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Electron scattering states in combined Coulomb and laser fields are investigated with a nonperturbative approach
based on the Hermitian Floquet theory. Taking into account the Coulomb-specific asymptotic behavior of the
electron wave functions at large distances, a Lippmann-Schwinger-Floquet equation is derived in the Kramers-
Henneberger frame. Such a scattering-state equation is solved numerically employing a set of parabolic quasi-
Sturmian functions which have the great advantage of possessing, by construction, adequately chosen incoming
or outgoing Coulomb asymptotic behaviors. Our quasi-Sturmian-Floquet approach is tested with a calculation
of triple differential cross sections for a laser-assisted (e,2e) process on atomic hydrogen within a first-order
Born treatment of the projectile-atom interaction. Convergence with respect to the number of Floquet-Fourier
expansion terms is numerically demonstrated. The illustration shows that the developed method is very efficient
for the computation of light-dressed states of an electron moving in a Coulomb potential in the presence of laser
radiation.

DOI: 10.1103/PhysRevA.97.043417

I. INTRODUCTION

The electron scattering states in a Coulomb field are en-
countered in the theoretical treatments of various phenomena,
such as the electron bremsstrahlung in the electric field of
an atomic nucleus, atomic photoionization and electron-ion
photorecombination, ionization of atoms under charged par-
ticle impact, etc. In nonrelativistic quantum mechanics, these
states are given by the solutions, with asymptotic outgoing or
incoming spherical wave behavior, of the Schrödinger equation
with a Coulomb potential. Such solutions are well known
(see, e.g., the textbook [1]) and are usually referred to as the
Coulomb wave functions or, simply, the Coulomb waves. In the
last few decades, the availability of powerful lasers and their
application to the study of multiphoton processes have greatly
stimulated theoretical investigations of the above-mentioned
radiation and ionization phenomena in the presence of intense
laser fields. In contrast to the pure Coulomb case, when an
electron moves in a Coulomb potential in the presence of a laser
electric field, the corresponding Schrödinger equation does not
possess closed-form solutions anymore. As a consequence,
for laser-modified Coulomb scattering states, one has then
to resort either to analytical approximations or to numerical
approaches. The most frequently employed approximations are
(i) the strong field approximation [2], whereby the Coulomb
potential is neglected in the Schrödinger equation, and the
electron states are described by the Volkov functions [3]; (ii)
the Bunkin-Fedorov approach [4], which treats the Coulomb
potential perturbatively; and (iii) the Coulomb-Volkov states

[5,6], where both the Coulomb and the laser fields are treated
nonperturbatively (see also Ref. [7] for testing the accuracy of
the Coulomb-Volkov approximation). Concerning approaches
which are purely numerical and free of approximations, we
find the treatments of the laser-assisted Coulomb scattering
using the R-matrix-Floquet theory [8] and the close-coupling
method [9–11] in the accelerated, or Kramers-Henneberger
(KH), frame [12].

Our aim is to develop an alternative, nonperturbative ap-
proach that is ultimately able to describe efficiently electron
scattering states in radiation-assisted processes. In the present
contribution, in particular, we present a way of calculating
laser-modified Coulomb wave functions within the Hermitian
Floquet theory (see, e.g., Ref. [13]). The originality of our
approach stands on using recently introduced set of functions
[14] (here taken in parabolic coordinates) and on taking
advantage of the following observation. When working within
the KH frame, a laser field is effectively absent, and an electron
moves in a Coulomb potential of a nucleus that oscillates in
time (the oscillations are equivalent to those of a classical
free electron in a laser field in the laboratory frame). At large
distances from the nucleus, the role of the nuclear oscillating
motion vanishes: the electron experiences therefore a usual,
time-independent, Coulomb-tail force and, accordingly, the
leading asymptotic behavior of the electron wave function is
represented by a Coulomb-distorted plane wave. We exploit
this fact to recast the system of (time-independent) cou-
pled equations formulated for Floquet components [15]; the
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original matrix equation for the Floquet state vector becomes a
driven equation with an inhomogeneity which incorporates the
Coulomb wave. The solution of the driven equation, subject to
outgoing or incoming boundary conditions, can be obtained by
applying, for example, the standard Sturmian-Floquet method
[13,16–19]. In our approach, we propose to solve the equation
in parabolic coordinates (with the z axis being parallel to the
electron momentum) by expanding the Floquet components
in terms of so-called quasi-Sturmian (QS) functions [14]
with appropriate outgoing or incoming Coulomb asymptotic
behavior. The parabolic QS functions satisfy inhomogeneous
Schrödinger-type equations with a Coulomb potential and a
driven term consisting of square-integrable Laguerre basis
functions; they are constructed in closed form using an integral
representation of the Coulomb Green’s function in parabolic
coordinates [20,21].

