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Infinite lattices of vortex molecules in Rabi-coupled condensates
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Vortex molecules can form in a two-component superfluid when a Rabi field drives transitions between the
two components. We study the ground state of an infinite system of vortex molecules in two dimensions, using
a numerical scheme which makes no use of the lowest Landau level approximation. We find the ground state
lattice geometry for different values of intercomponent interactions and strength of the Rabi field. In the limit of
large field when molecules are tightly bound, we develop a complementary analytical description. The energy
governing the alignment of molecules on a triangular lattice is found to correspond to that of an infinite system of
two-dimensional quadrupoles, which may be written in terms of an elliptic function Q(zij ; ω1,ω2). This allows
for a numerical evaluation of the energy which enables us to find the ground state configuration of the molecules.
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I. INTRODUCTION

Quantized vortices have long been understood to be a
characteristic of superfluid flow. Building on Onsager’s 1948
announcement of circulation quantization in superfluids [1],
and London’s work on flux quantization in superconductors
[2], the idea that vortex lines form a two-dimensional (2D)
lattice seems to date from Feynman’s 1955 work [3]. Two years
later, Abrikosov gave a quantitative theory of the vortex lattice
in Type II superconductors [4,5]. Experimental confirmation
of these predictions arrived shortly afterwards [6,7].

In superfluids and superconductors, vortices form simple,
usually triangular lattices. Tkachenko [8] proved that for an
infinite system of point vortices the triangular lattice has the
lowest energy, and a numerical search of up to 11 vortices per
unit cell within the same model found no other stable configu-
rations [9]. Kleiner et al. [10] showed that in the opposite limit
of very large vortices (relative to separation), the infinite lattice
orders in a triangular geometry (they show that this state has a
lower energy than the square lattice that Abrikosov had erro-
neously suggested as a ground state [4]). Brandt later showed
that the stability of the triangular lattice persists through the
entire range of vortex sizes [11]. Are more complicated crystal
structures possible? Superfluids with multicomponent order
parameters, where vortices may form in different components,
provide one avenue. Historically, the first such superfluid was
3He [12], while atomic Bose condensates with internal spin
states are a second, more recent example [13].

As in the solid state, one route to more complicated struc-
tures is to decorate a crystal structure with “molecules” made
of two or more vortices. This is the situation that will concern
us. In 2002 Son and Stephanov [14] predicted the existence of a
vortex molecule in a Rabi-coupled two-component condensate.
Subsequent works have focused on the dynamics of a single
molecule [15–17], as well as ground state properties [18,19].
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Lattices of vortex molecules in a harmonic trap were studied
in Refs. [20,21].

To the best of our knowledge, vortex molecules have not
been experimentally observed. There is a different object,
sometimes also called a vortex molecule [22], which has
recently been observed in the polar phase of superfluid 3He
[23]. The observed object is made of two half-quantum vortices
(π winding of the phase), whereas the vortex molecule we are
concerned with is made of two integer vortices (2π winding of
the phase). They share the feature that the vortices are linked by
a domain wall which leads to confinement of the pair, although
the repulsion that balances the tension in the domain wall has
a different origin, as we explain in Sec. I B.

Infinite vortex lattices have previously been studied both
within the Lowest Landau Level (LLL) approximation and
beyond [24,25], both for single-component [4,10,26] as well
as for multicomponent condensates [27–30]. For further work
on vortex lattices, see the reviews [25,31].

This paper concerns the structure of infinite arrays of vortex
molecules in two dimensions. To orient our discussion, the
remainder of the introduction introduces the theoretical model
and describes the physics of a single vortex molecule, before
we move on to the case of a lattice.

A. Hamiltonian

We consider an infinitely extended, rotating two-component
spinor Bose-Einstein Condensate (BEC) in two dimensions.
In equilibrium, the thermodynamic quantity to minimize is the
free energy (or energy at T = 0) in the rotating frame. In the
presence of an ac field that gives rise to Rabi oscillations, the
relevant low-energy Hamiltonian is H = H0 + Hint + HRabi,
where

H0 =
∑

σ

∫
dr �†

σ (r)

[
p2

2
+ ω2r2

2
− � · L

]
�σ (r)

=
∑

σ

∫
dr �†

σ (r)

[
(p − A)2

2
+ ω2

effr
2

2

]
�σ (r), (1a)
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FIG. 1. Schematic view of a pair of free vortices, one in each
component, in the absence of an external field. There is no energy cost
for having phases misaligned, and the winding is smooth to minimize
the kinetic energy.

Hint =
∑
σ1σ2

gσ1σ2

2

∫
dr �†

σ1
(r)�†

σ2
(r)�σ2 (r)�σ1 (r), (1b)

HRabi = −�R

∫
dr[�†

a(r)�b(r) + �
†
b(r)�a(r)] (1c)

(h̄ = m = 1). Here the operators �†
σ (r) create bosons at

position r with spin σ , A ≡ � × r, ωeff ≡ √
ω2 − �2, ω is

the harmonic trap frequency, � ≡ �ẑ is the angular velocity
of the trap, and L is the angular momentum operator. The
dimensionless couplings gσ1σ2 > 0 are the strength of the
hyperfine state dependent interatomic contact interactions and
�R is the Rabi frequency. The external electromagnetic field
is introduced in the dipole approximation through HRabi [32].

