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Semiclassical dynamics, Berry curvature, and spiral holonomy in optical quasicrystals
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We describe the theory of the dynamics of atoms in two-dimensional quasicrystalline optical lattices. We focus
on a regime of shallow lattice depths under which the applied force can cause Landau-Zener tunneling past a dense
hierarchy of gaps in the quasiperiodic energy spectrum. We derive conditions on the external force that allow
for a “semiadiabatic” regime in which semiclassical equations of motion can apply, leading to Bloch oscillations
between the edges of a pseudo-Brillouin-zone. We verify this semiclassical theory by comparing to the results of
an exact numerical solution. Interesting features appear in the semiclassical dynamics for the quasicrystal for a
particle driven in a cyclic trajectory around the corner of the pseudo-Brillouin-zone: The particle fails to return
to its initial state, providing a realization of a “spiral holonomy” in the dynamics. We show that there can appear
anomalous velocity contributions, associated with nonzero Berry curvature. We relate these to the Berry phase
associated with the spiral holonomy, and show how the Berry curvature can be accessed from the semiclassical
dynamics. Finally, by identifying the pseudo-Brillouin-zone as a higher genus surface, we show that the Chern
number classification for periodic systems can be extended to a quasicrystal, thereby determining a topological
index for the system.
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I. INTRODUCTION

Quasicrystals [1,2] are an interesting class of materials,
in which the delicate mix of long-range order and lack of
translational symmetry provides a setting that is intermediate
between periodic and random systems [3–5]. Recent work has
shown that quasicrystals can lead to unconventional dynamical
[6–10] and topological [11–16] properties. Novel experimental
settings have allowed these properties to be explored with
an unparalleled level of control in recent years [6,17,18]
compared to conventional condensed matter systems. A par-
ticularly flexible setting in which quasicrystals have begun to
be studied [8,9,19,20] is in ultracold gases [21–23]. Here the
interference pattern from overlapping laser beams can generate
a wide variety of potential landscapes [24–27]—referred to as
optical lattices—including a variety of one-dimensional (1D)
[8,28] and two-dimensional (2D) [19,29] quasicrystals, that
are essentially free from disorder and also highly tunable.

The lack of disorder in optical lattices offers an advan-
tage over solid state in allowing for the study of phase
coherent transport phenomena without scattering [30]. The
classic example is the demonstration of Bloch oscillations
in an optical lattice [31], a phenomenon which has not
been observed for bulk crystalline electrons. The theory that
describes these phenomena is semiclassical dynamics [32].
This says that under the influence of a weak external force
a particle’s motion is determined by the band structure and
by the geometrical properties of its eigenstates encoded in the
Berry curvature [33]—a quantity that is intimately related to
the topological properties of the band structure [34–36]. The
ability to access these properties cleanly in cold atoms [37]
has been exploited experimentally to measure geometrical and
topological features of energy bands of fundamental models
[38,39].

Here we explore the nature of semiclassical dynamics in
an optical quasicrystal. We develop this for lattices of shallow
depth, corresponding to the nearly free electron limit of solid-
state terminology. Our approach exploits the idea that within
this limit, and due to the quasiperiodicity, there is an unending
fractal hierarchy of gaps in the band structure controlled by
perturbation theory [40]. For any non-zero external force,
Landau-Zener tunneling will make only a finite number of
these gaps relevant within the semiclassical dynamics [41].
The resulting theory is closely analogous to that of a periodic
system except that the unconventional rotational symmetries—
disallowed for periodic systems—can lead to exotic band
structures. As a surprising result of this, we find a realization
of a spiral holonomy [42,43], involving a permutation between
bands under an adiabatic cyclic trajectory. This phenomena
is a generalization of Berry’s phase [33] and the Wilczek-
Zee holonomy [44]. A comparison against an exact solution
to the time-dependent Schrödinger equation verifies that the
semiclassical theory works well within the shallow-lattice
limit. We show under what conditions Berry curvature effects
can appear for semiclassical dynamics in quasicrystals, at least
within the shallow-lattice limit. Finally we discuss how these
ideas are generalized to arbitrary rotational symmetries.

II. MODEL

We consider a two-dimensional optical lattice quasicrystal
shown in Fig. 1(a), with potential,

V (r) ≡ V0

2

5∑
j=1

cos(Gj · r + θj ), (1)

2469-9926/2018/97(4)/043603(10) 043603-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.043603&domain=pdf&date_stamp=2018-04-03
https://doi.org/10.1103/PhysRevA.97.043603


STEPHEN SPURRIER AND NIGEL R. COOPER PHYSICAL REVIEW A 97, 043603 (2018)

FIG. 1. (a) The considered quasiperiodic optical lattice potential
given by Eq. (1) with V0 < 0 and θi = π/10 for i = 1, . . . ,5. (b) A
fivefold arrangement of mutually incoherent beams with wave vectors
Gi/2 plus coherent reflections. The imposed fivefold rotational
symmetry forces the optical lattice potential to be quasiperiodic
because a fivefold symmetry is disallowed in periodic systems.

where V0 sets the overall strength of the potential, Gj are wave
vectors given by

Gj ≡ 2κ(cos(2πj/5), sin(2πj/5)), (2)

and θj are arbitrary phase offsets. This optical lattice could be
generated using standard experimental methods using a laser
arrangement shown in Fig. 1(b), consisting of five mutually
incoherent laser standing waves set at an angle of 2π/5 with
respect to one another.

