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Weyl fermions are massless chiral quasiparticles existing in materials known as Weyl semimetals. Topological
surface states, associated with the unusual electronic structure in the Weyl semimetals, have been recently
demonstrated in linear systems. Ultracold atomic gases, featuring laser-assisted tunneling in three-dimensional
optical lattices, can be used for the emulation of Weyl semimetals, including nonlinear effects induced by the
collisional nonlinearity of atomic Bose-Einstein condensates. We demonstrate that this setting gives rise to
topological states in the form of Weyl solitons at the surface of the underlying optical lattice. These nonlinear
modes, being exceptionally robust, bifurcate from linear states for a given quasimomentum. The Weyl solitons may

be used to design an efficient control scheme for topologically protected unidirectional propagation of excitations
in light-matter-interaction physics. After the recently introduced Majorana and Dirac solitons, the Weyl solitons
proposed in this work constitute the third (and the last) member in this family of topological solitons.
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I. INTRODUCTION

Three species of fermions, of the Dirac [1], Majorana [2,3],
and Weyl types [4-0], are cornerstones of the relativistic
quantum-field theory. On the other hand, Weyl semimetals,
which enable the realization of the Weyl fermions, is opening
up anew chapter of condensed-matter physics. Weyl points, the
signature of the respective topological charge, are produced by
the Hamiltonian H = v k.o + vyk,0, + v k;0,, where v;,
k;, and o}, with j = x,y,z, are group velocities, momentum
components, and Pauli matrices, respectively. With linear
dispersion in all the three dimensions in its vicinity [7-11],
these nodal points in the momentum space are realized as
magnetic monopoles in the k space. The topological invariant
of the Weyl semimetal may be determined by the sign chirality,
defined as x = sgn(v,vyv;), or the integral of the Berry
curvature on a closed manifold enclosing the Weyl point. The
gapless topological states built of bulk low-energy electrons
also feature the existence of the Weyl semimetal. Aside from
solid-state electronic materials, the rapid development of the
technique based on synthetic magnetic fields in ultracold
atomic gases [12,13] and possibilities to precisely control
properties of Bose-Einstein condensates (BECs) [14] offer
an efficient platform for investigating topological phenomena
and novel states of matter. In particular, lattice models make
it possible to handle pseudospin components of the wave
functions by modifying the lattice geometry, which also may
result in the emergence of Weyl points [15—17]. The unusual
structure of the wave functions near these points gives rise to
plenty of notable topological properties and stimulates ongoing
research in various fields of physics.
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The topological phenomena and relativistic particles men-
tioned above are generally produced by linear systems. Non-
linearity also essentially affects a variety of phenomena in
physics, such as coherent control of excitations [ 18], bistability
[19], soliton formation [20-23], harmonic generation and fre-
quency conversion [24], and many others. The effects of non-
linearity on edge states, including prediction of solitons, were
recently studied in topological insulators [25-27]. However,
the impact of nonlinearities on Weyl semimetals, associated
with either nonlinear effects in surface-state propagation or
interparticle interactions was not explored yet. In the present
work, we address this issue, considering competing repulsive
and attractive interactions [28—33] between atoms in synthetic
magnetic fields [34,35], which is similar to the interplay of self-
defocusing and focusing nonlinearities in optics. The objective
of our analysis is to build soliton-like surface states, in the full
three-dimensional (3D) form, in optical Weyl lattices emulat-
ing the Weyl metals. These nonlinear lattices can be utilized
to study interplay between the nonlinearity and topologically
protected surface states. We find that soliton modes bifurcate
from linear periodic surface states. We also find that these
Weyl solitons may travel along the surface without notable
deformations, featuring extremely low radiation loss. The Weyl
solitons, after the very recently reported Dirac solitons [36] and
Majorana solitons [37], are the third and also the last members
in the family of topological solitons, finally hosting a reunion
in nonlinear physics.