B. Single-vortex molecules

In their seminal work, Son and Stephanov predicted that in
a Rabi-coupled three-dimensional two-component BEC, there
should exist a domain wall of the relative phase of the two
components—a domain wall inside which the relative phase
changes by 2π [14]. This would be bound by a closed vortex
line. Furthermore, they argued that the external field would
work as a confinement mechanism for vortices of different
components.

In this section we give qualitative arguments to explain
why in two dimensions a pair of such vortices are confined
in a vortex molecule. In the mean field treatment discussed in
Sec. II, Hint and HRabi give rise to contributions

Eint = g

2

∫
dr[ρa(r) + ρb(r)]2 and (2)

ERabi = −2�R

∫
dr

√
ρa(r)ρb(r) cos[θa(r) − θb(r)]. (3)

Here we have set g ≡ gaa = gbb = gab for simplicity and have
introduced the amplitude-phase (Madelung) representation
ψa(r) = √

ρa(r)eiθ(r).
For g > 0, Eint favors configurations where densities of

different components don’t overlap. ERabi favors alignment of
the phases of the two components. Now let’s think of a pair of
vortices, one in each component. In the absence of the external
field, there is no energy cost for having the phases misaligned
(see Fig. 1).

The term ERabi is minimized by full alignment of the phases.
This is achieved if the two vortices overlap completely. On
the other hand, overlapping vortices have an increased Eint

relative to nonoverlapping vortices. Thus there is a competition
between ERabi and Eint, which have typical magnitudes per
particle of �R and gn, where n is the bulk density of the two
components (assumed equal).

Between the limits �R � gn and �R � gn the optimal
arrangement will be a configuration where vortices are neither
overlapping nor too far separated.

Hence in the presence of vortices, which is ensured by the
rotation of the trap (above some critical angular velocity �c),
the external field �R works as an intercomponent confinment
mechanism for vortices, giving rise to vortex molecules. The
size of the molecule [expressed in terms of the healing length
ξ = (4gn)−1/2] is a function of the ratio gn/�R, but there
appears to be no simple argument for this relationship. In
3He-A the situation is different: the equilibrium separation
of a molecule arises from a balance between tension in the
domain wall and the logarithmic repulsion of the vortices [22].
In our setting the vortices are in different components, and the
repulsion arises from Eint. Thus there is not a simple “phase
only” description of the molecule.

C. Outline

The outline of the remainder of the paper is as follows.
In Sec. II we introduce the method we use to find the ground
state and show the results we obtain. In Sec. III we introduce an
effective theory in terms electric point charges for the system of
vortex molecules, and we show the ground state configuration.
Section IV contains the conclusions. Some of the details of the
calculations are described in Appendices A–D.

II. GROSS-PITAEVSKII THEORY

We want to study the ground state properties of the above-
mentioned spinor BEC. Gross-Pitaevskii theory describes the
properties of the condensate at T = 0. The approach used
in this theory is variational, i.e., we have an interacting
Hamiltonian whose exact ground state we don’t know, and
we use our experimental knowledge about the existence
of a condensate at T = 0 to guess the ground state wave
function.

In a two-level system with off-diagonal coupling, the
eigenstates are superpositions of the eigenstates of the Hamil-
tonian in the absence of coupling [19,33,34]. The off-diagonal
coupling mediated by the external electromagnetic field (1c)
motivates an ansatz where there is an N particle condensate
in a state which is a superposition of two hyperfine states
{|φa〉,|φb〉}:

|�〉 = 1

(N !)1/2

[∑
σ

∫
dr φ∗

σ (r)�†
σ (r)

]N

|0〉. (4)

We then calculate the expectation value of the Hamiltonian
in this ansatz state. Defining the condensate wave function
ψσ (r) = √

Nφσ (r) and using that N (N − 1) ∼ N2, the final
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expression to be minimized is

E(ψa,ψb) =
∑

σ

∫
dr ψ∗

σ (r)

[
(p − A)2

2
+ ω2

effr
2

2

]
ψσ (r)

+
∑
σ1σ2

gσ1σ2

2

∫
dr |ψσ1 (r)|2|ψσ2 (r)|2

− �R

∫
dr[ψ∗

a (r)ψb(r) + ψ∗
b (r)ψa(r)]. (5)

A. Infinite lattices

In order to study the infinite lattice, we choose ωeff = 0.
It is the value of the effective trapping potential ωeff that
governs the “envelope” modulation of the condensate density.
In the absence of an effective trapping potential, the only
modulation is the one due to the presence of a vector potential
A. Hence, ωeff = 0 corresponds to having a spatially extended
condensate, where there are no boundary effects and an ideal
vortex lattice is expected to be found in the ground state [26].
We stress that periodicity—which we assume from now on—is
not a priori obvious.