We highlight that this potential satisfies the definition of a
quasicrystal [3] in that the minimum number of basis vectors
needed to span its Fourier transform (four) is more than the
dimension of the space (two). These basis vectors can be
chosen as any four of the five vectors Gj , Eq. (2). (The
reduction from five to four arises from the linear dependence∑

j Gj = 0.) In general, the eigenstates for the Hamiltonian,

Ĥ = h̄2k̂2

2m
+ V (r), (3)
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FIG. 2. (a) The set of all combinations of the five principal wave
vectors Gi—referred to as the reciprocal lattice—forms a dense set of
points in k space. The corresponding set of plane wave states forms
the basis for the eigenstates and in the shallow-lattice limit the free
particle dispersion will develop a hierarchy of gaps proportional to
the point sizes shown. (b) The largest gaps are those along the lines
of degeneracy between the center and the 10 principal wave vectors
±Gi which together form a decagonal boundary to a region referred
to as the pseudo-Brillouin-zone.

can be found by expanding in a basis of plane wave states
|k + G〉 where

G =
∑

i

niGi (4)

runs over all possible vectors formed from the four linearly
independent basis vectors, as ni run over all integers. For
crystalline lattices, G forms the reciprocal lattice. For the
quasicrystal, the key difference is that this set of vectors fills
reciprocal space densely, as shown in Fig. 2(a).

An important assumption we work with throughout the
paper is the shallow-lattice limit,

V0 � ER, (5)

where ER ≡ h̄2κ2/2m is the recoil energy. In this limit the
band structure and eigenstates for the Hamiltonian (3) can be
found by applying perturbation theory. Away from lines of
degeneracy between free particle states (Bragg planes), the
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energy spectrum is given by

E(k) = h̄2k2

2m
+

∑
k′∈{G}

|〈k|V |k′〉|2
E0(k) − E0(k′)

, (6)

and the effect of V is just a second-order correction. (We
have used 〈k|V |k〉 = 0.) On the other hand, along any twofold
degeneracy—at the crossing of the free particle energies for
k and k′ say—degenerate perturbation theory must be used.
This opens a gap proportional to the matrix element between
the two degenerate states,

�gap = 2|〈k|V̂ |k′〉|, (7)

with matrix elements given by the Fourier coefficients,

Vk−k′ ≡ 〈k|V̂ |k′〉 =
∫

dr V (r)e−i(k−k′)·r. (8)

The only nonzero Fourier coefficients, and therefore nonzero
gaps to first order in V , are those shown in Fig. 2(b) cor-
responding to ±Gj . These define a region known as the
pseudo-Brillouin-zone (PBZ) [45–48].

These gaps represent Bragg scattering processes to first
order in V . To higher orders of perturbation theory, gaps will
open along all lines of degeneracy, corresponding to effective
multiple scattering processes. Therefore the initial free particle
dispersion develops a dense hierarchy of gaps [40,41,49]. How-
ever, in the shallow-lattice limit (5) these gaps in the hierarchy
have rapidly decreasing sizes with order of perturbation theory.
Thus, under suitable conditions, the hierarchy can be truncated
in their contributions to physical observables. Indeed we make
this idea explicit in the “semiadiabatic” limit which we now
define, and which allows access to a description based on
semiclassical dynamics.

III. SEMICLASSICAL DYNAMICS

For ordinary periodic systems the equations of semiclassical
dynamics play a fundamental role in our understanding of
numerous transport properties [32,50,51]. These allow for a
reduction in information from an underlying quantum theory
to a pair of classical equations requiring information about only
the band structure and Berry curvature. In the setting of cold
atoms, where there is little disorder and where scattering from
interactions can be made weak, they can provide an accurate
description of the dynamics over long times [37,38].