II. LINEAR MODEL

Gauge fields play an essential part in various areas of
modern physics [38]. In particular, the Harper Hamiltonian
in the tight-binding limit, based on gauge fields, describes the
dynamics of particles in a magnetic field with a background
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FIG. 1. (a) Optical-lattice potentials formed by superimposing two standing waves, and the configuration of gauge fields defined on bonds
of the cubic lattice with the corresponding coordinates. (b) A sketch of the 3D cubic lattice with phase-driven hopping along x and z directions,
which possesses Weyl points in the momentum space. Amplitudes of tunneling along the lattice sites alternately carry a complex phase shown
as dashed (solid) lines, illustrating hopping with an acquired phase 7 (0). The unit cell can be constructed, using two pseudospin sites marked
by orange and blue colors. (c) The Raman coupling scheme for engineering the required tunneling along each axis. The detuning A matches
the frequency offset of the corresponding Raman beams. (d) The positions of the Weyl points in the Brillouin zone of the 3D Hamiltonian in
the reciprocal lattice and their chiralities are indicated by blue and orange arrow sets. (e) The band structure with signs of the Weyl points in

the (ky,k;) plane, at k, = 0. (f) Distribution of the Berry curvature of Weyl nodes in momentum space with the opposite chiralities.

lattice. This Hamiltonian has been already shown to exhibit a
fascinating fractal band structure which is called the “Hofs-
tadter butterfly” [39]. The particular Harper Hamiltonian was
recently proposed for the realization of the Weyl states [40] in
ultracold atoms.

An optical Weyl lattice may be induced by the electric dipole
interaction between atoms and the electric field of an optical
standing wave. As shown in Fig. 1(a), two running-wave
Raman laser beams with frequencies and wave vectors [wq , Ky 1,
o = 1,2, induce a spatially dependent complex tunneling
by the position-dependent modulation, and generate strong
synthetic magnetic fields. Due to this modulation, the tunneling
matrix element consequently picks up a Peierls phase, which
originates from the propagator of an electron in the magnetic
field. With the precise control of the laser field, one can effi-
ciently engineer the Peierls phase and redefine atom hopping
by adding an Aharonov-Bohm-like phase, ®, which is equal
to the sum of the Peierls phases, accumulated in the course of
tunneling around the plaquette [41]. The plaquette, regarded
as a gauge invariant, is a defined modulo of the dimensionless
magnetic flux quantum of the 25 piercing a lattice. In Fig. 1(b),
we introduce a uniform fully tunable effective flux and the
lattice built of two sublattices (A and B, which build a unit
cell), which give rise to pseudospins with opposite magnetic
moments. Our coupling scheme directly creates a non-Abelian
SU(2) gauge field that results in opposite magnetic fields for

quasiparticles. Thus, a 3D cubic lattice can be constructed
with laser-assisted tunneling along x and z directions. For
resonant tunneling [42,43], the time averaging over the rapidly
oscillating terms yields an effective 3D Hamiltonian

— —iPrier ]L T
H = § :(Jxe TR A

r,o,t
e ®ral a4+ He). (1)

Here, J , . are tunneling amplitudes, 0,7 =A,B label the

two pseudospin components, aiym and ay -, are the creation
and annihilation operators on site r = (m,n,l), and @, =
O0KkR, g = m®, +nd, + [P, denote the nontrivial hopping
phases, associated with positions R, ,; = mLX +nLy +1LZ
and momentum difference Sk = k; — k,, where m,n,l are
integers, and X , 9 ,Z are unit vectors along the x,y,z direction,
respectively. The lattice spacing is L. We select the appropriate
directions such that (®,,®,,®,) = w(1,1,2).

The experiment can be performed in quantum degenerate
Fermi gases of !">Yb in the presence of a uniform magnetic
field B [44,45]. We consider the 6'S; — 63P; transition
with one excited state |F' = 7/2,my = 5/2) and two ground
states |F =5/2,mp =3/2), |F =5/2,mr =5/2). We set
the frequency difference w; — w; ~ A (A = grupB), so that
the dressed ground states are nearly degenerate, gr is the
hyperfine Landé¢ factor, up is the Bohr magneton, and mp
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is the projection of the atomic angular momentum along
the magnetic field. The two-photon detuning is §. In the
presence of large detuning A > 2,8, we can adiabatically
eliminate the excited state and consider the atomic motions
in the ground-state manifold, to derive the hopping term J =
Q?/8, where Q is the strength of the Raman coupling between
the ground and excited states.

It is relevant to mention here that the proposed scheme
may actually be realized more straightforwardly for bosonic
systems, such as chiral vortices in an interacting bosonic
quantum fluid [46]. Relevant details of the bosonic setting will
be considered in detail elsewhere.