It is important to comment on the difference between the
unit cell of the lattice and what we call the computational
unit cell. The computational unit cell is the system in which
we do the calculations: for numerical simplicity we choose
a rectangular system. Note that this does not imply that the
unit cell (the smallest portion of the system that repeats in the
infinite periodic system) should be rectangular. The easiest
example that illustrates this subtlety well is the triangular
lattice. The unit cell is a rhombus and contains one vortex.
On the other hand, if one is restricted to have a rectangular
computational unit cell, this would be a rectangle with aspect
ratio R = 1/

√
3 (or

√
3) containing two vortices. Both unit

cells reproduce the same infinite lattice.
What conditions should be imposed at the boundary of

the computational unit cell? It is most natural to require
gauge-invariant quantities to be periodic under some set of
translations. In order to fully determine the boundary condition
fulfilling the aforementioned condition, it is necessary and
sufficient to require periodicity of densities, velocities, and
pseudospin: ρσ ,vσ , and S (Appendix A). This leads to the
boundary conditions [27,35]

ψσ (x + Lx,y) = ei�Lxyψσ (x,y),

ψσ (x,y + Ly) = e−i�Lyxψσ (x,y), σ = a,b. (6)

Here Lx and Ly are the dimensions of our rectangular com-
putational unit cell. In order to have a consistent theory, the
angular velocity of the trap can only take a discrete set of
values (Appendix B):

� = πnv, (7)

where nv = Nv/LxLy is the vortex density in the computa-
tional unit cell.

Recently Mingarelli et al. [36] have studied infinite vortex
lattices in a two-component superfluid. The boundary condi-
tions used in this work allow for nonperiodic spin solutions
(Appendix A).

B. Numerical calculations

To find the computational unit cell and the associated
ground state wave function, we numerically minimize the dis-
crete version of Eq. (5) [see Eq. (C6)] subject to the constraint
of fixed particle number for each component, with ωeff = 0
and using the boundary conditions (6). The method used is
the nonlinear conjugate-gradient algorithm as implemented in
SciPy [37]. As pointed out by Mingarelli et al., in order to allow
the vortex lattice configuration to access any lattice geometry
in the minimization process, the energy (5) has to be minimized
with respect to not only the wave functions but also the aspect
ratio R = Lx/Ly [26,27].

To find the computational unit cell in the ground state, we
use the following procedure:

(1) Minimize the energy for a given A = LxLy and Nv , to
find Emin, Rmin and {ψσ,min}.

(2) Repeat the minimization with area 2A and 2Nv vortices.
(3) If the energy has doubled and Rmin has doubled (and

halved; note that in general there are several Rmin correspond-
ing to one same configuration, at least Rmin and 1/Rmin), we
can infer that the unit cell contains Nv vortices and its aspect
ratio is Rmin. If either Emin was not doubled or Rmin was
not doubled and halved, we keep increasing the area and the
number of vortices until the doubling-halving criterion has
been fulfilled.

(4) We repeat the same protocol for several starting Nv . We
pick the solution with smallest energy density that fulfills the
doubling-halving criterion.
Step 3 follows from the fact that by stacking unit cells together,
one should be able to reproduce the infinite lattice. Since
R = Lx/Ly , Rmin should be doubled if we stack two unit
cells horizontally, and halved if we stack them vertically. The
judgment of the fulfillment of the doubling-halving criterion
takes into account the integration error (C4). This protocol does
not ensure one to find the true ground state. Note that even if we
find a choice of Nv that fulfills the doubling-halving criterion,
the possibility always exists that there could be a larger Nv

with a lower energy density.
Note that when �R = 0 and gaa = gbb = gab, the energy

(5) is invariant under unitary transformation:(
ψa

ψb

)
→ U

(
ψa

ψb

)
, U unitary. (8)

As a consequence there is a continuous manifold—in fact a
sphere—of ground states related by unitary transformation.

When �R 
= 0 and gaa = gbb = gab, the symmetry of the
energy (5) is lowered, but it still is invariant under rotations
of the spinor in the yz plane [note that ERabi is the integral of
Sx (3)]: (

ψa

ψb

)
→ ei(θ/2)σx

(
ψa

ψb

)
. (9)

While the densities in each component ρσ are not invariant,
the total density is. In terms of ρa,b(r), therefore, one can find
several vortex lattice geometries in the ground state.

For �R � gabn we recover the behavior of a scalar
condensate in the state ψa(r) = ψb(r): the two vortices
of each molecule (see Fig. 2) overlap. Thus, we recover
the triangular lattice geometry, independent of the value of
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FIG. 2. Vortex pair in the presence of the external field. Because
of the energy cost for misaligning phases Eq. (3), the misalignment
region (in orange) is confined in a region. Out of this region the phases
are aligned.

