-BEC crossover regime, as well as the extension to
the superfluid phase.
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APPENDIX: THE δ DEPENDENCE OF THE ANALYTIC
CONTINUATION IN EQ. (12)

To obtain the single-particle spectrum A( p,ω) from the
thermal Green’s function G( p,iωn), we use the Padé approxi-
mation [91] to perform the analytic continuation (iωn → ω +
iδ). Although δ should be an infinitesimally small number, we
have to employ a small finite value for the numerical analytic
continuation. Figure 9 shows δ dependence of the single-

particle density of states ρ(ω) at T = Tc (where 1/kFa =
−0.5 and rekF = −0.034). Although the pseudogap structure
near ω = 0 is more sensitive to the value of δ than the
region away from ω = 0, one can see that ρ(ω) is almost
unchanged in the entire energy region when δ <∼ 10−2εF.
We have numerically confirmed this fact in other parameter
regions. In this regard, we employ δ = 10−2εF throughout this
paper.
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