In the quasimomentum representation, the
present  setting amounts to the 3D  Harper
Hamiltonian for two sublattices: HKk) =

—2[Jy cos (kyL)oy + Jx sin (kyL)o, — J; cos (k;L)o]. In
the first Brillouin zone (BZ) in Fig. 1(d) the two energy bands
e(k) = :I:Z\/]xzsinz(ka) + J2cos?(kyL) + J2cos®(k L)
touch at (ky,ky,k;) = (0,£7 /2L ,£m/2L). Figure 1(e) depicts
the energy spectra in the BZ, Weyl points, and their chiralities.
Hamiltonian H (k) may be compactly written as H = do,
where the vector d has components d, = —2J, cos (k,L),
dy = —2J, sin (k. L), and d, = 2J cos (k. L). The Weyl point
is a source of the monopole magnetic field. Here, paired
Weyl points with opposite chiralities may be viewed as a
monopole-antimonopole pair in the momentum space. To
show these points, we derive the Berry curvature for the
lowest band [47]

o - Iy, (2d  od .
= €abcl'be = €abe| 777A | 7 X s
abeTbe = Sabel 5 13 ok, ok,

where the three components of F(k) are
F* = —8J,J,J;sin (k. L)sin(k,L)sin (k;L)/D(k),
F?» =8J,JyJ; cos (k;L)cos(kyL)sin (k,L)/D(k), (3)
F* =8J,J,J;cos (k.L)sin(kyL)cos (k,L)/ D(k),

where  D(k) = [4J2sin*(k, L) + 4J§cosz(kyL) + 4J2cos?
(kzL)]3/2. In Fig. 1(f), arrows show that the flux of the Berry
curvature F(k) flows from one monopole to the other, thus
defining nontrivial topological properties of a topological
semimetal, where the Weyl points behave as a sink and source.

The dispersions around the Weyl points are locally linear
and described by H(q) = Zi,j:[x,y,z] v;jqi0j, where q is the
displacement momentum with respect to the momentum of the
node, v;; are elements of a 3 x 3 matrix

0 —2J L 0
+2J,L 0 o |, @)
0 0 +2J.L

and the chirality, which determines the Weyl points, may be
defined as x= sgn(det [v; ;]).

Weyl semimetals imply the existence of topological surface
states in the form of Fermi arcs in the momentum space. The
appearance of Fermi arcs is expected whenever the projections
of the Weyl points onto the surface of the cut (open boundary
condition) do not coincide. Furthermore, the states are highly
localized on the surface, and their group velocity will show
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FIG. 2. (a) The energy spectrum of the slab, e(k;,k;), with open
boundary conditions. The Weyl points are connected with Fermi arcs
in the momentum space. Two sheets of surface states, corresponding
to the two surface states localized at the right and left sides of the
slab, are Fermi arcs shown by red and blue, respectively. (b) Zero-
energy momentum spectrum of surface states showing the trajectory
of the surface Fermi arc, representing arcs connecting Weyl points
with opposite chiralities and the intersections of the two dispersion
sheets.

a specific propagation direction for each surface. To observe
the surface state induced by the topological properties of the
Fermi arcs, we consider a material maintaining translational
invariance in all the three directions. The bulk-boundary
correspondence suggests that there exist topological surface
modes propagating along the interface of the lattice. We take
a slab cut orthogonally to the * — ¥ direction (infinite along
the Z and % + J directions) in. The slab is considered as a
two-dimensional (2D0 Bravais lattice possessing each good
quantum number along & or k,.The unit vectors of the Bravais
lattice of the slab are a; = L(X + §) and a, = LZ. A generic
k point in the BZ is expressed as k=kj(% + /N2 + k2.
Thus, the projection of Weyl points onto the slab surface
are at (kj,k;) = (:I:rr/«/iL,:I:n/L), and e(kj,k;) is plotted in
Fig. 2(a). The red and blue modes are surface states localized,
respectively, at the right (RT) and left (LT) edges of the lattice.
Specifically, the zero-energy momentum spectrum (¢ = 0) is
calculated using Eq. (5), which is constructed in terms of the
exact eigenstates of Hamiltonian [48,49]

1
]. (5)

1
K)=——ImTr| —
plek) nmr[s—H(k)+i0+

Figure 2(b) shows two open-line segments connecting four
projected Weyl nodes with four opposite chiralities, implying
the existence of two separate surface Fermi arcs. To detect
the Weyl points, the linear spectra along the three directions
can be measured by means of the momentum-resolved radio-
frequency spectroscopy, which was utilized for the observation
of the Dirac cone in atomic gases [50,51].