α ≡ gab/
√

gaagbb. We now turn to the finite �R behavior.
From now on we choose the values gaa = gbb ≡ g = 0.125
and μa = μb ≡ μ = 12.5nv , and explore three different values
of α. From the Euler-Lagrange equations one can deduce that
in this case the bulk densities are n = μ+�R

g+gab
and the healing

lengths ξ = 1√
2(μ+�R)

. The choice of ξ ensures that we are
away from both the LLL and point-vortex limits.

1. α = 1

We begin with the case of zero Rabi field: �R = 0
[Fig. 3(a)]. For this case we find that the computational unit cell
contains four vortices in each of the components (the unit cell
has two), and the vortex lattice is composed of two intertwined
rectangular sublattices. Note that as explained above in Eq. (8),
this is only one lattice of an infinite degenerate set. The two
sublattices give rise to an overall (neglecting the two different
flavors) triangular lattice R = 1/

√
3. Our finding agrees with

Ref. [29], even though we are away from the LLL limit. It
would be interesting to study this problem in the opposite limit

FIG. 3. Schematic view of the computational unit cell. From left
to right, we show the computational unit cell for �R/nv = 0 and
α = 1, 0.5, 0.2, respectively. The aspect ratios are R = 1/

√
3,

0.5, 1/
√

3. The ground state aspect ratios are the given ones, only
within integration error, i.e., there is a set of R within integration
error that fulfill the doubling-halving criterion. Our finding agrees
qualitatively with what was found in Ref. [29].

FIG. 4. The color code shows the relative phase ϕ = θb − θa .
From left to right, we show the computational unit cell for �R/nv =
0.5, 0.25, 0.1 and α = 1, 0.5, 0.2, respectively. The aspect ratios are
R = 0.5, 0.64, 0.79. The ground state aspect ratios are the given ones,
only within integration error, i.e., there is a set of R within integration
error that fulfill the doubling-halving criterion. Our finding agrees
qualitatively with what was found in Ref. [20] (except α = 0.2), in
the center of the trap. Note that for α = 1 repeated computations yield
different axes along which molecules are antialigned.

of very small healing length [38] to see whether the triangular
lattice is the ground state in this case too.

Here it is interesting to note that although the computa-
tional unit cell of the density contains two vortices of each
component, the pseudospin has a period that is twice as large,
which is why the overall computational unit cell has four
vortices.

We then include �R, which gives rise to molecules. In
Fig. 4(a) we see that neighboring molecules tend to antialign.
On the other hand, we find a continuous degeneracy with
respect to the alignment direction, i.e., there is no preferred
direction.

2. α = 0.5

For �R = 0 we find a square chess board configuration of
vortices with four vortices per component [Fig. 3(b)]. This
result agrees qualitatively with Ref. [29].

For�R 
= 0, the square chess board gets distorted giving rise
to a rectangular chess board [Fig. 4(b)]. Again molecules like
to align or antialign. In this case, there is a preferred direction
of alignment parallel to one of the Cartesian axes.

3. α = 0.2

For �R = 0 we find two intertwined triangular lattices with
six vortices per component in the computational unit cell
[Fig. 3(c)]. This also agrees with Ref. [29].

When we include �R, the result is qualitatively similar to
the result obtained for α = 0.5. The geometry of the lattice
differs from the one obtained in Ref, [20] in the center of the
trap. This may be due to either differences in the parameters
used, because the computational unit cell is very large (we tried
up to 16 vortices per component) or because for the size of the
trap (relative to the healing length) used in Ref. [20] is not large
enough to obtain the structure of the ideal infinite system in
the bulk of the trap.
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C. Orientation of the molecules

The numerical calculations show that for α = 1 there is
no preferred direction of alignment of the molecules, whereas
for α < 1 there is. To understand this it is helpful to consider
the configuration of the pseudospin density S = �†σ�/2. An
isolated molecule has pseudospin pointing in the −x direction
at its center, and in the +x direction far outside. Moving
out from the center, the points where the spin points in the
±z direction give the location of the vortices in the two
components.

Expressing the interaction and Rabi energies in terms of the
pseudospin density gives

Eint = g

4

∫
dr

[
4S2

z (r)(1 − α) + ρ2(r)(1 + α)
]

and (10)

ERabi = −2�R

∫
dr Sx(r), (11)

where ρ = ρa + ρb. For α = 1 the interaction energy is in-
dependent of the spin direction, so configurations that differ
by global rotations of the spin around the x axis have the
same energy. Such a global rotation causes the two vortices
forming the molecule to rotate about their center, explaining
the numerical observation that the orientation is undetermined.

Further, an isolated molecule will have a spin that winds
at a constant angular rate around the x axis as we encircle
the molecule at fixed radius. It is more natural to regard the
molecule as a Skyrmion. Any modulation of the total density
is circularly symmetric. For α 
= 1 the spin configuration does
not wind at a constant rate in the y-z plane, and the total density
is anisotropic (see Fig. 5).