In order to validate our approach we needed to examine the
convergence of the numerical scattering solutions as both the
number of terms in the Floquet-Fourier expansion and the size
of the QS basis are increased. Once these tests were performed,
we wished to illustrate its efficiency by applying the method
to a concrete example. Here we considered the laser-assisted
(e,2e) collision on atomic hydrogen:

�ω + e− + H(1s) → H+ + 2e−, (1)

in which a net number � of photons of frequency ω can
be exchanged between the colliding system and the external
field while the ionization process takes place. The measurable
quantity that characterizes an (e,2e) reaction is the triple
differential cross section (TDCS), which is differential in the
solid angles of the two emitted electrons and in the energy
of one of them. To calculate it one needs to describe both
the ejected electron and the initial laser-dressed target wave
functions. The latter is often obtained from a perturbation
treatment (see, e.g., Ref. [22]). Here, we get it in the KH frame
through the diagonalization of the Hamiltonian matrix in the
basis of L2 Laguerre functions. Specifically, we identify this
state with an eigenfunction whose zeroth Floquet component
is largest in magnitude. Hence, this eigenstate may be regarded
as a generalization of the so-called KH state predicted within
the high-frequency Floquet theory [23] (see also Ref. [24]
and references therein). The main challenge to describing the
ionization process (1) is to deal properly with the (slow) ejected
electron. As a starting point, it can be described by either
Volkov [25] or Coulomb-Volkov states [26,27], or approxi-
mated using perturbation theory [28,29]. In the case of intense
laser fields, however, one must go beyond perturbative and
approximate approaches: this constitutes the main motivation
of the present contribution. Within our nonperturbative formu-
lation, we essentially recast the original Floquet matrix method
and solve a driven equation using parabolic QS functions. The
proposed treatment of the ejected-electron state can indeed be
done as illustrated through convergent numerical calculations
of a laser-assisted (e,2e) reaction on atomic hydrogen.

The paper is organized as follows. In Sec. II, we present
the general matrix equation for the Floquet components of the
electron wave function in the KH frame. The scattering-state
problem is formulated as a Lippmann-Schwinger-type integral
equation. Section III is dedicated to its solutions. We start by

looking at the matrix equations corresponding to an expansion
on the basis set of square-integrable Laguerre functions in
parabolic coordinates. We then propose an alternative approach
whereby the Lippmann-Schwinger-type integral equation is
recast as a driven equation with purely incoming or outgoing
boundary conditions. The scattering-state solution is sought
using an expansion in terms of parabolic QS functions pos-
sessing adequate Coulomb incoming or outgoing boundary
conditions. In Sec. IV, we present the results of some numerical
calculations in the context of the laser-assisted ionization pro-
cess on atomic hydrogen. We study the convergence behavior
of the scattering-state solution [representing, e.g., the ejected
electron in reaction (1)] as a function of the number both of
QS basis functions and of Floquet components. To compute
the initial dressed hydrogen state, we first retain only the
zeroth component in the Floquet-Fourier expansion and find
the KH state, i.e., the lowest state for the time average of the
oscillating electron-nucleus interaction in the KH frame. Then
we successively increase the number of Floquet components,
thereby obtaining a sequence of eigenstates originating from
the KH state. Convergence of this sequence of generalized
KH states is demonstrated numerically. Finally, in order to
illustrate the applicability of the developed approach, laser-
assisted (e,2e) triple differential cross sections in the first Born
approximation are computed. Section V summarizes this work.
Atomic units (a.u., h̄ = e = me = 1) are used throughout
unless otherwise specified.