III. NONLINEAR MODEL

Now, we focus on the transport characteristics of the surface
mode in the present system. The time evolution can be de-
scribed by a scaled system of coupled equation for the A and B

. . T
components of the spinor wave function W = (wrﬁ,n, I Wnlf,n, B

dyry
. m,n, — Ho',f T . 6
l dt Xr: 1//m,n,l ( )
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To introduce the bulk-edge correspondence, we first address
the spectrum of linear modes that are periodic along the z axis
and cut in the X 4+ § and £ — § direction near the edge. These
modes are Bloch functions ¥5 , , = ug, €L where k;
is the Bloch momentum, ¢ is the energy eigenvalue, and the
corresponding momentum width of the BZ is given by 27 /L.
Based on the similarity to multilayer structures which realize
the 3D Weyl-semimetal phase [52], we treat the Weyl lattice
as a set of identical plane layers. The periodicity along the z
direction insures that k, as an appropriate quantum number.
For each fixed k_, the 3D system can be reduced to an effective
2D one with a unit cell in the (x,y) plane [53]. The respective
2D Hamiltonian, szzD, is parameterized by k.. The nonzero

Chern number +2 of HZP implies the existence of edge states
at the boundary of finite systems. On the 2D BZ parallel to k.,
the chiral surface states wrap around the full 2D BZ forming
Fermi arcs [54-56]. Utilizing the 2D equivalence, stationary
states of Eq. (6) under open boundary condition corresponding
to Hy_ are denoted as

§ : —ik,L yy0.7 0,7 ik.L ryo.T T oy, O
(6 Hm,n,l —1+Hm.n,l+e Hm,n,l +l)um,n,l - Sum,n,l'

@)

Here, indices m,n enumerate the unit cells in the x and y direc-
tions, and / denotes a specific layer along the z axis. For a single
atom, energy eigenstates are Bloch wave functions, or an ap-
propriate superposition of Bloch states which are well localized
on individual lattice sites. To simplify the notation and relate
the indices to the coordinates, ¥, , ; = ug, , €'*"%!" can be
rewritten as ¥, (x,y,z) = ¢ +t&y _(x,y,7). A representative
spectrum for the lattice with the surface states is shown in
Fig. 3(a) in the form of the energy-momentum diagrams for
the [—m /L, /L] interval by solving Eq. (7). Due to the spinor
character of the model, the spectrum consists of two groups of
bands. The spectrum shows two Weyl points at +k, L2, where
the upper and lower bands touch each other. In Fig. 3(b), we plot
the dispersion coefficient ¢” as a function of k, corresponding
to different linear surface states. RT (LT) branches in the
momentum intervals presenting the localized states near the
right (left) edge are denoted by the red (blue) color. All such
intervals for every linear surface mode give rise to surface
solitons which are investigated below. For every branch, there
exist two unique k, values where dispersion &” vanishes and
wave packets with a broad envelope may evolve almost without
broadening even in the linear limit, due to the vanishing of the
dispersion near the Weyl points.

To study the dynamics of the nonlinear surface excitations
and capture transport characteristics in the nonlinear model,
nonlinear terms are added to Eq. (6). Hence, the nonlinear evo-
lution of the vector wave function with nonlinear interaction
is governed by the following equation:

.dwlz,n,l
] —0

dt = Z HU’Twlfq,n,l + N° (wl?l,n,l)w;,n.l’ (8)

T
where H, maintains the form of the coupling matrix of the
lattice, and N°(y,, , ;) represents the diagonal matrix with
nonlinear elements [36,57,58]

(N7 (w50 = & ([wgl)- ©)

(b)
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FIG. 3. (a) Orange parts correspond to the modes residing in
the bulk of the lattice, while red and blue lines indicate surface
states belonging to different branches. (b) First- and second-order
derivatives of the energy of linear surface states versus momentum
k.. Red square and blue circle denote parameters corresponding to
the modes at k, = —0.47,0.67r. (c) Norm U, per z-period and peak
amplitudes ¥, of pseudospin components o versus u for the nonlinear
surface states. The power and amplitude of the nonlinear modes
bifurcate from the zero-intensity point for k, = —0.47,0.67r. Solid
and dotted curves denote the amplitude of ¥ 7T component. (d)
The transverse profile of A and B components per z-period of the
nonlinear surface state at right and left corner of the lattice.

