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Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy
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The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied.
It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between
dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination
of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does
require coherence terms. This technique is exciting in view of the need to understand and control the detrimental
experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum
regime.
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In optical and matter-wave interferometry a loss of contrast
is a limit on the detection capability of such devices. Loss of
contrast can be attributed to physical processes divided into
two broad classes. Dephasing processes are time reversible,
whereas decoherence processes are time irreversible. Time
reversibility can be established by evaluating the change in
entropy, S = −Trρ ln ρ, where ρ is the density matrix describ-
ing the physical system. When S remains constant in time, the
process is time reversible; when it increases in time, the process
is time irreversible [1]. The value of the entropy depends on the
off-diagonal or coherence terms of the density matrix, which is
apparent from the calculation of the entropy using the spectral
decomposition S = −∑

λi ln λi , where λi are the eigenvalues
of the density matrix. In diffraction experiments, determination
of the coherence terms would require special techniques, such
as quantum-state tomography [2]. Thus, the on-diagonal terms
of the density matrix, which describes the spatial probability
distribution of the physical system, do not appear to provide
direct access to the very nature of the process that is limiting
the contrast observed in that probability distribution. This
makes it hard to identify sources of contrast loss and thus to
take appropriate measures to reduce such a loss. Additionally,
when studying the transition from the quantum to the classical
domain, by introducing controlled decoherence processes, it
is hard to establish that it is indeed decoherence and not
dephasing that causes a loss of contrast.

In this paper, we propose and analyze a method based
on repetitive measurements of the spatial probability distri-
butions, which can be used to distinguish dephasing from
decoherence processes. The spatial second-order (also called
intensity) correlation function of the measurements provides
this information. For dephasing processes that upon visual
inspection appear to completely destroy the diffraction pattern,
the intensity correlation function restores the far-field diffrac-
tion pattern. For decoherence processes no such restoration
works.

To support our claims, we consider an electron double-slit
experiment [3,4] as an archetypical example of an interference
experiment, and add a process by which contrast is lost. This
situation described is not just a thought experiment, but is

typical for physical experiments. For example, we reported an
electron-diffraction experiment with nanofabricated gratings,
where some loss of contrast was observed and modeled [4].

An optical experiment that exhibited loss of contrast was
performed by Rui-Feng et al. [5]. In their setup, a laser beam
with a 632.8-nm wavelength passed through a ground glass
disk and double slits. The detection screen was placed in the
Fresnel diffraction region with respect to the double slits. The
ground glass disk appeared to completely destroy the contrast
of the diffraction pattern. The normalized intensity correlation
function was used to regain the double-slit diffraction pattern.
This is a striking result in its own right. The central question
which was not addressed is, How can we detect if an object
dephases or decoheres the laser light? Of course, a ground
glass disk dephases, but if we had an unknown interaction,
could we tell from diffractive noisy images the difference? Or
in general, Can spatial correlation be used to identify dephasing
and decoherence processes?

In our simulation, we studied the analogous double-slit
physical system but changed the diffracting particle from
photons to electrons as decoherence theory is often studied
in the context of matter optics [6–11]. Based on the matter-
wave analogy [12] the method is expected to work for both
matter waves and optics. Our approach is to simulate electron
diffraction in three different situations as shown in Fig. 1. In
the first situation, a two-path interferometer, i.e., a double-slit
experiment, exhibits excellent contrast. In the second and third
situations, an object is introduced after the double slit that
interacts with the electron wave so as to cause dephasing or
decoherence. We refer to this as a “dephaser” and “decoherer.”
These latter two patterns share a reduced contrast but are found
to have qualitatively different intensity correlation functions.

