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Effective self-similar expansion for the Gross-Pitaevskii equation
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We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet,
consisting in a self-similar evolution to be satisfied on average, i.e., by integrating over the coordinates. A direct
comparison with the solution of the Gross-Pitaevskii equation shows that the effective scaling reproduces with
great accuracy the exact evolution—the actual wave function is reproduced with a fidelity close to one—for
arbitrary values of the interactions. This result represents a proof of concept of the effectiveness of the scaling
ansatz, which has been used in different forms in the literature but never compared against the exact evolution.
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I. INTRODUCTION

The scaling approach is a powerful method for reduc-
ing the complexity of partial differential equations in cases
where the evolution of the system is characterized by a self-
similar behavior which is captured by a simple rescaling of
the coordinates. In this case, the dynamical equations for a
d-dimensional system are replaced by d ordinary differential
equations (with respect to time) for the scaling parameters. This
approach has been successfully employed for describing the
collective excitations and the free expansion of Bose-Einstein
condensates of interacting atomic gases in different geometries
(for which exact solutions exists both in the noninteracting
limit and in the Thomas-Fermi regime, where interactions
dominate over the kinetic energy) [1–7], of a one-dimensional
Bose gas (in the deep Thomas-Fermi regime and in the Tonks-
Girardeau regime of impenetrable bosons) [8], of a superfluid
Fermi gas [7,9,10], and of a thermal cloud [11].

Remarkably, an effective scaling approach has also been
used by different authors as an approximate solution for the
evolution of both bosonic and fermionic density distribution,
including the collective excitations of a trapped Bose gas
[12], the expansion of an interacting Fermi gas [13], and the
expansion of a quantum degenerate Bose-Fermi mixture [14].
This effective scaling consists in using a self-similar ansatz
for the evolution of the system in the hydrodynamic regime,
and—when the scaling is not an exact solution—imposing
the corresponding hydrodynamic equations to be satisfied on
average, by integrating over the coordinates. However, this
effective approach has never been tested against the exact solu-
tion of the corresponding equations. As a proof of concept, here
we consider a simple problem that admits a direct comparison
between the effective and the exact evolutions of the system.

In particular, we shall consider the free expansion of a
quasi-one-dimensional Bose-Einstein condensate that is ini-
tially prepared in the ground state of a harmonic trap (at
zero temperature). Here “quasi-one-dimensional” refers to an
elongated condensate the transverse degrees of freedom of
which are frozen during the entire evolution due to a large radial
confinement (see, e.g., [8]). It is worth remarking that, though

for a homogeneous system in one dimension one cannot have
Bose-Einstein condensation in the thermodynamic limit [3], in
the presence of harmonic confinement the system can exhibit
a macroscopic occupation of the lowest-energy state and the
state of the system can be indeed described by a quasiconden-
sate (a condensate with fluctuating phase) or a true condensate
[15]. We shall consider the latter situation, by solving the
corresponding nonlinear Gross-Pitaevskii equation [3], that is
valid in the weakly interacting mean-field regime. By applying
the effective scaling approach mentioned above, we obtain
an equation for the scaling parameter interpolating between
the noninteracting and the Thomas-Fermi limits (where the
self-similarity is exact). We show that this approach is indeed
very accurate in reproducing the exact evolution, for arbitrary
values of the interactions. It is worth noticing that these mean-
field results contrast with the case of a strongly interacting
one-dimensional Bose gas, for which the self-similarity is
explicitly violated in the crossover between the mean-field
Thomas-Fermi regime and the Tonks-Girardeau regime [8,16].

The paper is organized as follows. In Sec. II we discuss the
effective scaling ansatz in the hydrodynamic formulation of the
Gross-Pitaevskii equation, and derive the ordinary differential
equation for the scaling parameter. Then, in Sec. III we discuss
the numerical solution and the asymptotic limit of the scaling
equation, for different values of the interaction strength, rang-
ing from the noninteracting limit to the Thomas-Fermi limit.
Here we also analyze the fidelity of this effective approach
in reproducing the exact quantum evolution of the system,
as dictated by the Gross-Pitaevskii equation, finding that this
method is indeed very accurate for arbitrary values of the
interactions. Final considerations are drawn in the conclusions.

