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In the past few years, harmonic generation in solids has attracted tremendous attention. Recently, some
experiments of two-dimensional (2D) monolayer or few-layer materials have been carried out. These studies
demonstrated that harmonic generation in the 2D case shows a strong dependence on the laser’s orientation and
ellipticity, which calls for a quantitative theoretical interpretation. In this work, we carry out a systematic study on
the harmonic generation from a 2D band structure based on a numerical solution to the time-dependent Schrödinger
equation. By comparing with the 1D case, we find that the generation dynamics can have a significant difference
due to the existence of many crossing points in the 2D band structure. In particular, the higher conduction bands
can be excited step by step via these crossing points and the total contribution of the harmonic is given by the
mixing of transitions between different clusters of conduction bands to the valence band. We also present the
orientation dependence of the harmonic yield on the laser polarization direction.
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I. INTRODUCTION

High-order harmonic generation (HHG) in the gas phase
[1,2] has led to the creation of laser pulses in the attosecond
timescale [3,4], which have allowed the trace and manipulation
of electronic dynamics on its natural timescale [5–7]. At the
same time, as a spectroscopic tool, HHG has allowed the
imaging of atomic and molecular orbitals, structures, and
dynamics [8–11].

For harmonic generation in the solid phase, its experimental
explorations have only sprung up in the past few years,
although several theoretical discussions appeared in the 1990s
[12–16]. Coherent radiations with a nonperturbative character
at various wavelengths have been experimentally observed
from the bulk dielectrics or semiconductors driven by different
laser pulses [17–22]. In addition, harmonic generation and
light-induced current have been experimentally and theoret-
ically studied in two-dimensional materials such as graphene
[23–25]. On the one hand, the investigations of current and
harmonic generation in solids may provide a controllable
current which promises a much faster signal processing by
a temporal change of the material properties [26,27]. On the
other hand, HHG in solids has the potential to study or even
reconstruct the band structures of the crystals [28–30].

Some of the observed phenomena of HHG in solids have
distinct differences from those observed in gas. For example,
the cutoff photon energy in solids scales linearly [17] with
the electric field strength F0 of the driving laser, while it
scales quadratically with F0 in the gas phase [31–33]. To
account for the features of HHG in solids, many theoretical
attempts have been made during the last few years. As a first
step, two-band models were proposed to explain the linear
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cutoff scaling, which are essentially based on an excitation
from the valence band (VB) to a conduction band (CB) with
a subsequent Bloch oscillation within this single conduction
band due to the reflection at the Brillouin zone boundary
[17,34,35]. This model attributes the harmonic generations
to the intraband transitions within the conduction band and
is able to explain the linear scaling of the cutoff energy via
the Bloch oscillation. Actually, the same linear scaling law
can also be explained by considering the interband transition
between the conduction and the valence bands [36–39]. In fact,
when the laser intensity is increased, higher conduction bands
may be involved in harmonic generation, in which case the
harmonic yield is a coherent sum over all possible intraband
and interband transitions [40,41]. Despite existing differences
from the gas phase case, similarities between the underlying
mechanisms have been discussed, based on the semiclassical
and recollision picture [29,42,43]. The important role of the
dynamic Stark shift [44] of the energy bands was recently
addressed to account for the experiments in the wide-gap
dielectrics [26,27]. HHG in a solid by few-cycle pulses has
recently been studied theoretically [45].

Although some aspects have been understood based on
the above studies, high-order harmonic generation in solids is
much more complicated than expected due to the complex band
structures and different mechanisms that coexist and interplay
with each other. Indeed, first-principle simulations based on
the time-dependent density-functional theory (TDDFT) have
revealed important impacts of the electronic band structure
[46–48]. Detailed studies on the selection rules for harmonic
generation in solids showed that the simple analysis of the
dynamical symmetry of the crystal cannot always be correct
[49]. Different from cases in the gas phase, the recombination
of the electron in solids may happen at different sites in the
lattice and thus delocalization and spatial coherence may be
important, as discussed very recently [50,51]. In addition, the
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effect of the transition dipole phase on the HHG in solid
materials has been shown to be very important [52].