The example physical system we study (Fig. 2) is moti-
vated by previously used experimental parameters for electron
double-slit and decoherence experiments [10,18]. A coherent
electron wave with an energy of E = 1670 eV and a transverse
width of w0 = 15 μm at the source propagates L1 = 24 cm and
encounters a double slit. A dephaser or decoherer is located
immediately after the double slit, represented by a horizontal
surface. The size of the surface and the double slit are both
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FIG. 1. Dephasing versus decoherence. A sketch of three situa-
tions where electron waves interfere. (a) Electron waves are unaf-
fected. An interference pattern will be observed in the probability
distribution with excellent contrast. The observed pattern is taken
from Bach et al. [4]. (b) A “dephaser,” represented by a random
potential distribution (green wiggly line), adds a position-dependent
phase to the electron wave. As a result, the diffraction pattern appears
to be washed out, but information about the diffraction pattern can
be recovered. (c) A “decoherer” separates the electron wave into a
probabilistic sum of several Gaussian waves in addition to a random
potential distribution. A low-contrast diffraction pattern similar to (b)
is obtained, but now the pattern cannot be recovered.

chosen to be 500 nm wide, larger than the distance between
the center of the two slits (150 nm). The width of the slits is
d = 50 nm. Electrons are diffracted and dephased or decohered
and continue to propagate to the detection screen at a distance
L2 = 25 cm. An interference pattern can be found on the
detection screen which is placed in the far-field region (or in
the Fresnel diffraction region with respect to the double slits
but far-field region with respect the single slit, as in [5]).

FIG. 2. Schematic of the physical system. An electron wave
impinges on a double slit. Subsequently, a dephaser or decoherer
disturbs the electron wave. The corresponding real phenomenon is
plausibly caused by the back-action of the image charge on the
electron [10,13–17].

Propagation of the electron wave is simulated using the
path-integral method [12,19],

ψb(xb) =
∫ w/2

−w/2
dxaψa(xa)h(xb,xa). (1)

The state of the wave function ψb(xb) at each location xb at
the double-slit plane has accumulated a phase attribution from
the state of the wave function ψa(xa) = 1 at each location xa

on the source according to h(xb,xa). Subsequently, the wave
function ψb(xb) is modified by the dephaser or decoherer to be
ψc(xb) and finally propagated in the same process described in
Eq. (1) from the double slit to the detection screen and noted
as ψs(xs). For the impulse response function [20]

h(x,x ′) = ei2πl/λT (x ′) (2)

in Eq. (1), l =
√

(x − x ′)2 + z2 is the propagation length, z is
either L1 or L2, and λ = h/

√
2mE is the de Broglie electron

wavelength. This function is given in terms of the transmission
function T (x ′). The transmission function equals 1 for the case
that the electron propagates from the source to the double
slit, T (x ′) = T (xa) = 1. After passing through the double
slit, the transmission function will become the double-slit
transmission function

T (x ′) = T (xb) = D(xb), (3)

which equals 1 at the slits, and zero elsewhere.
The dephaser is simulated by applying a smooth random

potential phase θ (xb) onto the wave function in the form of
ψc(xb) = ψb(xb)eiθ(xb) at the double slit. The random phase is
given by a sum of Gaussians,

θ (xb) =
∑

i

Aie
−( xb−xi√

2σi
)
2

, (4)

where Ai are uniformly distributed random numbers ranging
from zero to 2π . The Gaussian widths σi are random numbers
with a normal distribution. The mean value of σi is chosen
at 4 nm, and its standard deviation is 1 nm for our numerical
example. The set of coordinates of centers {xi} are uniformly
distributed random positions covering the double slit. Thus, to
realize this dephaser, 500 different Gaussian distributions of
∼4 nm width are combined [18]. The spacing of the random
Gaussians is much smaller than slit width (50 nm) and results
in a probability distribution that is spread all over the detection
screen.