This theory describes the motion of a wave packet centered
at k in reciprocal space and r in real space under the influence of
an external force F. In solid state systems this force arises from
the electric or magnetic fields acting on the electron, whereas,
because atoms are neutral, for ultracold atomic gases this force
typically arises from tilting or accelerating the lattice. For a
sufficiently weak external force, such that the typical evolution
time is sufficiently long compared to the inverse of the gap,
the wave function will remain in a single band throughout
the evolution and the resulting dynamics will be accurately
described by the semiclassical equations of motion [51,52],

k̇ = 1

h̄
F, (9)

ṙ = 1

h̄

∂E(k)

∂k
− (k̇ × ẑ)�(k). (10)

The first equation describes the trajectory of k through recipro-
cal space under the external force F. While the second relates
the motion in real space to the dispersion relation E(k) [50] and
an additional term [53] (often referred to as the anomalous ve-
locity) proportional to the Berry curvature �(k) defined by [33]

�(k) ≡ ∇k × [i〈uk|∇kuk〉] · ẑ, (11)

with uk(r) ≡ e−ik·rψk(r).
Applying these equations to a quasicrystal presents a num-

ber of difficulties. The central issue is the interpretation of k.
In a periodic system k is the crystal momentum and is thereby
only defined up to the addition of a reciprocal lattice vector.
This encourages one to restrict k to the Brillouin zone, ensuring
that each k labels a unique eigenstate. A similar approach
for quasicrystals is inappropriate as here the Brillouin zone is
infinitesimally small (since there is no lower limit on the size
of a reciprocal lattice vector). Instead throughout the following
we essentially use a repeated zone scheme in which k is allowed
to take any value in reciprocal space.

Closely related to the issue of how to interpret k is the prob-
lem of defining E(k) and �(k) for a quasicrystal. Our approach
to this problem is twofold. First we exploit the shallow-lattice
limit (as was presented in the preceding section), within which
the spectrum simplifies to a free particle dispersion which
is broken into a dense hierarchy of gaps. Secondly we use
the idea that under an external force all gaps with a size
below a certain threshold will be essentially removed from the
dynamics due to Landau-Zener tunneling. The Landau-Zener
probability for tunneling through an avoided crossing between
two free particle states, |k − G〉 and |k − G′〉, is given by [54]

PLZ = e−α�2
gap/F , (12)

with F = |F|, α = πm/2h̄2δ and δ = |F̂ · (G − G′)|. For all
gaps that satisfy

�2
gap � F/α, (13)

the probability of Landau-Zener tunneling will go to one,
PLZ → 1, and these gaps will be essentially ignored in the
semiclassical dynamics. If the force is also carefully chosen
so that the dynamics remain adiabatic with respect to the
remaining gaps, the dynamics will then be accurately described
by the semiclassical equations of motion (9) and (10). With
E(k) and�(k) interpreted as the remaining part of the spectrum
which is relevant in the semiclassical dynamics.

It is important to stress that unlike periodic systems in
which a band structure is always well defined, it is only
within a dynamical picture, and within a certain window
of external forces, that a particular effective band structure
emerges. The connection between the dynamics and E(k)
and �(k) via semiclassical dynamics is therefore essential in
defining these quantities for a quasicrystal. It should also be
highlighted that semiclassical dynamics for a quasicrystal is
more restrictive than for periodic systems. This is because we
require both adiabaticity with respect to some gaps (as with
periodic systems) and also nonadiabaticity for others (unlike
periodic systems).

These ideas highlight that the particular semiclassical dy-
namics found in a quasicrystal will depend on the magnitude of
the external force, with increasingly weaker regimes of force
resulting in a growing number of gaps becoming relevant [41].
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FIG. 3. In the semiadiabatic limit (14), the only relevant gaps
for semiclassical dynamics are those along the PBZ boundary. These
are followed adiabatically, whereas the dense set of smaller gaps are
eliminated by Landau-Zener tunneling. This idea is illustrated by the
energy spectrum E(k) along a trajectory past the PBZ with a basis
truncated to approximately 100 elements and V0/ER = 0.3.

Throughout the following we focus on a particularly simple
regime of forcing which we refer to as the “semiadiabatic
limit.” We define this as the regime in which the dynamics
are adiabatic with respect to the largest gaps—those of order
V0 which form the boundary of the PBZ, but nonadiabatic with
respect to the gaps of order V 2

0 /ER (as well as all smaller gaps
in the hierarchy), as shown in Fig. 3. Therefore the dynamics
are semiadiabatic when F satisfies(

V0

ER

)4

� F

κER

�
(

V0

ER

)2

. (14)

The form of E(k) and �(k) in the semiadiabatic limit falls
into two cases depending on the location of k in the PBZ. Away
from the boundary of the PBZ, V (r) has little effect and to
leading order one has free particle dispersion E(k) = εk , with
�(k) zero. Whereas nearby the boundary, E(k) and �(k) are
determined by considering mixing between the free particle
states that are degenerate there. Along a straight edge, this
involves just two states, whereas at a corner we have the
more interesting case of mixing between five degenerate states.
These can be identified by considering a series of scatterings
at a corner, as shown in Fig. 4. For example, if we consider
k nearby the topmost corner, the state |k〉 will be coupled
to the states |k − G1〉 and |k + G4〉, and these to the states
|k − G1 − G3〉 and |k + G2 + G4〉 respectively, with the
final two states coupled to each other. The Hamiltonian that
describes the mixing between these five states is given by