An apparent feature of HHG in solids is its orientation
and ellipticity dependence with respect to the symmetric axis
of the crystals, which have been observed in many experi-
ments [17,18,20,21,53] and theoretically discussed recently
[47,54,55]. To describe this orientation effect, one needs to
discuss the high-order harmonic generation of solids in the
two-dimensional framework. Also, the two-dimensional (2D)
description is important to identify the differences from the
1D models, and to understand the coupling of intraband and
interband dynamics due to the existence of the crossings in
the 2D band structures. In the present contribution, we address
these issues by a numerical solution to the time-dependent
Schrödinger equation (TDSE), based on the expansions by
the augmented plane wave [56]. We find excitations to higher
conduction bands in a step-by-step manner via crossings in
the band structure and they can lead to multiple plateaus in
the spectrum [41]. Orientation effects will be also discussed
and our result qualitatively agrees with recent experimental
observation [53].

The rest of the paper is organized as follows. In Sec. II, we
describe the theoretical methods for the simulations. In Sec. III,
we present the main results, which include a comparison with
the 1D model, the HHG spectra by using a different number of
basis states, the HHG at different laser parameters, and a time-
frequency analysis, followed by a discussion on the orientation
dependence. We summarize our results in Sec. IV.

II. THEORETICAL METHODS

We intend to solve the following two-dimensional time-
dependent Schrödinger equation:

ih̄
∂

∂t
|�(x,y,t)〉 = (Hfree + Hint)|�(x,y,t)〉, (1)

where Hfree is the field-free Hamiltonian for the electron
quasiparticle with a mass m0, and Hint is the interaction
Hamiltonian between the laser and the electron of the 2D
material in the velocity gauge. They are explicitly given by

Hfree = p2

2m0
+ V (x,y), (2)

and

Hint = e

m0
A(t) · p, (3)

respectively, in which V (x,y) is a periodic model potential and
A(t) is the vector potential of the laser pulse. The configuration
of the laser-solid interaction and the harmonic generation
process is sketched in Fig. 1, in which the laser field is linearly
polarized with an angle θ relative to the side of the crystal
lattice.

One of the most important characteristics of a solid is its
band structure [57,58], because it can greatly influence the
electronic dynamics. In the two-dimensional case considered
in the present work, one can introduce a rectangular unit cell
with side lengths ax and ay . According to the Bloch theorem
[59], in the velocity gauge description of the interaction given

FIG. 1. Configuration of the laser-solid interaction. The laser is
linearly polarized with an angle θ with respect to the lattice side. The
generated harmonics can be detected behind the 2D material.

by Eq. (3), the wave function obeys the following conditions:

�(x + ax,y,t) = �(x,y,t)eikxax , (4)

�(x,y + ay,t) = �(x,y,t)eikyay . (5)

By separation of variables, one can thus introduce the following
augmented plane-wave basis [56]

ψnx,ny
(x,y) = 1√

axay

exp(iKxx + iKyy), (6)

in which the reciprocal lattice vector

Kx = 2π

ax

nx + kx, kx ∈
[
− π

ax

,
π

ax

]
, (7)

Ky = 2π

ay

ny + ky, ky ∈
[
− π

ay

,
π

ay

]
, (8)

where kx and ky are the crystal wave vectors in the first Brillouin
zone of the reciprocal lattice, and nx and ny are integers. By
using these basis states which satisfy the periodic conditions,
an arbitrary time-dependent wave function can be expanded as

�(x,y,t) =
∑

Cnx,ny
(t)ψnx,ny

(x,y). (9)

In the field-free case, Cnx,ny
(t) is of course time independent

and one can diagonalize the corresponding field-free Hamilto-
nian to obtain the band structure [60]. Specifically, to get the
band energy and the corresponding state of the 2D solid, one
can solve the time-independent Schrödinger equation

Hfree|�〉 = E|�〉. (10)

Inserting the expansion in Eq. (9) into the Schrödinger equation
(10), we arrive at the following eigenvalue problem in terms
of the expansion coefficients:

∑
nxny

{
δmxnx

δmyny

h̄2π2

2m0a2

[(
2nx + kxa

π

)2

+
(

2ny + kya

π

)2]
+ Vnxny,mxmy

}
Cn

nxny
= EnCn

mxmy
, (11)

where n is an integer to index the energy. Note that, in the
present work, we will consider a square cell with a lattice
constant a, i.e., ax = ay = a.