To describe the decoherer, the wave front is cut into n in-
dependent overlapping Gaussians, ϕn(xb), effectively reducing
the tranverse coherence length, w, to the width of the Gaussian,
σi . The Gaussians are propagated separately to find the wave
functions fn(xs) at the detection screen location. The density
matrix before the decoherer is given by

ρi(xb,x
′
b) =

∑
n=1,N

1

N
ϕn(xb)ϕ∗

n(x ′
b), (5)

with

ϕn(xb) =
√

Nψb(xb)eiθ(xb)e
−( xb−xn√

2δ0
)
2

. (6)
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FIG. 3. Entropy. Schematic representation of the decoherer and
dephaser in the simulation. The blue vertical lines show the electron
wave front after passage through the double slit. The Gaussians
represent a sample of four incoherent waves emerging from the
decoherer. The blue curve is a sample of the smooth random potential
added to the electron wave for both the dephaser and the decoherer.
The entropy before and after the dephaser and decoherer is indicated.

The normalization constant N is the same for each Gaus-
sian, ψb(xb) is the wave front on the double slit before the
decoherer, and δ0 is a constant width of 100 nm. Each Gaussian
is shifted by xn = nx0, with x0 = 12.5 nm. Additionally, the
same smooth potential phase shift eiθ(xb) described in Eq. (4)
is applied. The final density matrix is given by

ρf (xs,x
′
s) =

∑
n=1,N

1

N
fn(xs)f

∗
n (x ′

s). (7)

The von Neumann entropy is calculated from S =
−∑

λi ln λi , where λi are the eigenvalues of the density
matrix. The initial entropy for the pure state is S = 0. The
effect of the decoherer is to reduce the absolute value of the off-
diagonal matrix elements in the density matrix. Consequently,
for the dephaser the entropy remains the same, whereas for the
decoherer the entropy increases (Fig. 3).

The dependence of the von Neumann entropy on the
transverse coherence length, w, after the decoherer is de-
termined and compared to the Shannon entropy. To do this,
the Gaussians’ widths and centers were varied, keeping their
ratio fixed. A narrower width describes more decoherence
and yields larger entropy and vice versa. A simpler decoherer
model is added for comparison. In this model, the overlapping
Gaussian functions are replaced with adjacent nonoverlapping
top-hat functions. The Shannon entropy, S = −∑

pi ln pi ,
for this simpler decoherer can be calculated analytically and
compared to the computer-simulated von Neumann entropy.
Here, pi , is the probability to land within one top-hat function.
When the two slits are covered with N top-hat functions, the
probability for an electron to be found within one of the top
hats is pi = w/2d. The corresponding Shannon entropy is
S = −∑

pi ln pi = ln(w/2d). The analytic Shannon entropy
matches the simulated von Neumann entropy very well (Fig. 4).
For the case of Gaussian distributions, the entropy matches
that for the top-hat case very well when the widths, w, are
smaller than a single slit. As the value of w is increased above
the single slit width but remains below the slit separation, the
entropy remains relatively constant. When w starts to exceed
the separation, the entropy reduces to zero, as expected for a
fully coherent state.

FIG. 4. Transition of entropy. The entropy change is indicated
as a function of the transverse coherence length. The von Neumann
entropies for the Gaussian model (green circles) and the top-hat model
(red triangles) are compared to the Shannon entropy (blue line). The
von Neumann entropy and Shannon entropy (blue line) match well for
the top-hat model. The Gaussian model matches well for transverse
coherence lengths smaller than a single slit. When the transverse
coherence length exceeds the slit separation, the entropy approaches
zero as expected for a pure state.

Now that we have introduced a dephaser and decoherer,
we can proceed to test if a repetitive measurement of the
probability distribution can be used to independently determine
if a process is due to dephasing or decoherence. To do so,
the diffraction pattern was calculated 500 times for both the
dephaser and the decoherer. Each realization used a different
set of random numbers [in Eq. (4)] to generate a dephaser
and decoherer. In Fig. 5, two realizations are shown. In the
dephasing realization [Figs. 5(a) and 5(c)], the peaks and
valleys are more pronounced than in the decoherer realization
[Figs. 5(b) and 5(d)]. This is consistent with earlier work using

FIG. 5. Simulation realizations: (a, c) two realizations with a
dephaser and (b, d) two realizations with a decoherer. In (a, b) and (c,
d), the same random numbers are used; thus, the influence of dephaser
and decoherer will be more comparable. (e, f) Dephase and decoherer
averaged pattern over 500 realizations. The decoherer gives a similar
probability distribution to the dephaser but with blurred peaks.
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a Wigner function approach [21]. Figures 5(e) and 5(f) are
averaged patterns over 500 realizations.