H corner
k =

⎛
⎜⎜⎜⎜⎜⎝

εk VG1 V−G4 0 0

V−G1 εk−G1 0 VG3 0

VG4 0 εk+G4 0 V−G2

0 V−G3 0 εk−G1−G3 VG5

0 0 VG2 V−G5 εk+G2+G4

⎞
⎟⎟⎟⎟⎟⎠

,

(15)

with VGj
= (V0/4)eiθj .

FIG. 4. Local to the topmost corner the state |k〉 is coupled to four
other states (each marked with a point), with the mixing between these
described by the Hamiltonian H corner

k as in Eq. (15). The off-diagonal
couplings are represented by arrows and the corresponding phases θi

have been included. As discussed in Sec. VI A each phase is gauge
dependent, however, since the couplings form a closed loop the total
γ is gauge invariant which allows for nontrivial Berry phase and
curvature.

While we will focus on the semiadiabatic limit throughout
the rest of the paper, essentially all the results we discuss can
be simply extended to a regime in which the force is tuned
to a different set of gaps. Generally if one chooses the force
according to

(
V0

ER

)2(n+1)

� F

κER

�
(

V0

ER

)2n

, (16)

the situation described for the semiadiabatic case is altered by
replacing the set of principal wave vectors Gi with a set of 10
vectors G′

i associated with nth order scatterings. This set is
found by taking the smallest magnitude wave vectors from the
set of all nth order combinations of Gi (these will necessarily
have the same tenfold symmetry), and will have phases θ ′

i equal
to the sum of the n phases associated with the n wave vectors
Gi . One can then define a corresponding nth order PBZ defined
by the set of perpendicular bisectors to G′

i , along with a similar
matrix to H corner

k in Eq. (15) describing the dynamics nearby a
corner.

IV. BLOCH OSCILLATIONS

An immediate result of the above discussion is that, within
the semiadiabatic limit, a constant external force will drive
Bloch oscillations in a manner closely analogous to those
in periodic systems. The possibility of Bloch oscillations in
a quasicrystal was first identified in a number of numerical
studies [6,55]. There the Bloch oscillations were found to be
quasiperiodic whereas, within the semiadiabatic limit defined
here, it is possible to have approximately periodic oscillations
if the force is directed along certain high symmetry directions.
For arbitrary directions, the resulting evolution can be highly
complicated, as indeed is also the case for periodic crystals
[37]. An interesting difference for quasicrystalline Bloch
oscillations is that, as the force is reduced, new gaps in the
hierarchy will become relevant and new Bloch oscillation
periods will appear. This point will remain true for arbitrarily
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FIG. 5. Comparison between the semiclassical approximation
and the exact numerical result of the mean velocity vx for a trajectory
along the high symmetry direction shown (inset) and with the pa-
rameter values V0/ER = 0.15, F/κER = 3.6×10−4, and where vR ≡
h̄κ/m is the recoil velocity. The results demonstrate approximately
periodic Bloch oscillations, while the match between the exact and
semiclassical results can be improved by going to smaller V0/ER .

small forces and therefore quasicrystalline Bloch oscillations
contain a much richer structure.

The prediction of Bloch oscillations can be used to test
the validity of the semiadiabatic approximation by comparing
against an exact numerical solution of the time-dependent
Schrödinger equation, which takes the form,

ih̄ ∂tak = εkak +
∑
Gj

VGj
ak−Gj

, (17)

in a basis of free particle states,

|ψk〉 =
∑

G∈{G}
ak−G|k − G〉, (18)

where the sum is over the reciprocal lattice, εk ≡ h̄2|k|2/2m

is the free particle dispersion, and VGj
= (V0/4)eiθj are the

couplings due to the potential.
We have solved (17) numerically, choosing our numerical

basis large enough so that our results for the mean velocity have
converged for any given set of parameters. The comparison
between these exact results and the semiclassical dynamics
is shown in Fig. 5. The results of this comparison suggest
that the semiclassical approximation should remain valid up to
roughly V0/ER ≈ 0.15, with the external force that satisfied
the semiadiabatic limit the closest found to be F/κER =
3.6×10−4. Beyond this value of V0/ER the window of allowed
values for F that satisfy (14) becomes so narrow that it becomes
impossible to choose a single value that satisfies both limits
adequately. The signal of this breakdown is the appearance
of new oscillation frequencies corresponding to previously
neglected higher order gaps.