III. SMALL MOLECULE LIMIT

The numerical calculations of the previous section show
that neighboring molecules are antialigned. In order to gain
some insight, we develop an effective theory for the system, in
the limit of very small molecules. We assume that the behavior
of the lattice of molecules can be explained in terms of the
kinetic energy in Eq. (5) only. Within this picture, gab and �R

take care of the shape and size of the molecule, but not its
orientation. � = πNv/A ensures the presence of Nv vortices
in each component.

A. Kinetic energy of a molecule lattice

For a system of vortices in two dimensions with sepa-
rations � ξ , the most important contribution to the kinetic
energy comes from the regions away from the vortex cores
where ∇√

ρa,b = 0 and ρa = ρb = n (Sz = 0). Using the
parametrization � = √

ρe−iχ/2(cos θ
2 e−iϕ/2, sin θ

2 eiϕ/2)T ,

Ekin = n

4

∫
dr{[∇χ (r)]2 + [∇ϕ(r)]2}, (12)

where ϕ = θb − θa and χ = −(θa + θb). Note that due to the
Rabi field (3), ϕ = 0 away from the molecules, and therefore
the only contribution to the kinetic energy away from the
molecule cores comes from the overall phase:

Ekin = n

4

∫
dr [∇χ (r)]2. (13)

FIG. 5. From left to right, we show the total density ρ and Sz, for
�R/nv = 0.5, 0.25, 0.1 and α = 1, 0.5, 0.2, respectively. The aspect
ratios are R = 0.5, 0.64, 0.79. For α = 1, Sz winds at constant rate
around the center of each molecule, whereas for α < 1 the winding
is concentrated around the vortex cores. Consequently, for α = 1, the
density profile around the molecules is circular (at distances close
enough from the center). On the other hand, for α < 1 it is elongated.

Far from a molecule, χ obeys Laplaces’s equation ∇2χ = 0,
and winds by 4π as we encircle the molecule, which contains
two vortices. Around an isolated molecule with no angular
modulation of the density (as occurs at α = 1; see Fig. 5)
χ = 2ϑ , where ϑ is the angular coordinate centered on the
molecule. In this case, Ekin describes a set of point charges
interacting via a 2D Coulomb interaction (see, e.g., Ref. [39]).
In the small molecule limit, when �R/gabn becomes large,
the kinetic energy dominates the intermolecular energy. If we
consider only this contribution, then

(1) The molecules form a triangular lattice [8], as con-
firmed by our numerical calculations.

(2) The orientation of each molecule is separately
undetermined. This corresponds to a lattice of small
Skyrmions, each of which may be arbitrarily rotated about the
x axis. The freedom will obviously be removed by neglected
terms.

For α < 1 the density modulation around an isolated
molecule is angle dependent. Then the angular field χ of an
isolated molecule will have corrections to the point charge
configuration that may be described by a multipole expansion,
beginning with a quadrupolar field.

The interaction of quadrupoles on a triangular lattice gives
rise to a long-ranged aligning interaction between molecules
that is absent for α = 1. Recall that the size of the molecule
is determined by gab and �R and is taken as an input to this
picture.
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FIG. 6. We show the two inequivalent configurations with the
ground state unit cell we find.

We further assume that in the ground state the net
quadrupole moment of the infinite lattice is zero

∑
i �

2
i = 0.

As shown in Appendix D, with this restriction the energy per
unit cell of a periodic lattice with Nmol molecules in the unit
cell is given by

Vinf/Nuc = 1

8
Re

⎡
⎣∑

i<j

�2
i �

2
jQ(zij ; ω1,ω2)

⎤
⎦, (14)

where

Q(zij ; ω1,ω2) = 3
∑
n,m

1

(zij + nω1 + mω2)4

− 4
∑
n,m

n2 + m2 > 0

1

(nω1 + mω2)4

−
∑
k( 
=a)

∑
n,m

1

(zak + nω1 + mω2)4
. (15)

The index a corresponds to any molecule in the unit cell.
Q(zij ; ω1,ω2) is an elliptic function with periods ω1 and ω2.
We can numerically calculate it truncating the sums. Here ω1

and ω2 shown in Fig. 6 are the vectors connecting adjacent unit
cells, in complex notation [40].

B. Numerical calculations

Now that we have an expression for the energy density of the
infinite lattice (14), we can find the lowest energy configuration
in a triangular lattice with the constraint of having zero net
quadrupole moment. We perform a constrained minimization
using the SLSQP method implemented in SciPy. We fix the
molecules �i to be of unit length, so the variables are the
orientations of the molecules.

Again, we assume that the infinite system is periodic, and
therefore we want to find the unit cell. The procedure in this
case is

(1) Minimize the energy Eq. (14) with Nmol unit length
molecules in the unit cell.

(2) Repeat the minimization, doubling the number of
molecules.

(3) If the energy has doubled, we can infer that the unit cell
contains Nmol molecules.
Again, this protocol cannot guarantee that there does not exist
a larger unit cell with a lower energy density.