For each probability distribution, the intensity correlation
function is calculated. In general, the second-order correlation
function is defined as

G(2)(x1,x2,x
′
1,x

′
2) ≡ 〈ψ∗

1 (x1)ψ∗
2 (x2)ψ1(x ′

1)ψ2(x ′
2)〉, (8)

from which the intensity correlation function G(2)(x1s ,x2s) =
〈I1s(x1s)I2s(x2s)〉 at the detection screen is obtained. In Eq. (8),
〈· · ·〉 indicates averaging over time, while in our simulation the
averaging is performed over multiple realizations. Following
Cheng’s derivation [20],

G(2)(x1s ,x2s)

=
∫

dx1bdx2bdx ′
1bdx ′

2bG
(2)(x1b,x2b,x

′
1b,x

′
2b)

×h∗
1(x1s ,x1b)h∗

2(x2s ,x2b)h1(x1s ,x
′
1b)h2(x2s ,x

′
2b). (9)

In Eq. (9), the subscript b represents coordinates at the dou-
ble slit and s coordinates at the screen. G(2)(x1b,x2b,x

′
1b,x

′
2b)

is the second-order correlation function and contains wave
functions at the double slit after the dephasing or decoherence
process. This equation describes the propagation of the second-
order correlation function from the double slit to the screen.

Applying the result from Goodman [22], 〈u∗
1u

∗
2u3u4〉 ≡

〈u∗
1u3〉〈u∗

2u4〉 + 〈u∗
1u4〉〈u∗

2u3〉, to Eq. (8), a relation between
the second-order and first-order correlation functions is ob-
tained,

G(2)(x1b,x2b,x
′
1b,x

′
2b) = G(1)(x1b,x

′
1b)G(1)(x2b,x

′
2b)

+G(1)(x1b,x
′
2b)G(1)(x2b,x

′
1b),

(10)

where G(1)(xib,xjb) ≡ 〈ψic
∗(xib)ψjc(xjb)〉. Substitution of

Eq. (10) into Eq. (9) yields

G(2)(x1s ,x2s)

=
(∫

dx1bdx ′
1bG

(1)(x1b,x
′
1b)h∗

1(x1s ,x1b)h1(x1s ,x
′
1b)

)

×
(∫

dx2bdx ′
2bG

(1)(x2b,x
′
2b)h∗

2(x2s ,x2b)h2(x2s ,x
′
2b)

)

+
(∫

dx1bdx ′
2bG

(1)(x1b,x
′
2b)h∗

1(x1s ,x1b)h2(x2s ,x
′
2b)

)

×
(∫

dx2bdx ′
1bG

(1)(x2b,x
′
1b)h∗

2(x2s ,x2b)h1(x1s ,x
′
1b)

)
= 〈I1s(x1s)〉〈I2s(x2s)〉

+
∣∣∣∣
∫

dx1bdx2bh1(x1s,x1b)h∗
2(x2s,x2b)G(1)(x1b,x2b)

∣∣∣∣2

.

(11)

Therefore, the deviation of the second-order correlation
function is


G(2)(x1s ,x2s)

≡ G(2)(x1s ,x2s) − 〈I1s(x1s)〉〈I2s(x2s)〉

≡
∣∣∣∣
∫

dx1bdx2bh
∗
1(x1s,x1b)h2(x2s,x2b)G(1)(x1b,x2b)

∣∣∣∣2

. (12)

To evaluate Eq. (12), the impulse response function h can
be approximated for z 	 x − x ′. In this case l ≈ z + (x−x ′)

2z
,

which, applied to Eq. (2), gives

h(x,x ′) = eikzei
k(x−x′)2

2z T (x ′). (13)

The random potential phase affects the wave function in
such a way that when the integration time is long enough
(or the number of realizations is large enough in the sim-
ulation), the first-order correlation function G(1)(x1b,x2b) ∝
〈ei[θ(x2b)−θ(x1b)]〉 can be evaluated to give

G(1)(x1b,x2b) ≈ I0δ(x1b − x2b). (14)

In this evaluation, the random phase we consider in the
simulation consists of narrow Gaussians, analogous to the
expected effect that a real physical system would have on an
electron wave. The δ-function description in Eq. (14) is thus an
approximation for the case of narrow Gaussians and is obtained
for a pointwise random phase.