To model the periodic potential of the 2D material, we adopt
the well-known Kronig-Penney potential [61]. In a square unit
cell extending from 0 to a along the lattice side, we introduce a
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square well with a height of V0, which typically takes a negative
value. The well extends from q1 to q2 in each direction, i.e.,

V (x,y) =
{

V0, for q1 < x < q2 and q1 < y < q2,

0, elsewhere.
(12)

Therefore, the matrix elements for the potential term in Eq. (11)
can be analytically evaluated by the following integrals:

Vnxny,mxmy
= V0

a2

∫ q2

q1

∫ q2

q1

dxdy ei 2π
a

[(mx−nx )x+(my−ny )y],

(13)

in which we take V0 = −0.15 a.u., q1 = a/8, and q2 = 7a/8
in the present work.

With the availability of the matrix elements in Eq. (11),
one can calculate the band energies of the 2D materials by
repeatedly diagonalizing the Hamiltonian for different values
of kx and ky in the first Brillouin zone.

For the time-dependent case where the laser field is present,
one needs to evaluate the matrix elements of the interaction
Hamiltonian Hint in Eq. (3). By the same expansion of Eq. (9),
it is easy to show that the corresponding matrix elements

H int
nxny ,mxmy

= − h̄e

m0

[(
2π

a
nx + kx

)
Ax(t)

+
(

2π

a
ny + ky

)
Ay(t)

]
δmxnx

δmyny
, (14)

where Ax(t) = A(t) cos θ and Ay(t) = A(t) sin θ .
In all the results presented below, we choose an initial state

calculated by diagonalizing Eq. (11) for kx = ky = 0 in the
valence band. Please note that the choice of other crystal wave
vectors in the first Brillouin zone as the initial state will lead
to qualitatively similar conclusions. In fact, the total yield of
each harmonic will be a sum of the contribution from every
initial crystal vector.

Once the initial state is given, the TDSE given by Eq. (1) is
propagated using the Crank-Nicolson (CN) method:

Cnx,ny
(t + �t) = 1 − i(Hfree + Hint)�t

2

1 + i(Hfree + Hint)�t
2

Cnx,ny
(t), (15)

where �t is the time step. During the propagation of the wave
function, the electronic current can be calculated at an arbitrary
time:

j(t) = − e

m0
[〈�(t)|p|�(t)〉]. (16)

At the end of the interaction with the laser pulse, the
harmonic generation spectrum can be computed through a
Fourier transform to the current j(t), which is multiplied by
a Hanning window [37] to improve the signal-to-noise ratio.

In all the results presented below, the laser pulse used has a
cos2 envelope, i.e.,

A(t) = A(t)ε̂ = A0 cos2

(
π

Td

)
sin(ωt)ε̂, (17)

where ε̂ is the unit vector of the laser polarization, and
A0 = E0/ω is the peak value of the vector potential with the
peak electric field E0 = √

I0/Ia.u. (the atomic unit of laser
intensity Ia.u. = 3.51 × 1016 W/cm2). For all the wavelengths

and intensities used below, we keep the number of optical
cycles equal to 8, i.e., the pulse duration is Td = 16π/ω. Unless
otherwise stated, the laser polarization ε̂ is along the lattice
side, i.e., θ = 0◦.

III. RESULTS AND DISCUSSIONS

In this section, we will present our main numerical results.
We will first present a comparison study of the band structure
and harmonic spectrum between the 1D and 2D models. Then
we will show the harmonic spectra of the 2D model at different
laser parameters. By including a different number of basis sets
in the expansion of Eq. (9), at specific laser conditions, we show
that the conduction bands are excited by a ladder-climbing
manner and they will lead to multiple-plateau structures in
the harmonic spectrum. These features of the multiple-plateau
structures are clearly seen when the electric field strength is
gradually increased at different excitation laser wavelengths.
Meanwhile, this is confirmed by a time-frequency analysis
of the harmonic spectra at different polarization angles θ

with respect to the side of the lattice. Finally, we present
the orientation dependence of the harmonic spectra, which
qualitatively agrees with recent experimental measurements.