We find that the unit cell contains two molecules. Choosing
these two molecules to sit on the x axis and ω2 = |ω2|eiπ/3,
Q(z12) = |Q(z12)|e−iπ/3. Then Vinf/Nuc = |Q(z12)|

8 cos(2θ1 +
2θ2 − π/3). Requiring ei2θ1 + ei2θ2 = 0, the ground state is
(θ1,θ2) = ( π

2 n + π
12 ) ± (0, π

2 ). There are two inequivalent in-
finite systems whose unit cell this is (Fig. 6).

IV. CONCLUSIONS

We have calculated the ground state configuration of the
infinite system of vortex molecules and found qualitative
agreement with previous results in the bulk of harmonic traps.
More interestingly, we have come up with an effective theory
in terms of point charges and derive an expression for the
interaction energy density in terms of an elliptic function
Q(zij ; w1,w2), in the limit of point vortices and very small
molecules when the net quadrupole moment is zero. We used
this expression to find the ground state configuration of an
infinite system of molecules.
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APPENDIX A: DERIVATION OF BOUNDARY CONDITIONS

Let us parametrize the wave functions as ψ = √
ρeiθ . We

define the lattice vectors Rx = Lxx̂ and Ry = Lyŷ. Lx and Ly

are the dimensions of the computational unit cell.
We first require the density ρσ in each component to be

periodic. This gives us a condition on the amplitudes of the
wave functions:√

ρσ (r + Ri) =
√

ρσ (r), σ = a,b, i = x,y. (A1)

We next require the superfluid velocity vσ = ∇θσ − A on
each of the components to be periodic. Note that vσ is the
σ component superfluid velocity only when �R = 0. On the
other hand, it is still a gauge-invariant quantity when �R 
= 0,
and hence its periodicity should be required:

vσ (r + Ri) = vσ (r), σ = a,b, i = x,y. (A2)

This does still not give an explicit condition on the phase (it is
a set of equations involving gradients of phases). In order to
find it, we need to integrate the above equations. By doing so,
we arrive to four equations:

θa(r + Rx) = θa(r) + �Lxy + αx, (A3)

θa(r + Ry) = θa(r) − �Lyx + αy, (A4)
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θb(r + Rx) = θb(r) + �Lxy + βx, (A5)

θb(r + Ry) = θb(r) − �Lyx + βy. (A6)

Hence we are left with four integration constants.
Finally, we require periodicity of spin. Let’s define

the pseudospin density S = �†σ�/2, where σ = (σx,σy,σz)
are the Pauli spin matrices. We first require periodicity
of Sx(r):

Sx(r + Ri) = Sx(r), i = x,y. (A7)

These yields the conditions

βx = αx + 2πn, (A8)

βy = αy + 2πn, n integer. (A9)

This condition also ensures the periodicity of Sy(r) as well.
The periodicity of Sz(r) is ensured by the periodicity of the
densities. Thus we are left with two integration constants
αx,αy . The only effect of varying these two constants is to shift
the wave functions in the unit cell. These degrees of freedom
are expected, since one reproduces the same infinite lattice
upon copying unit cells, no matter where vortices sit in the
computational unit cell. We choose αx = αy = 0. Note that we
have still not said anything about the periodicity of true spin.
The key point is that, because {σ0,σx,σy,σz} form a basis in
the space of 2 × 2 matrices, periodicity of S(r) automatically
ensures periodicity of spin. Hence, in order to fully fix the
boundary condition for the wave functions, it is necessary and
sufficient to require periodicity of ρσ ,vσ and S. The boundary
condition is

ψσ (r + Rx) = ei�Lxyψσ (r),

ψσ (r + Ry) = e−i�Lyxψσ (r), σ = a,b. (A10)

APPENDIX B: �: ALLOWED VALUES AND RELATION
TO THE NUMBER OF VORTICES

Let’s prove that in order to avoid having a contradicting
theory, the angular velocity can only take a discrete set of
values. Using Eq. (A10):

ψ(x + Lx,y + Ly) = e−i�Ly (x+Lx )ψ(x + Lx,y)

= e−i�Ly (x+Lx )ei�Lxyψ(x,y),

ψ(x + Lx,y + Ly) = e−i�Lx (y+Ly )ψ(x,y + Ly)

= ei�Lx (y+Ly )e−i�Lyxψ(x,y), (B1)

ψ(x + Lx,y + Ly) = ψ(x + Lx,y + Ly) ⇔ � = πn

A
,

(B2)

where n is an integer and A = LxLy .
In his seminal work, Feynman explains that the lowest

energy state for an irrotational fluid with a given angular
momentum is a vortex lattice, with a 2π winding of the phase
around each vortex [3]. Because the superfluid velocity is

v = ∇θ , the superfluid cannot rotate as a rigid body. On the
other hand, the vortex lattice (the set of vortex cores) can
rotate only as a rigid body in equilibrium [8]. Hence, on
average the region of the superfluid that is packed with vortices
rotates as a rigid body. This allows to estimate a relation
between the angular velocity of the trap � and the number
of vortices Nv , in the ground state. Let D be a region of area
A packed with Nv vortices and v = �rϕ̂ (rigid solid rotation).
Let ∂D be its boundary. If we calculate the circulation of the
velocity:

�∂D =
∮

∂D

v · dl = 2�A

�∂D = 2πNv

⎫⎪⎬
⎪⎭ ⇒ � = πNv

A
.