Here, self-interaction nonlinearity can be achieved by applying
the mean-field theory (variables v, represent large clusters
trapped at different sites of the lattice, rather than individual
atoms). Although the Pauli principle does not allow the direct
self-interaction, an effective self-interaction may be induced
via the local-field effect, i.e., local deformation of the optical
lattice by the atomic gas [59-61]. By applying the continuum
approximation [62,63] (k,d < 1,d is the step size of the Taylor
expansion), the diffraction coefficients along the z axis of the
two components are denoted as y? = +d? cos (k,L). Under
this approximation, the type of diffraction can be compensated
by the nonlinearity. For given k,, the nonlinear coefficient g
inEq. (9)isrescaled tobe g” = = 1 for repulsive and attractive
interatomic interactions, respectively [64]. Nonlinear solutions
are introduced in the same form as the linear ones

) iIL
w;,n,l — ¢;:l,n’]ezm+zkk_l , (10)

which may also be written as ¥, (x,y,z) = uy (x,y,z)e ik,
The substitution of ansatz (10) in Eq. (8) leads to the stationary
version of the nonlinear equation

H’(p;,n,l = Z Ha’td);un,l + N° (¢::l,n,l)¢sz,n,l' (l l)

T
Because the nonlinearity in our model dominates over the

interaction between the pseudospin components, nonlinear so-
lutions exist when the nonlinearity-induced energy eigenvalue
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wu does not fall into the bulk band (i.e., it belongs to the spectral
gap), and they vanish for o approaching the linear limit, £. We
numerically solved Eq. (11), using the Newton’s method in the
frequency domain. In Fig. 3(c), the consideration of the vicinity
of the zero point suggests that, for the same displacement of
k, away from the Weyl points, the right- and left-side modes
possess the same characteristics except for the fact that soliton
solutions emerge at opposite signs of the nonlinearity. The
nonlinear surface states are characterized by dependence of
the total norm U = Uy + Up of the A and B wave component
per z-period on u, where U, = 152 dzff [V (x,y)dxdy
are norms of the two components per z-period. The evidence
that nonlinear states bifurcate from the linear ones is provided
by dependencies of the peak amplitudes, max |{,|, on w.
The vanishing of max |, | at the bifurcation point indicates
the thresholdless character of the nonlinear surface states. In
addition, amplitude profiles of nonlinear modes ¥ XT™D for
different types of the nonlinearity, localized at the A-B site
sets are shown in Fig. 3(d). It is seen that the modes are almost
identical, except for being localized at different corner of the
lattice. Therefore, it is sufficient to analyze the single species
of the modes. Thus we suppress the superscript RT(LT), and
focus on the mode attached to right corner. The existence
interval of u for nonlinear modes is determined by energy
difference § = ¢ — u between the linear and nonlinear state for
given k.. This difference, representing the energy separation
from the bulk modes, means, as mentioned above, that the
nonlinear states, localized along the z axis, may only exist with
w falling into a gap of the spectral structure. When o crosses
the edge of the spectral band, the nonlinear mode will lose
the localization and couple with the bulk modes (embedded
solitons, which may exist, as exceptional states, in Bloch bands
of some discrete nonlinear systems [65], were not found here).

To quantify the soliton’s localization, we use the inverse
participation number

,P,1

L/2 L/2 2
=/ dz/ |1pg|4dxdy/</ dz/ |wc,|2dxdy>.

L2 L)
(12)

Figure 4(a) plots & versus the inverse participation number
P!, the colored lines pertaining to different sites A and
B. With the increasing of &, the localization monotonically
strengthens with the increase of P, .

Figure 4(b) reports results of the stability analysis for
the nonlinear surface states, performed by perturbing them
with a small broadband input noise (1% in amplitude), and
continuously tracing their subsequent evolution up to very large
times. It is seen that the perturbed nonlinear modes maintain
themselves even at ¢ > 360. Eventually, the nonlinear surface
states are unstable due to the modulation instability in the
periodic potential [21,66]. However, rather than decaying, the
z-periodic periodic surface state breaks up into soliton trains
[see the pattern at t = 440 in Fig. 4(c)]. These results suggest
that the nonlinearity may indeed build robust surface Weyl
solitons, bifurcating from linear surface states in the Weyl
lattice. To develop a more regular approach for demonstrating
the existence of the Weyl solitons, we rewrite Eq. (8) as

(a)
1.00

0.75

0.50

0.25F :