A. Comparisons of 2D and 1D models

We first present the band structures of the 2D Kronig-
Penney model in Fig. 2. In Fig. 2(a), the first three energy bands
are shown in the whole (kx,ky) plane for the first Brillouin
zone. As can be seen, there exist several critical points 
(0,0),
X(1,0), and M(1,1).

In order to see clearly more energy bands which may be
involved in the harmonic generation process, we show in
Fig. 2(b) the first 50 bands along the direction of 
-X, X-M,
and M-
. Obviously, in the 2D case, the conduction bands are
present as different clusters, which is different from the 1D
case that will be shown later. We can label these clusters at
the 
 critical point as (C1, C2, C3, . . .). In each cluster, there
are several energy bands staying very close. This will greatly
enhance the transition probability under the interaction of a
laser pulse since the laser electric field will change the electron
momentum close to the boundary of the Brillouin zone, or to
the nearly crossing points within the zone.

Before presenting the harmonic spectra for the 2D model,
we show the comparison with the 1D Kronig-Penney model. In
Fig. 3(a), we show the band structure of the 1D model, together
with that of the 2D model along the 
-X direction. As one can
see, the band structures of the 2D model are more complicated
than the 1D case. On the one hand, each corresponding energy
band in the 1D evolves into a cluster of bands. On the other
hand, there are new bunches of energy bands emerging between
these clusters.

One expects that the great differences in the energy bands
between the 1D and 2D models will reflect themselves in
the harmonic spectrum. We show their spectra in Figs. 3(c)
and 3(d) respectively under the same laser parameters, i.e.,
λ = 3200 nm and I0 = 0.436 TW/cm2. As one can see, the
spectrum for the 2D model is more complicated and has a
multiple-plateau structure and a higher cutoff energy than that
in the 1D case. This can be qualitatively explained by their

043420-3



JIN, XIAO, LIANG, WANG, CHEN, GONG, AND PENG PHYSICAL REVIEW A 97, 043420 (2018)

-1

-2

1

0

2

B
an

d 
en

er
gy

 (
eV

)

4

0

6

0
1-1 k

xk
y

K-space direction

B
an

d 
en

er
gy

 (
eV

)

0

20

40

60

80

Γ X ΓM

C8

C1

V

C2

C3

C4

C5

C6

C7

(b)

(a)

FIG. 2. The band structures for the 2D Kronig-Penney well.
(a) is the full 3D representation for the first 3 energy bands. (b) shows
the first 50 bands about the high-symmetry points indicated in the
horizontal axis. 
 is the (0,0) point, X is the (1,0) point, M is the (1,1)
point. The band clusters (C1, C2,...) have been marked in (b).

band structures. In the 1D model, the energy bands do not
cross each other as shown in Fig. 3(a), thus the electron can
only translate to a higher energy band at the boundary of the
Brillouin zone. However, in the 2D case, energy bands may
cross each other during the increase of the crystal momentum
along the 
-X direction, which means that for the same laser
pulse the electron is much easier to be excited to higher energy
bands than in the 1D case. This will lead to a higher photon
energy and a multiple-plateau structure, which can be seen
clearly in Fig. 3(d).

From the above comparison study, we can see that the
harmonic generation dynamics in the 2D model is much more
interesting and complex than the 1D model. In addition, one
expects that the 2D model is more accurate in interpreting
relevant experimental results in the 2D materials. For example,
many properties of HHG, such as the orientation dependence
and the influence of ellipticity of the laser polarization, can be
qualitatively interpreted in the 2D model. Actually, when the
beam of a laser pulse shines perpendicularly into a 3D solid
material, the harmonic spectra detected mainly come from the
interaction of the laser with the back surface of the material
because of reabsorption inside the material [53]. Therefore, the

k (units of /a)

B
an

d 
en

er
gy

 (
eV

)

0

20

40

60

80
(a)