Up to this point, no distinction was made between the
dephaser and the decoherer. For the dephaser, substitution of
Eqs. (13) and (14) into Eq. (12) leads to the deviation


G(2)(x1s ,x2s)

≡
∣∣∣∣
∫

dx1bdx2bh
∗(x1s,x1b)h(x2s,x2b)G(1)(x1b,x2b)

∣∣∣∣2

=
∣∣∣∣2πI0e

ik
(x2

2s
−x2

1s
)

2z
˜|T |2

(
k

z
(x1s − x2s)

)∣∣∣∣2

. (15)

The ˜|T |2 is the Fourier transformation of |T |2. In the
following we drop the subscript “s”; xi = xis to represent
coordinates on the screen. We recall the expression of the
transmission function [Eq. (3)] and substitute in Eq. (15) to
get

T̃ 2

(
k

z
(x1 − x2)

)
= D̃2

(
k

z
(x1 − x2)

)
. (16)

Thus, Eq. (15) can be rewritten as


G(2)(x1,x2) =
∣∣∣∣2πI0e

ik
(x2

2 −x2
1 )

2z D̃2

(
k

z
(x1 − x2)

)∣∣∣∣2

.

(17)

Using the normalized intensity correlation function,


g(2)(x1,x2) = 
G(2)(x1,x2)/(〈I (x1)〉〈I (x2)〉)
= 〈I (x1)I (x2)〉/(〈I (x1)〉〈I (x2)〉) − 1, (18)

where I (x1) represents the intensity at position x1 on the screen.
We come to a result that


g(2)(x1,x2) ∝ ∣∣eik
(x2

2 −x2
1 )

2z D̃2(kx1,x2 )
∣∣2

, (19)

where kx1,x2 = k(x1 − x2)/z. In the simulation, symmetric
coordinates are chosen in the x axis, x = x1 = −x2, and x = 0
is chosen at the center of the detection screen. The normalized
second-order correlation function [5] is thus


g(2)(x, − x) ≡ 
g(2)(x) ∝ |D̃2(2kx/z)|2. (20)

This result states that the deviation of the normalized
intensity correlation function is proportional to the Fourier
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transformation of the double-slit spatial pattern and thus the
far-field interference pattern. It reveals that the diffraction
pattern will be recovered if a dephaser is applied. However,
for a decoherer, the far-field pattern is not recovered. For the
decoherer, Eq. (15) is expressed as


G(2)(x1,x2)

≡
∑

n

∣∣∣∣
∫

dx ′
1dx ′

2h
∗(x1,x

′
1)h(x2,x

′
2)Gn

(1)(x ′
1,x

′
2)

∣∣∣∣2

=
∑

n

∣∣∣∣2πI0e
ik

(x2
2 −x2

1 )

2z T̃ 2
n

(
k

z
(x1 − x2)

)∣∣∣∣2

, (21)

where G(1)
n (x ′

i ,x
′
j ) is the nth wave’s first-order correlation

function.
The deviation of the normalized intensity correlation func-

tion of the far-field intensity distribution for 500 different
phase realizations is averaged using Eq. (18) and compared
to the Fourier transformation of the double-slit transmission
function,

I = 4W 2

(
W sin θ

λ

)−2

sinc2

(
W sin θ

λ

)
cos2

(
πD sin θ

λ

)
,

(22)

where W is the width of slits, D is the distance between the
center of two slits, and λ is the wavelength (30 pm). The angle θ

is related to detector position by θ = 2x
d

, where x is the distance
to the center and d is the distance between the detection screen
and the double slit. The result is given in Fig. 6.