000 =04 06 0-800 120 240 360 480

t

FIG. 4. (a) The inverse participation number P_~! versus energy
difference § corresponding to different sites. (b) The stable evolution
of perturbed nonlinear surface states corresponding to i = 0.1 and
k. = 0.6zr. The evolution of peak amplitudes max |/4]| in ¢ testifies
to the stability of the nonlinear wavepacket. (c) The distribution of
the A and B sites and the evolution pattern of ¥, versus 7, displayed
in the 3D form.

id9W /3t = LW + N'W, where W = (Y4,v%)", operator £ =
H includes all linear terms, while operator A accounts for the
nonlinearity. Then, the expression of the soliton can be written
as [67]

/L

V(x,y,z,t) =Z/ aj(k,pu(x,y,z,k.+«)e
—J-

ial+i(k;+K)sz
n/L

/L -
~ f a(k,Hu(x,y,z,k+r)e k402, (13)
—n/L

where vector function u = (u4,ug)” satisfies the linear equa-
tion (£ + e)ue’*:* = 0 for the linear Bloch mode with momen-
tum k,, and we take into account that the corresponding energy
& depends on quasimomentum k,. Here « is the momentum
offset from the carrier soliton momentum k., and amplitude
a(k,t) is assumed to be well localized in k. Using the Taylor
expansion in « for u(x,y,z,k, + «) in the above integral, one
obtains the expression for the shape of the surface-state wave
packet

L —i) 97 Y it
¥(x,y,z,t) = piettikz Z (—i) —u|: g(i )
Z

J'oak! } 1

j=0,00

where a(z,t) = [ Zih a(k,t)e’’*dx is the envelope function of
the corresponding nonlinear surface state. To see how L acts
on wave function ¥, we move L through the integral and take

Lue'** = —gue'** into account, arriving at

/L | |
LV = —/ 8(kz + K)a(K,l‘)ll(x,y,Z’kZ + K)ezstﬁ-z(k,_-;-,()ZdK‘

5)
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Employing the Taylor series expansion in « for both e(k; 4 «)
and u(x,y,z,k; + «), we further obtain

etk (—i) 3/ (ew)[d/a(z,1)
LU = etk 30 T [ =] }. (16)

j=0,00

Assuming that u changes with k£, much slower than eigen-
value ¢, the slowly varying amplitude approximation results
in the envelope of a forward-travelling wave, slowly varying
in time and space compared to the underlying period, and
the underlying solution can be obtained in the approximate
form, eliminating terms with higher-order partial derivatives.
This approximation allows us to keep only the j =0 term
in Eq. (14), so that W(x,y,z,t) = e* & u(x,y,z,t)a(z,t)
and 3/(eu)/dk,’ ~ ud’e/dk,’, while the nonlinear term A
simplifies to a|a|*ue’®+%:< Finally, we multiply equation
idW/dt = LW + N'W by u' and integrate it over one period
along the z axis and over the entire (x, y) plane, which allows us
to derive the nonlinear Schrédinger equation for the envelope
function

0a . ,da 1 ,d*a 2 17

lﬁ_lgd_z—i_zg d—zz+geff|a| a. (17
Here, we keep only the first two terms proportional
to ¢ =0¢/dk, and &” = 0%¢/0k? in the Taylor expan-
sion of &(k;). The effective nonlinear coefficient is g =
[/ wiNudxdydz/[[[ utudxdydz. This coefficient can be
calculated numerically for different values of k., using the
linear Bloch modes. When ¢” > 0 [which corresponds to the
red square in Fig. 3(a)], Eq. (17) admits the bright-soliton
solution

abrignt(2,1) = (28/ gefr)'/*sech[(28 /e")'

(z + &'n)e ™.
(18)

Note that the energy shift § in Eq. (18), introduced by the
nonlinearity, leads to the consequence that the total wave
function ¥(x,y,z) = e*+k2u(x,y,z,k,)a(z,t) varies as e "'#.
The shift serves as a compensation parameter for the energy
difference between the bulk and nonlinear modes, which
are used as the complete set of nonlinear wave functions.
Figure 5(a) shows the evolution of solitons constructed as per
Eq. (14) with the envelope function given by Eq. (18). At
the chosen value of k,, dispersion ¢” and eigenstate u were
found by numerically solving the eigenvalue problem defined
by Eq. (7). In this context, periodic boundary conditions along
Z axis were used.