II. FLOQUET THEORY IN THE
KRAMERS-HENNEBERGER FRAME

We consider electron scattering states in a Coulomb field
in the presence of linearly polarized monochromatic laser
radiation with the vector potential

A(t) = A0 cos ωt. (2)

The laser field of frequency ω is assumed to switch on
adiabatically at t = −∞.

The electron dynamics is governed by the time-dependent
Schrödinger equation

i
∂

∂t
�(r,t) =

[
1

2

(
−i∇ + 1

c
A(t)

)2

+ V (r)

]
�(r,t), (3)

with the electron-nucleus Coulomb potential V (r) = −Z/r

(the nucleus of charge Z > 0 is assumed to be infinitely heavy
as compared to the electron mass). In the accelerated, or space-
translated, KH frame [12], Eq. (3) is transformed into

i
∂

∂t
ψ(r,t) =

(
−1

2
� + V [r + a(t)]

)
ψ(r,t), (4)

where

ψ(r,t) = exp

[
a(t) · ∇ + i

2c2

∫ t

−∞
dt ′A2(t ′)

]
�(r,t), (5)

a(t) = 1

c

∫ t

−∞
dt ′ A(t ′) = a0 sin ωt (6)

is the displacement vector of a classical electron, with a0 =
A0/ωc called the quiver amplitude.

043417-2



LASER-MODIFIED COULOMB SCATTERING STATES OF … PHYSICAL REVIEW A 97, 043417 (2018)

A. Floquet equations

Within the Hermitian Floquet theory (see, e.g., [13]), one
seeks the solution of Eq. (4) in the form

ψ(r,t) = e−iEt

∞∑
n=−∞

e−inωtFn(E,r), (7)

where E is a real quantity called the Floquet quasienergy of
the state. The harmonic components Fn satisfy an infinite set
of time-independent equations:

(Hn + Ṽ0(a0,r) − E)Fn(E,r) +
∑
ν �=n

Vn−ν(a0,r)

×Fν(E,r) = 0, n = 0, ±1, ±2, . . . (8)

Here

Hn = HC − nω, HC = −1

2
� − Z

r
,

Ṽ0(a0,r) = V0(a0,r) + Z

r
, (9)

and Vn are the Fourier components of the space-translated
Coulomb potential V [r + a(t)],

Vn(a0,r) = 1

T

∫ T

0
dteinωt V [r + a(t)], (10)

with T = 2π/ω being the optical period.
Equation (8) can be written in the matrix form

(H + V − EI)F = 0, (11)

where F is the infinite Floquet vector

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
F−n

...
F−1

F0

F1
...

Fn

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (12)

H is the infinite diagonal matrix

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
H−n

. . .
H−1

H0

H1

. . .
Hn

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

I is the infinite identity matrix, and V is the Hermitian matrix

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
Ṽ0 V−1 . . . V−n

V1
. . .

. . .
. . .

. . .
...

. . . Ṽ0 V−1
. . .

. . .

Vn

. . . V1 Ṽ0 V−1
. . . V−n

. . .
. . . V1 Ṽ0

. . .
...

. . .
. . .