II. MODEL

In this paper we shall consider a quasi-one-dimensional
Bose-Einstein condensate—described by the wave func-
tion ψ(x,t)—that expands in free space according to the
Gross-Pitaevskii equation

ih̄∂tψ =
[
− h̄2

2m
∂2
x + g|ψ |2

]
ψ, (1)
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where m is the particle mass, and the coefficient g of the
nonlinear term, representing the strength of the interparticle
interaction, is here assumed to be non-negative (repulsive
interaction). The above equation is equivalent to the following
set of hydrodynamic equations [3]:

∂tn + ∂x(nv) = 0 (2)

m∂tv + ∂x

[
P (x,t) + 1

2mv2 + gn
] = 0, (3)

which is obtained by posing ψ = √
neiS , n = |ψ |2, and v =

(h̄/m)∂xS [17] (the Madelung formulation [18,19]), where we
have defined

P (x,t) = − h̄2

2m

1√
n
∂2
x

√
n. (4)

Here n(x,t) ≡ |ψ(x,t)|2 represents the particle density, and
v(x,t) represents the corresponding velocity field. In the
following, we shall refer to the case in which the condensate is
initially prepared in the ground state of a harmonic potential of
frequency ω0, V (x) = (1/2)mω2

0x
2, as in typical experimental

setups [3]. In the noninteracting limit (g = 0) and in the
Thomas-Fermi regime (g � 1), Eqs. (2) and (3) admit exact
scaling solutions of the form [3]

n(x,t) = 1

λ(t)
n0

(
x

λ(t)

)
, (5)

v(x,t) = λ̇(t)

λ(t)
x, (6)

where n0(x) is the initial density distribution, and the parameter
λ(t) satisfies λ̈ = ω2

0/λ
n, with n = 3 or 2 in the two limits,

respectively. The above approach can be extended to inter-
mediate regimes (i.e., arbitrary values of g), by means of an
effective scaling, as considered by different authors [12–14].
The main idea is to consider an ansatz in which the left member
of Eq. (3) is not vanishing at each point of space, but only after
integration over the coordinates. Then, by inserting Eq. (6) in
Eq. (3), and performing a spatial integration, one gets

−1

2
m

λ̈

λ
x2 = P + gn − f (7)

with f (t) = P (0,t) + gn(0,t). By introducing the rescaled
coordinate ξ = x/λ, multiplying the above equation by n0(ξ ),
and integrating over dξ , we have

f − 1

2
mλ̈λσ 2

0 = E0
k

λ2
+ 2E0

int

λ
, (8)

where

σ 2
0 =

∫
ξ 2n0(ξ )dξ, (9)

E0
int = g

2

∫
n2

0(ξ )dξ, (10)

E0
k = h̄2

2m

∫
[∂ξ

√
n0(ξ )]2dξ. (11)

We also have

P (ξ,t) = 1

λ2

h̄2

2m

(
1

4n2
0

(∂ξn0)2 − 1

2n0
∂2
ξ n0

)
(12)

and

P (0,t) = − 1

λ2

h̄2

2m

1

2n0
∂2
ξ n0

∣∣∣∣
ξ=0

≡ D0

λ2
. (13)

By combining all these results, one eventually arrives at the
following equation for the scaling parameter:

λ̈ = Aω2
0

λ3
+ Bω2

0

λ2
(14)

where A and B are defined as

A = 2

σ 2
0

D0 − E0
k

mω2
0

, (15)

B = 2

σ 2
0

gn0(0) − 2E0
int

mω2
0

. (16)

Remarkably, they depend on the initial conditions only. It is
straightforward to check that the known results for the nonin-
teracting and Thomas-Fermi limits are correctly reproduced.
Namely, for g = 0 one has A = 1 and B = 0, whereas in the
Thomas-Fermi limit the term A is negligible and B = 1 [6].
For intermediate regimes, no explicit solutions exist, and one
has to compute numerically the parameters A and B from
the ground-state solution ψ0 of the stationary Gross-Pitaevskii
equation[

− h̄2

2m
∂2
ξ + 1

2
mω2

0ξ
2 + g|ψ0|2

]
ψ0 = μψ0, (17)

where μ is the chemical potential [notice that at t = 0 there
is no difference between the coordinate x and ξ , owing to the
fact that λ(0) = 1]. In addition, it can be easily proved that
the two parameters satisfy A + B = 1, so that only one of the
two is actually needed. In fact, by posing ψ0 = √

n0 and left-
multiplying by

√
n0 Eq. (17) it follows that μ = D0 + gn0(0).

Inserting this expression of the chemical potential again in
the previous equation, integrating over the coordinate ξ , and
comparing the result with the expressions (15) and (16), it is
straightforward to verify that A + B = 1.

III. RESULTS AND DISCUSSION

In Fig. 1 we show the behavior of the two parameters A and
B as a function of the interaction strength g. For convenience,
in the following we rename the interaction strength as g →
g′ ≡ h̄ω0σ0g, with the newly defined g being dimensionless.
This figure demonstrates that A and B behave as expected in
the noninteracting (g � 0.01) and Thomas-Fermi (g � 100)
limits, and smoothly interpolate between the two. Also, it
clearly shows that the sum rule A + B = 1 is indeed satisfied.