A Weyl soliton, that starts its evolution being localized
at the right side of the Weyl lattice features unidirectional
motion. This can be interpreted as follows: unidirectional
transport of surface modes relies on the global topology of the
lattice, as a consequence of its specific topological protected
band structure, while the localization of the wave packet
is governed by the nonlinearity. One can see that, after an
initial transient period, when the peak amplitude of the input
wave form decreases due to internal reshaping of its profile,
the soliton’s amplitude of soliton remains almost constant
[see the purple curve in Fig. 5(d) showing the evolution of
the peak amplitude max 4| of the {4 component], with
the velocity which is nearly identical to ¢’. Sets of similar
long-lived nonlinear surface states can be generated, varying

(a)
(R)
=0 !
(b)

(¢c)

Normalized amplitude

0 ' 120 240 360

Jin

174

12 16

0 4 8
X

FIG. 5. The propagation of a nonlinear wavepacket at § = 0.12.
To stress the fact that the surface state moves along the z direction,
and to provide details of its shape, we show distributions of ¥4 in the
3D window at times ¢t = 0; 120; 240; 298. (a) At the initial moment,
t =0, the input beam is localized at the surface with k, = 0.67.
The wavepacket moves along the z axis on the left or right side of
the bulk lattice. The shape of the wavepacket is preserved, under the
action of the nonlinearity. (b) With the same input, the wavepacket
is deformed in the course of the evolution without the nonlinearity.
(c) The dependence of the peak amplitude of the ¥/, component on ¢
for the linear and nonlinear systems, with the orange circles represent-
ing the time moments used in Figs. 5(a) and 5(b). (d) The panel shows
normalized isocontours of the density of |, |. (¢) Zoomed evolution
in the cyan square in Fig. 5(d), with or without the nonlinearity.

the respective value of k,. To confirm that the localized
states indeed exist due to the nonlinearity, we use the same
input, while nonlinearity was switched off. Figure 5(b) shows
snapshots of the dynamics associated with the surface states in
the absence of the nonlinearity. We observe expansion of the
wave packet in Fig. 5(b) and decay of its amplitude, as shown
by the green curve in Fig. 5(c). In addition, we introduce the
2D cross section of the 3D domain at the central position of
the wave packet in the z direction, and display the density of
|| by means of isocontours in the 2D plane, in Fig. 5(c), for
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t®
=0

FIG. 6. The stable evolution of the dark soliton in the nonlinear
systemis shown for§ = —0.12and k, = —0.47. The dark spot moves
without any notable deformation.

the same four time moments that were chosen in Fig. 5(e). It
is observed that snapshots of the nonlinear mode maintained
their shape, while the linear mode is spreading out.

In addition, for &” < 0 [which corresponds to the blue circle
in Fig. 3(a)], the system gives rise to dark solitons, with the
envelope

gk (2,1) = (=28 gef)/? tanh[(—28 /") /?

(Z + 8/[)]€i8t.
19)

InFig. 6, we show the evolution of the surface state constructed
using this envelope and Bloch modes u. In the simulations, the
dark soliton also survives for a long time, keeping its initial
shape and propagating along an opposite direction of the bight
one.

IV. CONCLUSION

The aim of this work is to demonstrate the existence of
topological Weyl surface solitons in the 3D optical lattice. To
the best of our knowledge, the effects of the nonlinear were

not previously studied in settings emulating Weyl semimetals
by dint of the appropriately designed optical lattice with
an ultracold atomic gas loaded into it. This proposal also
offers an alternative feasible control of the particles governed
by the Weyl equation, which may conquer the difficulty of
physical realization in the real material. Robust modes in
the form of Weyl solitons are revealed by the systematic
analysis of the 3D nonlinear model. Note that the Weyl solitons
arising here should be distinguished from gap solitons. Being
formed from topological surface modes, the Weyl solitons can
only propagate along surfaces of the lattice, in contrast to
gap solitons, which propagate in the bulk. The Weyl-soliton
states bifurcate from linear surface modes at zero intensity,
indicating the absence of any threshold necessary for their
existence. In addition, bright and dark Weyl solitons perform
intriguing counterpropagation unidirectional characteristics.
Furthermore, the analysis developed in this work is also ap-
plicable to optical waveguides [68,69] and nanowires [70,71]
which may support Weyl solitons, therefore making our results
very general and of relevance to the systems beyond optical
lattices. In closing, Weyl solitons, the last member of the
topological soliton family, may pave the way for the realization
of many fascinating topological nonlinear phenomena.
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