Observing these Bloch oscillations experimentally requires
that the relatively long evolution times needed within the
semiadiabatic limit do not exceed the typical lifetimes of the
atomic gases used, which are of the order of a few seconds.
For the parameter values found numerically (V0/ER = 0.15
and F/κER = 3.6×10−4) the time T to complete a single

Bloch oscillation is given by T = 5×103h̄/ER . For 23Na and
87Rb this takes the values of T ≈ 0.02 s and 0.2 s, and could
therefore be quite challenging experimentally.

V. SPIRAL HOLONOMY

A surprising result of semiclassical dynamics of quasicrys-
tals in the semiadiabatic limit is found by considering a cyclic
variation of the momentum around a corner of the PBZ. Such
dynamics could be induced, for example, by applying a force
that changes in direction with time in such a way that the
net impulse imparted vanishes, such that one expects the
momentum to return to its initial value. In this case we find
that an eigenstate does not return to its original form. Instead,
the system is left in a different energy eigenstate, orthogonal to
its initial state. (Naturally, this result will have a direct impact
on how we understand the Berry phase and Berry curvature in
later discussions.)

The origin of this phenomena can be attributed to the
geometry of the PBZ. Consider following the set of Bragg
scatterings, as depicted on the left of Fig. 6, along one cyclic
path around a corner in which the momentum changes direction
by 2π to encircle the corner just once. After this single cycle,
the wave packet finishes at a different corner of the PBZ.
Although the net external impulse is zero, the set of Bragg
scatterings are imbalanced in such a way that there is a net
momentum transfer from the quasicrystalline lattice. It is only
after performing a second 2π cycle that the particle returns to
its initial location. This unusual geometrical property manifests
in the band structure local to a corner, given by Eq. (15) and
as shown on the right in Fig. 6. This appears as a series of
transitions between the two lowest bands which finishes in a
different band to which it started. Such behavior is referred
to as a “spiral holonomy” [42,43]. We emphasize that the
appearance of this phenomena is a necessary consequence of
working in the semiadiabatic limit for the quasicrystal.

To our knowledge, similar phenomena to what we see
here—the key feature being a change in energy level after
a cyclic parameter variation—have been described only in
two, very different, settings for energy bands. One setting
concerns the 2D surface states of a three-dimensional (3D)
Weyl semimetal. Here there appears a helicoidal band structure
around the projection of the Weyl point [56], that is, at the
edges of the Fermi arcs of the surface metal [57,58]. The
other setting concerns energy bands in lossy (non-Hermitian)
systems. These can show “exceptional points” at which the
(complex) energy eigenvalue has a square root singularity
between two energy levels as a function of a 2D parameter that
results in the state returning to itself after two cycles [59,60].
The energy level structure in both examples can be naturally
thought of in terms of Riemann surfaces.

VI. BERRY PHASE, BERRY CURVATURE,
AND CHERN NUMBER

Topological and geometrical properties of the energy bands
of crystalline systems are of a central interest in a large amount
of fascinating recent research. Naturally some of these ideas
have been extended to quasicrystalline systems [11,12] with
these works focusing on tight-binding models. Here we exploit
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FIG. 6. A cyclic trajectory around a corner of the PBZ leads to the surprising result of a spiral holonomy [42] in which after a cyclic variation
of the parameter k the system fails to return to its initial eigenstate. This result appears in two ways: (left) the geometry of the path encircling
the corner and (right) as transitions between the two lowest bands [of the Hamiltonian in Eq. (15)] at a corner.

our description based on semiclassical dynamics, to explore
two fundamental quantities: the Berry phase and curvature. In
the following we will focus on the properties nearby a corner
of the PBZ as it is here where the Berry phase and curvature
can be nonzero.

A. Berry phase

The usual consideration for the Berry phase asks what
geometrical phase is acquired for a cyclic parameter variation.
However, as discussed in Sec. V, a cyclic trajectory that
encircles the corner of the PBZ returns to an orthogonal state
and in this case the Berry phase cannot be defined. However,
for a trajectory that encircles the corner twice, the state does
return to its initial form. It is this situation which we address
here.

We can find the Berry phase for a twofold trajectory by
using a simple argument based on the phase acquired after a
series of Bragg scatterings between the edges of the PBZ. In
the local band structure picture of Fig. 6, as a certain state |k〉
adiabatically traverses an avoided crossing into a state |k′〉,
it acquires a phase equal to that of the matrix element which
opened that gap between these states, 〈k′|V̂ |k〉. For a path that
encircles the corner twice, five such adiabatic crossings are
traversed—one for each scattering in Fig. 6—each contributing
one of the five phases θi . Therefore the Berry phase acquired
for this trajectory is given by

γ =
5∑

i=1

θi . (19)

A caveat to this argument is that the second-order gaps that
are irrelevant far from the corner open into a first-order gap as
they approach the center, as shown in Fig. 7(c). Therefore this
argument only applies to trajectories that remain sufficiently
far from the corner. For the band structure shown in Fig. 7(c)
in which V0/ER = 0.3, a radius of approximately 0.2κ would
be sufficient, with this distance reducing for smaller V0/ER .