From this result, we infer the meaning of n in Eq. (B2): n = Nv .
Even though this estimate is based on heuristic arguments, it
is verified in the numerics, i.e., the number of vortices found
in the ground state is n.

APPENDIX C: NUMERICAL INTEGRATION

We have an integral in two dimensions over the area A:

E =
∫

A

drE(r). (C1)

To calculate the integral numerically, we use the
Riemann sum method. We have a 2D grid of points
(xn,ym), where xn = nax , n,m ∈ [0,N − 1], yn = nay . The
discretization lattice constant is ax = Lx/N and ay = Ly/N .
Using this method, we approximate the integral as the sum of
the volumes of the parallelepipeds:

Vnm = axayE(xn,ym) (C2)

and

E(estim.) = axay

∑
n,m

E(xn,ym). (C3)

In an analogous way to what is done in Ref. [41], we find that
to leading order, the discretization error is

�E = E(estim.) − E = −A

2
(ax〈∂xE〉 + ay〈∂yE〉), (C4)

where 〈∂xE〉 = 1
N2

∑
nm ∂xE(xn + ax/2,ym + ay/2).

Let’s now write the discrete version of Eq. (5), withωeff = 0.
It is all trivial to write except the kinetic energy term, so we
will focus on that first. We introduce the vector potential by
making the Peierls substitution:

ψ∗(x)(px − Ax)2ψ(x)

= 1

a2
[2|ψ(x)|2 − eiAxaψ∗(x + a)ψ(x)

− e−iAxaψ∗(x)ψ(x + a)] + O(a3). (C5)
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Now, by defining the discrete wave function ϕ(n,m) = ψ(x,y)/
√

axay :

Ed (R,{ϕσ (n,m)})

=
∑

σ

∑
n,m

[
1

2ax(R)2
|ϕσ (n + 1,m)e−iAxax (R) − ϕσ (n,m)|2 + 1

2ay(R)2
|ϕσ (n,m + 1)e−iAyay (R) − ϕσ (n,m)|2 − μσ |ϕσ (n,m)|2

]

+
∑
σ1,σ2

gσ1σ2

2

∑
n,m

1

ax(R)ay(R)
|ϕσ1 (n,m)|2|ϕσ2 (n,m)|2 − �R

∑
n,m

[ϕ∗
a (n,m)ϕb(n,m) + ϕ∗

b (n,m)ϕa(n,m)]. (C6)

Note that we have added two Lagrange multipliers {μa,μb}
to constrain the norm of the wave function (and therefore the
number of particles) in the minimization.

Here something important pointed out by Mingarelli et al. is
that in order to allow the vortex lattice configuration to access
any lattice geometry, one needs to minimize with respect to
the aspect ratio of the unit cell R = ax/ay . It is important to
parametrize the discretization lattice constants in such a way
that the area of the computational unit cell does not depend on
it. Such a parametrization is

ax(R) =
√

A

N2
R and ay(R) =

√
A

N2

1

R . (C7)

APPENDIX D: ENERGY OF THE INFINITE SYSTEM
OF POINT CHARGE MOLECULES

If Vij is the interacting energy of a pair of molecules, the
energy of the infinite lattice is

Vinf = 1

2

∑
i 
=j

Vij = 1

2

Nmol∑
i=1

∑
j ( 
=i)

Vij

= 1

2

Nuc∑
i=1

Nmol/uc∑
i ′=1

∑
j ( 
=k)

Vkj , (D1)

where k = (i − 1)Nuc + i ′, Nmol = ∞, Nmol/uc is the number
of molecules in the unit cell, and Nuc is the number of unit cells,
assuming there is some periodicity in the infinite system. Now,
assuming so, i.e., assuming Vij depends only on the vector rij

and not ri and rj separately and assuming the unit cell contains
Nmol molecules, we can write the energy per unit cell:

Vinf/Nuc = 1

2

Nmol/uc∑
i=1

∑
j ( 
=i)

Vij . (D2)

Here j runs over the infinite set of molecules.
Let’s now write the specific expression for the energy.

Because it is a 2D problem, it is convenient to use complex
numbers instead of vectors [40]. The 2D Coulomb potential en-
ergy of two charges sitting at z1 and z2 is −Re log(z1 − z2) [39].