The relationship between Figs. 5 and 6 is that two ex-
ample patterns of the 500 total simulations are shown for
the dephaser in Figs. 5(a) and 5(c), which correspond to the
intensity correlation function in Fig. 6(a). In the same way
the decoherer patterns in Figs. 5(b) and 5(d) correspond to
Fig. 6(b). The effect of applying the intensity correlation
function on the patterns that underwent dephasing [blue in
Fig 6(a)] is in agreement with the theoretical double-slit
diffraction pattern (orange) which confirms Eq. (17). This
phenomenon has been observed in the optical regime [5] and
we have now shown that it is possible to be observed in
the matter-wave regime. In Fig. 6(b) the intensity correlation
function for the decoherer shows the absence of a double-slit
pattern. Thus, we have a method to tell the difference between
decoherence and dephasing in a process.

The visibility of the intensity correlation functions is also
calculated since it is related to the entropy increase in the
simulation. The relationship is model dependent, but it is
monotonic within the model considered. We investigated the
relation and found a confidence range to estimate the sensitivity
of our method. The results are presented in Fig. 7.

In summary, the increase of entropy (Fig. 3) is one-to-one
related to the absence of a double-slit diffraction pattern
in the intensity correlation function (Fig. 6), and such an
absence identifies the presence of a time-irreversible process.
This finding regarding the change in entropy matches Zurek’s
description of decoherence very well. Zurek [23] explains
that “Observers can be ignorant of phases for reasons that
do not lead to an imprint of the state of the system on the
environment. … Transfer of information about a decohering

FIG. 6. Double-slit pattern recovery. A comparison is made be-
tween the deviation of the intensity correlation function and the
corresponding far-field diffraction pattern [Eq. (22)] of the double
slits. The orange solid curve is the far-field double-slit diffraction
pattern. The dashed blue curve is the intensity correlation function
averaged over (a) 500 dephaser realizations and (b) 500 decoherer
realizations. In (a), the deviation recovers the diffraction pattern while
in (b) this is not the case.

system to the environment is essential, and plays a key role in
the interpretation.” That is to say, if information is transferred
by decoherence to the environment, then the information
entropy will increase. “Hence, in the case of dephasing …,

FIG. 7. Entropy and the visibility: their relationship in our model.
The data are generated by calculating the visibility of the intensity
correlation function for different strengths of the decoherence process
in the system. The intensity correlation functions are based on 500
measurements for every decoherence strength. A stronger decoher-
ence process produces more decoherence and a corresponding higher
entropy. Blue dots with lower visibility indicate more decoherence.
The error bar is a 95% confidence interval. The dashed red line is the
measured visibility value for the pure dephasing process. This figure
serves to indicate the sensitivity of the method.
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information about the cause obtained … afterwards, suffices
to undo the effect.” In our example, the effect of the dephasing
(the scrambling of the diffraction image) is undone by the
correlation method presented here. “Decoherence relies on
entangling interactions. … Thus neither prior nor posterior
knowledge of the state of the environment is enough.” Indeed,
for our example, the correlation method does not recover the
diffraction image for the case of decoherence.

In this context the interesting approach of Stibor et al.
[24–26] to remove dephasing is relevant. In their method,
correlation in space and time is used and experimentally shown
to remove dephasing for externally applied fields. It is different
from the present method in that a specific form of the dephasing
fields is assumed, that it uses time explicitly, and that it does
not evaluate decoherence.

The Hanbury-Brown–Twiss effect can also be compared
with our method. First, it is useful to recall the difference
between the classical and quantum Hanbury-Brown–Twiss
(HBT) effect. The classical HBT effect is a wave phenomenon
(that holds for one-particle experiments), while the quantum
HBT effect depends on the bosonic or fermionic nature of the
particle [27,28] (that holds for two-particle experiments). Our
method can only be compared meaningfully to the classical
HBT effect as we are using one-particle wave functions.
We thus compare, for example, the second-order correlation
function for collision-broadened thermal light to the second-
order correlation function for electrons emanating from a
double slit with a noisy phase (see the Appendix). There is no
mathematically identical mapping between these second-order
correlation functions.