It is important to highlight that each of the phases θi in the
previous argument are gauge dependent since each is equal to
the phase of the matrix element 〈k′|V̂ |k〉 which is changed by

FIG. 7. Berry curvature and band structure local to the corner
of the PBZ for the two lowest bands of the Hamiltonian H corner

k
in Eq. (15), with V0/ER = 0.3 and γ = π/2. The separate Berry
curvatures (a) �(1) for the first band and (b) �(2) for the second band,
show sharp peaks along the five lines of near degeneracy shown in
Fig. 6 and in (c) the band structure past a corner. (d) For the sum
�(1) + �(2) these cancel leaving a single smooth peak which integrates
to give the Berry phase associated with a twofold loop.
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redefining the phases of the each basis element, |k〉 → eiφk |k〉.
However, their total, γ , is gauge invariant, as can be seen
by looking at the structure of the off-diagonal couplings in
Eq. (15). As shown in Fig. 4, this set forms a closed loop in
reciprocal space which ensures that any gauge transformation
leaves the sum around this loop invariant.

When the Berry phase for a twofold trajectory is π (e.g.,∑5
i=1 θi = π ), it is possible to make a connection to the physics

of graphene. For graphene it is well known that the two lowest
bands have a linear dispersion at Dirac points located at the
corners of the Brillouin zone, each of which is associated
with a π -Berry phase. A very similar situation happens in
our model—here the π -Berry phase is also associated with
a linear band touching, however, now between the second and
third bands at a corner of the PBZ (this is because the lowest
two bands are essentially joined by the spiral holonomy; cf.
Figs. 6 and 7). It is also well known that the linear dispersion
(with associated π -Berry phase) can lead to interesting phe-
nomena such as inelastic backscattering and unusual reflection
properties from a potential barrier in graphene. Since these
phenomena are purely a result of this particular dispersion we
expect similar phenomena to appear in our model.

B. Berry curvature

In the current section we will explore the properties of the
Berry curvature of the Hamiltonian H corner

k from Eq. (15) which
describes mixing at a corner of the PBZ. However, first we
outline some general properties of the Berry curvature based
on symmetries of the system and use these ideas to derive a
condition on the phases θi to allow for nonzero Berry curvature.
A symmetry which is present here is time-reversal symmetry,
which results in �(k) being an odd function of k. The presence
of inversion symmetry would also mean that �(k) must be an
even function of k and therefore both symmetries would result
in zero Berry curvature. To determine whether such a point of
inversion exists for the quasiperiodic potential (1), we search
for a point R such that

V (R + r) = V (R − r). (20)

It is straightforward to show that this equality is equivalent to
the following set of equations:

Gi · R + θi = 0 mod π. (21)

By taking the sum of these and using the property,

5∑
i=1

Gi = 0, (22)

one can show that the following equation must hold:

5∑
i=1

θi = 0 mod π. (23)

If this final equality fails to hold, the assumption that there
exists an R such that V (r) satisfies (20) must be incorrect:
There cannot exist a point of inversion symmetry and the Berry
curvature can be nonzero. The sum in Eq. (23) is just equal to
the previously found Berry phase (19). Thus, the results are
consistent: If the Berry phase (19) is zero or π then the Berry

curvature must be zero. The fact that the Berry phase can be
equal to π (and therefore nonzero) while the Berry curvature
must be everywhere zero is entirely analogous to the situation
in graphene in which the Berry curvature is zero everywhere
except at the Dirac points where it is singular.

It is simple to find the exact form of the Berry curvatures
�(n)(k) for each of the five bands, labeled by n, of (15)
by using standard numerical methods [61]. One proceeds in
precisely the same way as for periodic systems (by relating
the phase acquired around an infinitesimal plaquette to the
curvature enclosed), the only difference for the quasicrystal
is that this is carried out for an effective band structure that
emerges within the semiadiabatic limit. There is, however,
a subtlety here in that calculating the Berry curvature for
(15) one assumes adiabaticity with respect to all gaps in the
band structure. For the lowest band, there are gaps of order
V 2

0 /ER (cf. the discussion on the spiral holonomy of Sec. V
and Fig. 6), which would be tunneled past nonadiabatically
in the semiadiabatic limit. Therefore, although H corner

k was
motivated by the semiadiabatic limit, in order to calculate
the Berry curvature we must work outside of this regime.
The Berry curvature calculated here is simply that associated
with adiabatic transport for the band structure described by
H corner

k .
We plot the Berry curvature of (15) for the lowest two bands

as well as their sum in Fig. 7 since generally the dynamics here
will visit both bands. A striking feature of the separate Berry
curvatures �(1) and �(2) are the five sharp peaks associated
with the near degeneracy between the two bands. As discussed
above, their relevance to the semiclassical dynamics in the
semiadiabatic regime is obscured due to transitions between
the bands. On the other hand, their sum �(1) + �(2) is highly
relevant within the semiadiabatic limit and can be cleanly
mapped out from the semiclassical dynamics. To do so one can
simply perform two evolutions, one for the particle starting
in each of the two bands and then summing the separate
anomalous velocities as shown in Fig. 8. Numerically this
procedure works well up to the same parameter values used
in the Bloch oscillations discussion and will therefore require
similar evolution times experimentally.