0 1
k (units of /a)

B
an

d 
en

er
gy

 (
eV

)

0

20

40

60

80

(b)

10

Harmonic order

lo
g 

10
(I

nt
en

si
ty

) 
(a

rb
. u

ni
ts

)

50 100

-50

-40

-30

-20

-10

0
(c)

Harmonic order

lo
g 

10
(I

nt
en

si
ty

) 
(a

rb
. u

ni
ts

)

50 100

-50

-40

-30

-20

-10

0
(d)

FIG. 3. Band structures for (a) the 1D model and for (b) the 2D
model along the 
-X direction. The corresponding harmonic spec-
trum is shown in (c) for the 1D and in (d) for the 2D model, generated
by the same laser pulse of λ = 3200 nm and I0 = 0.436 TW/cm2.

2D model can in some extent simulate the harmonic generation
of the back surface of the 3D material.

B. Harmonic spectra for the 2D case

Now we turn to investigate the harmonic generation spectra
for our 2D model under different conditions and discuss their
features and relationships to the band structures. We will see
that, the excitations of the higher conduction bands proceed
step by step and their involvements in the generation dynamics
will lead to a multiple-plateau structure. First, this point can
be confirmed by including a different number of basis states
in the expansion of Eq. (9). Second, it can also be clearly seen
from the harmonic spectra when one gradually increases the
intensity of the laser pulse. Third, these features can be revealed
by performing a time-frequency analysis for the harmonic
signal at different laser polarization angles. As a distinct feature
in the 2D case, the orientation dependence of the harmonic
generation is theoretically studied, which qualitatively agrees
with recent experimental studies.

1. Spectra calculated by using different number of basis states

We first consider the case where the polarization of
the laser pulse is along the 
-X direction. In Figs. 4(a)
and 4(b), the harmonic spectra are respectively shown for
the laser wavelength λ = 1200 and λ = 3200 nm at the same
peak vector potential of A0 = 0.304 a.u. As the initial state
of the electron is at the critical point of 
, we reproduce
in Fig. 4(c) the band structure along the 
-X direction.
When the vector potential of the laser pulse becomes large
enough, the momentum of the electron can be changed to be
close to the crossing points along the 
-X direction, two of
which are indicated by dashed and solid vertical lines.
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FIG. 4. HHG by different wavelengths of the laser pulse and by using different number of basis states for the 1200-nm case. Figures
(a) and (b) respectively show the spectra for λ = 1200 and λ = 3200 nm at the same peak value of the vector potential. Figure (c) shows the
band structure in the 
-X direction. The two vertical lines indicate the two crossing points. Figures (d)–(f) show the resultant spectra for the
case of λ = 1200 nm by using different number of basis states in the expansion (9).

In Fig. 4(a) when λ = 1200 nm, we can see two clear plat-
forms, with a cutoff energy close to 40 and 80 eV respectively.
They come from the interband transitions from the band cluster
(C3, C4) and (C5, C6, C7) to the valence band respectively.
Following each of the two platforms, the harmonic spectrum
shows a sharp falling because of the large band gaps from C2
to C3 and from C4 to C5. Under the driving of the laser field,
the electron can cross these gaps by a multiphoton excitation
or a Zenner-type tunneling.

One notices that there does not exist a clear plateau structure
with a cutoff energy around 15 eV, corresponding to the
transition between the cluster (C1, C2) to the valence band.
This is probably because the photon energy of the 1200-nm
laser is large (about 1 eV), so the spectrum in this region reflects
a nature of the mutliphoton process and this plateau is hard to
be observed. To check this point, we increase the wavelength
to 3200 nm (with a photon energy of 0.375 eV) but the peak
value of the vector potential is kept the same. The resultant
spectrum is shown in Fig. 4(b). In this case, one can clearly
observe two plateaus with a cutoff energy around 10 and 17 eV
respectively. They are caused by the transitions from the C2
and C3 to the valence band.

As one can see from the above results and discussions, for
the 2D case, the transitions from the valence band to different
conduction bands can proceed upward step by step via different
crossing or mixing points in the band structures. This can
actually be verified by including a different number of basis
states in the expansion of Eq. (9) when one solves the TDSE.