For thermal light, the second-order correlation function can
be expressed in terms of the first-order correlation function,
g(2)(τ ) = 1 + |g(1)(τ )|2 [29], while for electrons that propagate
from a double slit a similar relation is found by g(2)(x1,x2) =
1 + | ∫ dx ′

1dx ′
2h1(x1,x

′
1)h∗

2(x2,x
′
2)g(1)(x ′

1,x
′
2)|2 [this is our

Eq. (11) normalized by 〈I1(x1)〉〈I2(x2)〉]. A difference is
that matter-wave propagation (with a quadratic dispersion
relation) is not the same as light propagation (with a linear
dispersion relation). Additionally, the light of thermal sources
is considered to be continuous and not pulsed. The electron
source is a double slit and is not continuous in space. Finally,
our method distinguishes between dephasing and decoherence
for electrons. Decoherence is a quantum property and not a
wave property.

It is not clear at this point how general the intensity corre-
lation function processing method is. All our numerical tests
indicate that the method works when the dephaser pervades
the entire wave function, with spatial fluctuations one order
of magnitude (or more) smaller than the single slit width.
This is the scenario discussed in multiple theoretical models
[13,15,16,30,31] and experiments [10,17,18]. Other alternative
setups such as an interferometer with a dephaser or decoherer
in one arm can be considered. When a known static dephaser
is placed in the other interferometer arm, dephasing and
decoherence can be distinguished. On the other hand, when the
dephaser only acts at the location of one slit, and no dephaser
is present at the location of the other slit, the double-slit pattern
is not recovered in the intensity correlation function. This is
an example where the method fails. A more detailed study
is required to identify both analytically and numerically what

FIG. 8. Multistep function: the phase of emitted light by one atom
in the thermal source. The atom is emitting light wave trains of a
certain frequency and phase as the horizontal line segments indicate.
A collision will reset its initial phase, which cause a “phase jump” in
the figure. The length of each line is the temporal length of a wave
train which is set by the free flight time of the atom. The length is an
exponentially distributed random number with a mean free flight time
τc. A temporal grid is shown in the figure to indicate the discretization
of time (see text).

the validity range of the correlation method is. An additional
experimental requirement is that multiple probability distribu-
tions must be recorded, each corresponding to different phase
realizations. This can be done by decohering or dephasing
the object as a function of the position. For example, the
lateral position of the surface in Fig. 2 could be varied. For a
position-dependent dephaser, it is expected that the diffraction
pattern will be recovered, while for a decoherer (for example,
based on image charge), the lateral position does not affect
the diffraction image and the diffraction pattern will not be
recovered. The correlation method is not expected to work in
all cases. For example, if the surface acts as a homogeneous
decoherer, there may be no position dependence. If the time
dependence of the interaction between the electron and the
surface is on the order of the electron-electron interaction
time (≈10 fs) then a repetitive time-averaged accumulation of
the probability distribution will yield identical results. In this
case techniques exist that are developed for ultrafast electron
diffraction and microscopy [32,33] where this time domain in
now being reached [34].

In conclusion, an alternative to holography or tomography
is offered to distinguish dephasing from decoherence and thus
identify time-reversible from time-irreversible processes. The
visibility of intensity correlation functions can be analyzed to
find the corresponding entropy change. In our model, visibility
lower than 0.998314 (for which the corresponding entropy
increase is 0.043) confirms the existence of a decohering
process in the system with a 95% confidence level. Note that the
sensitivity of the method varies with the model. This technique
of using repetitive correlation measurements to distinguish
between dephasing and decoherence is discussed in the context
of electron matter optics, should be applicable to optics, and
can lead to new experiments in both fields.
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APPENDIX