Aside from its appearance in the semiclassical dynamics,
the Berry curvature is fundamentally related to the Berry phase
via a surface integral over the region enclosed by the cyclic
trajectory for which the Berry phase is defined. Making a
similar statement here is subtle since for a generic trajectory
one encounters transitions between the bands which means the
separate adiabatic Berry curvatures are insufficient to describe
the semiadiabatic Berry phase. Nevertheless for the twofold
trajectory discussed in Sec. VI A one can associate the Berry
phase here to the integral of the sum of the Berry curvatures
by comparing two situations. The first in which the twofold
loop is traversed semiadiabatically and a second in which two
separate single loops are performed adiabatically on each band.
The only difference between these two situations is found local
to the near degeneracies between the two bands. In the first case
no phase is acquired past these avoided crossings and in the
second, while a phase is acquired for each separate band, these
will cancel for the total phase from both trajectories. The result
is that the semiadiabatic Berry phase γ acquired on a twofold
trajectory [which is related to the phases θi via (19)] is equal to
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FIG. 8. (Top) Due to transitions between the two lowest bands
local to a corner [cf. Eq. (15) and Fig. 6] the separate anomalous
velocities associated with the Berry curvature [Eq. (10)] are obscured.
(Bottom) Whereas their sum can be cleanly extracted (as described
in the text) and matches well with the expected Berry curvature [see
Fig. 7(c)]. The parameters used are the same as those used in Fig. 5.

the surface integral of the sum of the separate adiabatic Berry
curvatures,

γ =
∫∫

dS(�(1) + �(2)). (24)

This result is easily confirmed numerically by integrating over
the peak in the summed Berry curvatures from Fig. 7.

C. Chern number

Naturally one might imagine extending the surface integral
of the Berry curvature in Eq. (24) over the entire PBZ, to
obtain a topological invariant akin to the Chern number for
the periodic case. However, one may well question whether
such a topological invariant exists for the quasicrystal, since
the PBZ does not have the same topology as the BZ of
conventional periodic systems which is a torus. Nevertheless,
despite the differing topologies of the PBZ and conventional
BZ, a topological invariant still exists for the PBZ. The PBZ
is orientable (no subset is a Möbius band) and closed (since
all edges are identified). These two conditions of the manifold
(closed and orientable) are sufficient to allow the existence of
the Chern number [62] defined by the integral of the Berry
curvature over the PBZ.

Although the particular topology of the PBZ does not
directly affect the Chern number, it is nevertheless interesting

to ask what this topology is for the PBZ. In order to identify
this, two pieces of information are needed: the orientability and
the Euler characteristic χ [63]. We already know that the PBZ
is orientable (which means it is a g-holed torus, where g is the
genus), and the Euler characteristic is found from the number
of vertices v, edges e, and faces f , using χ = v − e + f .
For the decagonal PBZ, these are v = 2, e = 5, f = 1, giving
χ = −2, and using χ = 2 − 2g (for orientable surfaces) gives
g = 2. We therefore identify the decagonal PBZ as a two-holed
torus. Interestingly the association of a regular polygon with
identified edges to a higher genus manifold also appears in the
study of billiards in rational polygons [64]. There the straight
line billiard trajectories are interpreted as curved trajectories
on this manifold. Surprisingly this situation is closely related to
the straight line k-space trajectories in our model for constant
external force (cf. Sec. IV).

VII. GENERALIZATIONS

A. Semiclassical dynamics in solid state quasicrystals

The semiclassical approach we have presented in Sec. III
is very general. The only assumption it relies on is that the
hierarchy of gaps can be clearly separated in terms of their
sizes. For this condition to be satisfied two criteria must be met:
the first is that the Fourier components of the potential must
fall off sufficiently quickly (in our case only ten were nonzero).
The second is that these components must also be sufficiently
weak so that higher order effective couplings can be neglected
(here this meant working in the shallow-lattice limit). Both
conditions can be satisfied in an optical lattice setting, since
the potentials are often formed by a small number of standing
waves and the lattice depth is freely tunable.