Now consider a pair of molecules, with repelling charges at

za
1,2 = ζ1,2 + �1,2

2
, (D3)

zb
1,2 = ζ1,2 − �1,2

2
. (D4)

With the molecule lengths |�1| = |�2| � |ζ12|, where ζ12 =
ζ1 − ζ2. Ignoring the interaction within a molecule, the

interaction energy is proportional to the real part of

− log
[(

za
1 − zb

2

)(
zb

1 − za
2

)(
za

1 − za
2

)(
zb

1 − zb
2

)]
= −4 log ζ12 − log

[
1 −

(
�1 + �2

2ζ12

)2
]

− log

[
1 −

(
�1 − �2

2ζ12

)2
]

= −4 log ζ12 + �2
1 + �2

2

2ζ 2
12

+ �4
1 + �4

2 + 6�2
1�

2
2

(2ζ12)4

+O[(�1/ζ12)6]. (D5)

Let’s now calculate the energy per unit cell. The first term
in the expansion is addressed by putting the molecules in
a triangular lattice. Start by calculating the next to leading
order contribution. We will derive an expression for the case
of arbitrary number of molecules in the unit cell and for
an arbitrary periodic lattice geometry. In order to follow the
calculations we will illustrate one concrete case, shown in
Fig. 7.

We need to sum the interaction energy of each of the
molecules in only one unit cell, with all the other molecules

FIG. 7. A schematic square lattice of molecules with Nmol = 4.
Even though our numerical calculations are done for the triangular
lattice, we show a square lattice to emphasize that our result of the
general expression of Vinf/Nuc is valid for any lattice geometry.

043609-8



INFINITE LATTICES OF VORTEX MOLECULES IN … PHYSICAL REVIEW A 97, 043609 (2018)

in the infinite lattice. Start with the contribution coming from
pairs, where one of the molecules is outside of the unit cell. Let
ω1 and ω2 be the vectors connecting adjacent unit cells and {zij }
the vectors connecting molecules within a unit cell, in complex
notation [40]. We first do equal color (i.e., equal position in the
unit cell) pairs, and each of them contributes

∑
n,m

n2 + m2 > 0

(
�2

i + �2
i

)
2(nω1 + mω2)2

. (D6)

Here and from now on, n,m run over all the integers that fulfill
the condition n2 + m2 > 0 (if specified). The indices i, j, and
k run over molecules inside the unit cell. Therefore, the total
contribution is

Nmol∑
i=1

∑
n,m

n2 + m2 > 0

(
�2

i + �2
i

)
2(nω1 + mω2)2

. (D7)

The contribution from different color pairs is only slightly
trickier; −zij appears for some of the terms in the denominator,

but because of the square, the signs disappear. The contribution
of each of the members of the unit cell is

Nmol∑
j=1

∑
n,m

n2 + m2 > 0

(
�2

i + �2
j

)
2(zij + nω1 + mω2)2

. (D8)

Therefore the total contribution is

Nmol∑
i 
=j

∑
n,m

n2 + m2 > 0

(
�2

i + �2
j

)
2(zij + nω1 + mω2)2

. (D9)

The contribution from pairs inside the unit cell is just

Nmol∑
i 
=j

(
�2

i + �2
j

)
2z2

ij

. (D10)

Summing all contributions Eq. (D7), Eq. (D9) and Eq. (D10)
and including the factor 1/2 from Eq. (D2), we get the final
expression:

Vinf/Nuc = 1

2
Re

⎡
⎢⎢⎢⎣

Nmol∑
i

�2
i

∑
n,m

n2 + m2 > 0

1

(nω1 + mω2)2
+

∑
i<j

(
�2

i + �2
j

) ∑
n,m

1

(zij + nω1 + mω2)2

⎤
⎥⎥⎥⎦. (D11)

The first term is divergent unless we require the net quadrupole moment of the unit cell to vanish
∑

i �
2
i = 0. Using this condition

and due to the double periodicity in zij of the infinite sum in the second term, Vinf/Nuc = 0.
We next calculate the contribution of the third term in the multipole expansion (D5). Following the same steps as above we

arrive to

Vinf/Nuc = 1

24
Re

⎡
⎢⎢⎢⎣4

∑
i

�4
i

∑
n,m

n2 + m2 > 0

1

(nω1 + mω2)4
+

∑
i<j

(
�4

i + �4
j + 6�2

i �
2
j

) ∑
n,m

1

(zij + nω1 + mω2)4

⎤
⎥⎥⎥⎦. (D12)

Using
∑

i �
2
i = 0 (⇒ ∑

i �
4
i = −2

∑
i<j �2

i �
2
j ) and taking advantage of the double periodicity in zij of the last infinite sum,

we can rewrite the expression as

Vinf/Nuc = 1

8
Re

⎡
⎣∑

i<j

�2
i �

2
jQ(zij ; ω1,ω2)

⎤
⎦, (D13)

where

Q(zij ; ω1,ω2) = 3
∑
n,m

1

(zij + nω1 + mω2)4
− 4

∑
n,m

n2 + m2 > 0

1

(nω1 + mω2)4
−

∑
k( 
=a)

∑
n,m

1

(zak + nω1 + mω2)4
. (D14)

Here a is any molecule in the unit cell. Q(zij ; ω1,ω2) is an elliptic function with periods ω1 and ω2. We can numerically calculate
it truncating the sums.
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