Let us now turn to the evolution of the system. We shall
consider the solutions of Eq. (14), with the initial conditions
λ(0) = 1 and λ̇(0) = 0, corresponding to a free expansion. In
order to simplify the notations we introduce the dimensionless
time coordinate τ ≡ ω0t , and we also use the fact that A =
B − 1. Then, we notice that the solution of the above scaling
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FIG. 1. Behavior of the parameter A and B defined in Eqs. (15)
and (16). It is evident that the sum rule A + B = 1 is indeed satisfied.

equation can be written in explicit form only in the noninter-
acting limit (where B = 0), corresponding to the well-known
result λ(τ ) = √

1 + τ 2 [3]. When B �= 0, it is convenient to
invert the relation between λ and τ , and transform Eq. (14)
into an equation for τ (λ) [20]:

(
dτ

dλ

)2

= λ2

(λ − 1)[B(λ − 1) + λ + 1]
, (18)

the solution of which can be computed explicitly, but not
inverted [21]. Nevertheless, the asymptotic behavior for τ � 1
can be obtained first computing it for τ (λ), and then inverting.
This yields

λ(τ ) ∼ B

B + 1
W

(
1

2B
e

(B+1)3/2

B
τ+1

)
, (19)

where W (z) is the principal solution for the Lambert-W
function [22]. The behavior of the scaling parameter λ as a
function of τ , obtained from the numerical solution of Eq. (14),
is shown in Fig. 2 for some values of g, along with their
respective asymptotic limit [from Eq. (19)].

In the following we shall prove that the scaling approach
discussed so far is indeed very effective in reproducing the ex-
act dynamics of the system, as dictated by the time-dependent
Gross-Pitaevskii equation (1). For practical purposes it is con-
venient to rewrite the latter in terms of the rescaled coordinates

0

2

4

6

8

10

12

14

0 2 4 6 8 10

λ
(τ

)

τ

g = 0.1
g = 1

g = 10

FIG. 2. Evolution of the scaling parameter λ(τ ) for different
values of the interaction strength g. The dot-dashed lines correspond
to the asymptotic behavior obtained from Eq. (19).
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FIG. 3. Comparison of the density |φ(ξ,τ )|2 at τ = 0 (dashed
lines) and τ = 10 (solid lines), for different values of the interactions,
g = 0.1,1,10,100. In all cases the fidelity F (τ ) (see text) is greater
that 0.99. The density is plotted in units of 1/σ0.

as

ih̄∂tφ =
[
− 1

λ2

h̄2

2m
∂2
ξ +

(
A

λ2
+ B

λ

)
ω2

0ξ
2 + g′

λ
|φ|2

]
φ, (20)

with [1,2]

ψ(x,t) = 1√
λ(t)

φ(ξ,t)e
im
2h̄

λ(t)λ̇(t)ξ 2
, (21)

and λ obtained from the numerical solution of Eq. (14). This
greatly simplifies the calculations, as one needs to describe
only the minor deviations of the rescaled wave functions with
respect to the initial profile, the major effect of the expansion
being captured by the scaling parameter. In the following we
shall consider the evolution until a final time τf = 10, which is
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FIG. 4. (a) Fidelity F (τ ) = |〈φ(0)|φ(τ )〉| as a function of the
interaction strength g, at different evolution times. (b) Fidelity F (τ )
as a function of time, for different values of the interaction strength
g. The thin dashed lines represent the asymptotic behavior that scales
as − log(τ ).
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already well into the asymptotic regime (see Fig. 2), and of the
order of typical experimental times [3]. In Fig. 3 we show the
comparison of the density |φ(ξ,τ )|2 at initial and final times,
for different values of the interactions.

Remarkably, the deviations from the exact behavior are
negligible for almost any value of the interaction, with a fidelity
F (τ ) ≡ |〈φ(0)|φ(τ )〉| always greater than 0.99 for τ � τf , as
shown in Fig. 4(a). Obviously, the maximal deviations take
place in the intermediate interaction regime. Figure 4(b) shows
that for larger times the fidelity decreases as log(τ ), and it
remains close to unity within a few percent even for τ = 103

(a time that is well beyond the typical expansion times in the
experiments).

IV. CONCLUSIONS

We have considered an effective scaling approach for the
free expansion of a one-dimensional interacting quantum wave
packet, which is initially prepared in the ground state on a
harmonic trap. The approach consists in looking for solutions
that evolve self-similarly, at least on average, so that the
expansion of the system can be described solely by one scaling

parameter which satisfies an ordinary differential equation.
A direct comparison with the exact solutions of the Gross-
Pitaevskii equation shows that the scaling approach is indeed
very accurate for arbitrary values of the interactions. This result
represents a proof of concept of the effectiveness of the scaling
approach, which has been used by several authors in different
situations [12–14], but never compared to the exact evolution.
The present approach can be straightforwardly extended to
higher dimensions.
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