Surprisingly these conditions could also be satisfied for a
solid-state quasicrystal, as a number of ARPES studies on
various icosahedral and decagonal solid-state quasicrystals
have demonstrated that these have an free-electron-like dis-
persion [45,65,66]. Of course disorder plays a key role in
these materials, likely obscuring the semiclassical dynamics.
However, there are situations—like in quantum oscillations—
where semiclassical dynamics remain highly relevant. Indeed,
related ideas to those presented here were already used in Ref.
[41] to explain quantum oscillations in incommensurate charge
density waves. The nature of the quantum oscillations in our
model presents an interesting open question, the answer to
which could be of relevance to the properties of icosahedral
and decagonal solid-state quasicrystals which share the same
rotational symmetry.

B. Higher rotational symmetries

Many of the results presented here can be simply extended
to systems with arbitrary rotational symmetries. These include
the spiral holonomy, the possibility of nontrivial Berry phases
and curvature, and the identification of a Chern number.
Essentially these only depend on the overall geometry of the
PBZ, so that as long as a PBZ can be well defined one can
ask such questions. We discuss generalized PBZ’s which are
regular 2n-sided polygons, with integer n � 4. The results will
naturally split into two cases for odd or even n. With the model
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FIG. 9. Same as Fig. 4 but for a PBZ with eight sides. Here the
couplings again form a closed loop meaning the total phase is gauge
invariant, however, the sum is now zero and therefore the Berry phase
and curvature are also zero.

studied throughout this paper given by n = 5 and therefore an
odd case.

For the spiral holonomy, the same geometrical picture used
in Sec. V and shown in Fig. 6 to find the number of cycles
around a corner before returning can be applied here. For odd
n, the trajectory visits only n of the total 2n corners before
returning and therefore completes (n − 1)/2 cycles (e.g., in
our case n = 5 and 2 cycles were required). Whereas for even
n, the trajectory visits all 2n corners, resulting in a total of
n − 1 cycles before returning to the initial state. For example,
if n = 4 (e.g., an octagonal PBZ as in Fig. 9), the state will
require three cycles around a corner before returning and will
therefore visit three bands local to the corner. Three cycles
also implies a chirality, since going clockwise or anticlockwise
produces different results.

An interesting difference between odd and even n appears
by asking whether one can find nonzero Berry curvature.
The odd case is essentially the same as the fivefold case in
this respect. Half the corners are coupled in such a way that
the off-diagonal terms again form a closed loop allowing for
nonzero Berry curvature. However in the even case, all 2n

corners couple (cf. Fig. 9), forcing the Berry curvature to be
the same at all corners. This is related to how the state visits all
2n corners in the spiral holonomy. If time-reversal symmetry
is present, �(k) must be an odd function of k, and the only
possible Berry curvature at a corner is zero. Therefore for even
n it is not possible to have nontrivial Berry phases or curvature
while time-reversal symmetry is preserved.

Finally, the Chern number classification can be easily
extended, since for all n the PBZ is both orientable and closed,
and therefore the Chern theorem applies. The genus can then
be found by calculating the Euler characteristic. For odd n,

the PBZ is found to have genus (n − 1)/2, while for even n

it has genus n/2. With the difference between odd and even
cases again arising from how the corners are coupled—for
odd n there are two vertices while for even n there is only one
vertex. Therefore for all n, integrating the Berry curvature over
the whole PBZ provides a topological invariant—the Chern
number.

VIII. CONCLUSION

We have demonstrated that for a two-dimensional shallow-
lattice optical quasicrystal, it is possible to identify a regime
in which the dynamics is accurately described by the semi-
classical equations of motion. By comparing the prediction
of Bloch oscillations against an exact numerical solution we
determined the maximum potential depth allowed in order
for the semiclassical description to apply and related this to
experimental parameters.

A surprising result was the appearance of a spiral holonomy
around a corner of the PBZ—a phenomena which has been
described in only a few, very different, settings for energy
bands. We also demonstrated that it is possible to have nontriv-
ial Berry phase and curvature at a corner—with both having an
unconventional structure due to the spiral holonomy. A method
of extracting the Berry curvature from the semiclassical dy-
namics was provided and its overall properties were related
to time-reversal and inversion symmetries. By identifying the
PBZ as topologically equivalent to a higher genus surface,
we showed that the Chern number classification for periodic
systems can be extended to the PBZ of a quasicrystal, thereby
determining a topological index for the system.

We highlight that the semiclassical approach can be applied
to a generic quasicrystal and can be applicable in solid-state
quasicrystals with a nearly-free-electron dispersion which have
been observed experimentally. We have also extended the
findings of the spiral holonomy, Berry curvature, and Chern
number to systems with arbitrary rotational symmetries by
relating these to the properties of the PBZ. We show that Berry
curvature effects appear for certain “odd” arrangements but
disappear for “even” arrangements.
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