Collision-broadened thermal light can be described as a
summation of light waves emitted from numerous atoms.
Those waves consist of many discrete wave trains. From
one wave train to another, a sudden phase shift will occur
due to atomic collisions. The length τ of each wave train
is exponentially distributed as p(τ ) = 1

τc
e− τ

τc , where p(τ ) is
the probability of finding a wave train with length τ , and τc

is the mean free flight time of atoms. The frequency of all
emitted waves is assumed to be the same. To express this
mathematically,

E(t) = A0e
−iωt (eiφ1(t) + eiφ2(t) + · · · + eiφn(t)). (A1)

Inside the equation is a summation of the fields of n atoms.
In considering the first atom, for example, its field includes a
multistep function as shown below.

The second-order correlation function is defined by

g(2)(τ ) = 〈E∗(t)E∗(t + τ )E(t)E(t + τ )〉
〈E∗(t)E(t)〉〈E∗(t)E(t)〉 , (A2)

where 〈· · ·〉 is the average taken over a time much larger than
the mean free flight time τc. To compare this calculation with
our simulation for electrons, we rewrite the integral as a sum

FIG. 9. Simulation schematic. A uniform source is placed on
the double-slit plane (the double slit is removed). A noisy phase is
applied. Discretized spatial coordinates are used. The green and red
lines indicate the propagation path from the source a(j ) to the screen
positions x(
j ) and −x(−
j ).

using a discretized time duration as labeled in Fig. 8. Thus,
t = t(j ) and τ = τ (
j ). The g(2)(τ ) function can be written
as

g(2)(τ ) =
∑J

j=1 E∗(j )E∗(j + 
j )E(j )E(j + 
j )/J∑J
j=1 E∗(j )E(j )

∑J
j=1 E∗(j )E(j )/J 2

.

(A3)

Substituting the field expression Eq. (A1) into Eq. (A3)
gives

g(2)(τ ) =
∑J

j=1 | ∑n
i=1 e−iωt(j )eiφi (j )|2| ∑n

i=1 e−iωt(j+
j )eiφi (j+
j )|2/J∑J
j=1 | ∑n

i=1 e−iωt(j )eiφi (j )|2 ∑J
j=1 | ∑n

i=1 e−iωt(j )eiφi (j )|2/J 2
. (A4)

However, in our simulation, the spatially dependent phase noise cannot be mapped identically onto the counterpart of the
temporal stepped phase in the thermal light model. To illustrate this, consider the thought experiment modeled in our simulation
(Fig. 9).

Discretized spatial coordinates a = a(j ) on the source and x = x(
j ) on the screen are shown. Amplitudes on the source
propagate from point j to point ±
j and the path length l is a function of j and 
j . Using the path-integral formalism, fields on
the screen are

Ei(x) =
J∑
j

e−i 2π
λ

l(j,
j )eiφi (j ), (A5)

Ei(−x) =
J∑
j

e−i 2π
λ

l(j,−
j )eiφi (j ). (A6)

Using the intensity correlation function,

g(2)(x) = 〈I (x)I (−x)〉
〈I (x)〉〈I (−x)〉 , (A7)

and expressing this explicitly in discrete spatial coordinates, we find

g(2)(
j ) =
∑n

i

∣∣ ∑J
j e−i

2πl(j,
j )
λ eiφi (j )

∣∣2∣∣∑J
j e−i

2πl(j,−
j )
λ eiφi (j )

∣∣2
/N∑n

i

∣∣ ∑J
j e−i

2πl(j,
j )
λ eiφi (j )

∣∣2 ∑n
i

∣∣∑J
j e−i

2πl(j,−
j )
λ eiφi (j )

∣∣2
/N2

. (A8)
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This can now be compared with Eq. (A4). The summation order is different. For thermal light the random phase depends on
j and j + 
j , while for electrons it depends only on j . For thermal light the time is dependent on j + 
j , while for electrons
the position depends on j and 
j . The total number of summations is also different.
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