In Figs. 4(d), 4(e) and 4(f), we show the result by including
9, 25, and 49 basis states, each compared with the converged
result of the 121 basis states. In Fig. 4(d) we use 9 basis states,
roughly corresponding to the lowest 9 energy bands, just the
valence band, and C1, C2 conduction-band clusters. We can see
that the HHG spectrum agrees well with the whole band HHG
only at the low energy region (0 ∼ 15 eV). However, the two
obvious platforms at larger photon energies have disappeared.

In Fig. 4(e), when we use 25 basis states, roughly cor-
responding to the lowest 25 energy bands, including the
valence band, the C1 ∼ C4 band clusters, and four other energy
bands in the C5, the first platform (20 ∼ 39 eV) appears. The
rightmost platform still does not quite emerge in this spectral.
As in our prediction, the second platform is caused by the (C5,
C6, C7) clusters. In Fig. 4(f) when we use 49 basis states,
including the valence band and the (C1 ∼ C7) band clusters,
the HHG spectrum already overlaps with that of the 121 basis
states. These simulations show that the HHG has a strong
connection with the 2D energy band. Actually, we can get
the conclusion that the interband transitions of different band
clusters generate different plateaus in the HHG spectrum.

2. Spectrum variations against change of the laser intensity

In this part, we will investigate the dependence of the
harmonic spectrum on the laser peak intensity. Since the
amount of the electron’s momentum change by the laser field
is proportional to the vector potential of the field, we choose to
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FIG. 5. Harmonic spectra as a function of electric field strength at different laser wavelengths: (a) λ = 800, (b) λ = 1200, and (c) λ =
3200 nm. (d) Vector potential of the electric field for the case in (c), in which the horizontal green dashed line represents the value of crystal
momentum (0.365 a.u.) at the boundary of Brillouin zone.

plot the harmonic yield as a function of the peak value of the
vector potential A0. In Figs. 5(a)–5(c), we present the variation
of the harmonic yield for three different wavelengths, i.e., 800,
1200, and 3200 nm. Please note that, in all three cases, both
the horizontal axis (harmonic energy) and vertical axis (vector
potential) are taken to be in the same range.

As one can see, very clear stair-like structures are present in
all of Figs. 5(a)–5(c). For guiding one’s eyes, we draw dashed
lines and solid lines. The dashed lines indicate that the cutoff
energy of each plateau is linearly proportional to the peak
field strength of the laser pulse, which has previously been
identified in the 1D case both from the two-band model and
from the semiclassical analysis [37]. The linear relationship has
also been experimentally verified [17]. Here, we focus on the
black solid lines in Figs. 5(a)–5(c), which represent threshold
laser intensities. One notices that horizontal solid lines are at
similar values of vector potential for all three cases, which
is understandable since the maximum change of the electron
momentum is directly related to the peak value of the vector
potential. When the electric strength of the laser reaches the
threshold intensity, the electron is able to be excited to a higher
conduction band cluster, whose subsequent transition back to

the valence band can form a new plateau in the harmonic
spectrum.

It is worth pointing out that due to the existence of crossing
points in the 2D band structure, it is unnecessary for the
laser intensity to be so high that the change of the electron
momentum can reach the boundary of Brillouin zone π/a. To
see this clearly, let us examine the rightmost horizontal line
in Fig. 5(c) with the wavelength λ = 3200 nm. We show the
vector potential of the laser pulse in Fig. 5(d). One can see
that the maximum vector potential is about 0.292 a.u., which
is very close to the crossing point around 0.285 a.u between
the band cluster C4 and C5. On the contrary, the boundary of
Brillouin zone π/a equals 0.365 a.u., as indicated by a black
solid line in Fig. 5(d). This observation confirms that in the
2D case, the excitation of the conduction bands can proceed
step by step via many of the crossing points in the 2D band
structure, which is very different from the 1D case where the
laser intensity often needs to be high enough for the electron
to access the boundary of Brillouin zone. However, the above
observation and analysis tells us the semiclassical picture of
harmonic generation in the 1D model [41] is also qualitatively
correct in the present 2D model.
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FIG. 6. Time-frequency analysis of the HHG and the orientation dependence of the HHG. (a) and (b) show the time-frequency spectrum at
different angles θ = 0◦ and θ = 45◦. Figure (c) shows a yield comparison at these two angles and (d) shows the orientation dependence from
0◦ to 180◦.

From these intensity-dependence studies, we clearly show
that the harmonic spectrum is closely related to the the energy
band for the 2D material. Specifically, the interband transitions
of different conduction-band clusters to the valence band
produce different plateaus in the spectrum. The excitation by
the external laser pulse of these conduction bands proceeds
upward sequentially via different crossing points in the band
structure.

3. Time-frequency analysis and orientation dependence of HHG

To further reveal the dynamics of harmonic generation and
the formation of plateaus, we present a time-frequency analysis
of the electronic current. As an example, we discuss the results
for the wavelength λ = 1200 nm with a peak electric field
E = 0.012 a.u. The maximum vector potential for this case
equals about 0.83 × (π/a). We show the time-frequency spec-
trographs at these laser parameters in Figs. 6(a) and 6(b) for
the laser polarization θ = 0◦ and 45◦ respectively. From these
two panels, we can see the step-by-step structure clearly, which
means that in the 2D model, the electron will first be excited in
the lower band clusters and then gradually to higher band clus-
ters as the time-dependent electric field strength is increased.
In both cases, there are mainly three plateaus, each of which
corresponds to the energy gap of the band clusters (C1, C2),
(C3,C4), and (C5, C6, C7) with respect to the valence band.

However, when the laser polarization direction is changed
from 0◦ to 45◦, the details of the spectrographs look different.
This is because the band structures are quite different in
different directions. For example, the span of k from the critical
point 
 to the boundary of the Brillouin is different for these
two angles: π/a for 0◦ and 1.414 × (π/a) for 45◦. It means that
it is harder for an electron to reach the boundary when θ = 45◦.
Therefore, from the comparison of the harmonic yield shown
in Fig. 6(c), we can see the harmonic intensity for the 0◦ case is
higher than that of the 45◦ case. The time-frequency analysis
shows the intensity and structure differences due to the change
of the energy band.

Finally, as mentioned above, an obvious feature for the
2D material is the orientation dependence of the harmonic
spectra, which has been observed in recent experiments
[17,18,20,21,53]. In Fig. 6(d), using our 2D model, we cal-
culate the change of the harmonic spectrum as a function of
the angle θ . Due to the four-fold symmetry in the energy
band for our square lattice, as shown in Fig. 2(a), we find
that the harmonic yield takes its maximum value at 0◦ (180◦),
and minimum at 35◦ (145◦) and 55◦ (125◦). Our results
qualitatively agree with the experimental measurements [53].
However, we emphasize that the minimum is not at the angle
of 45◦ (135◦) simply because for our square structure in both
the lattice space and momentum space, it is possible for the
electron dynamics to happen between two sites on the diagonal
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line with a lower probability due to a larger spacing than the
sides of the lattice [17]. Actually, we confirm this by examining
the angle distribution of the HHG at different laser intensities
(results not shown here). Indeed, if one decreases the electric
strength of the laser field, the peak structures around 45◦ (135◦)
will gradually disappear.

IV. CONCLUSIONS

In summary, we have presented theoretical studies on
high-order harmonic generation from a 2D band structure.
By analyzing the structures of the HHG spectra, we find the
close relationship between harmonic generation and the band
structures. The excitations of the higher conduction bands can
proceed step by step when the laser intensity is increased,
and multiple plateaus are identified in the spectra due to the
transitions between different clusters of conduction bands to

the valence band. Most importantly, we show the distinct
differences between the 1D and 2D models. One the one hand,
the harmonic generation in 2D is critically dependent on the
angle of the laser polarization with respect to the lattice side.
On the other hand, because of the existence of many crossing
points in the 2D band structures, it is much easier for the
electron to be excited to higher bands at relatively lower laser
intensities. Harmonic generation in the 2D band is contributed
to by the mixing of these bands and shows multiple plateaus
in the spectrum.
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