. . .
. . . V−1

Vn . . . V1 Ṽ0

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

whose nth subdiagonal contains Vn.
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B. Scattering states

In the field-free case, for an electron with momentum k, the Coulomb scattering states are given by the well-known outgoing
(+) or incoming (−) waves [30]:

ψ
(±)
C (r) = 1

(2π )3/2
e− 1

2 πβ�(1 ± iβ)eikr
1F1(∓iβ,1; ±i(kr ∓ kr)), (15)

where k = √
2E, and the Sommerfeld parameter β = −Z/k measures the strength of the Coulomb field. At asymptotically large

distances the Coulomb waves behave as

ψ
(±)
C (r) −→

r→∞
1

(2π )3/2

{
exp [ikr ± iβ ln(kr ∓ kr)] + f

(±)
C (E,r̂)

exp [±ikr ∓ iβ ln(2kr)]

r

}
, (16)

where r̂ = r/r , f (+)
C is the Coulomb scattering amplitude [30],

and f
(−)
C = [f (+)

C ]∗.
In the presence of the laser field [Eq. (2)], the electron

scattering states are given by the solutions of the Floquet
equations (8) with proper r → ∞ boundary conditions which
account for the long-range effect of the potential V [r + a(t)].
Such conditions can be formulated making use of the properties

ψ(r,t) −→
t→−∞ e−iEtψ

(±)
C (r), Vn(a0,r) −→

r→∞ δn0V (r).

From the latter it follows that the Floquet channels (n = 0, ±
1, ±2, . . .) asymptotically decouple and, hence, one obtains
the outgoing and incoming boundary conditions in the form
[15]

F (±)
n (E,r) −→

r→∞
1

(2π )3/2

{
δn0 exp [ikr ± iβ ln(kr ∓ kr)]

+ f (±)
n (E,r̂)

exp [±iknr ∓ iβn ln(2knr)]

r

}
,

(17)

where βn = −Z/kn, and

kn =
{ √

2(E + nω), E + nω � 0,

±i
√−2(E + nω), E + nω < 0.

(18)

In order to satisfy the boundary conditions we recast the matrix
equation (11) into a Lippmann-Schwinger equation

F(±) = S(±) − G(±)VF(±), (19)

where

S(±) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
0
...
0

ψ
(±)
C

0
...
0
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (20)

and G(±) is the diagonal matrix containing the Coulomb
Green’s functions operators G(±)

n whose kernels G(±)(kn; r,r′)

satisfy the equation(
−1

2
� − Z

r
− k2

n

2

)
G(±)(kn; r,r′) = δ(r − r′). (21)

Since the Fourier components Vn decrease asymptotically as
∼1/r |n|+1, the elements of the matrix V vanish as fast as 1/r2

or faster when r → ∞: the kernel of the integral equation (19)
is therefore compact.

Directing the z axis along the electron momentum k and
introducing the parabolic coordinates (ξ , η, φ) through the
relations x = √

ξη cos φ, y = √
ξη sin φ, and z = (ξ − η)/2,

Green’s function can be represented by the expansion

G(±)(k; r,r′) = 1

2π

∞∑
m=−∞

eim(φ−φ′)G|m|(±)(k; ξ,η; ξ ′,η′).

(22)

The partial components G|m|(±) obey the equation

1

2

[
−

(
∂

∂ξ
ξ

∂

∂ξ
+ ∂

∂η
η

∂

∂η

)
+ kβ

+ m2

4ξ
+ m2

4η
− (ξ + η)

k2

4

]
G |m|(±)(k; ξ,η; ξ ′,η′)

= δ(ξ − ξ ′)δ(η − η′), (23)

and possess the following integral representation [21]

G|m|(±)(k; ξ,η; ξ ′,η′)

= ∓ik

∫ ∞

0
ds sinh s

(
coth

s

2

)∓2iβ

e±i k
2 (ξ+ξ ′+η+η′) cosh s

× I|m|(∓ik
√

ξξ ′ sinh s)I|m|(∓ik
√

ηη′ sinh s), (24)

where I|m| are the modified Bessel functions [31] [Eq. (24) is
slightly different from that in Ref. [20]].

III. QUASI-STURMIAN APPROACH

In this section we present our method for solving the
Floquet-Lippmann-Schwinger equation (19). We first outline
it by considering square-integrable Coulomb-Sturmian basis
functions in parabolic coordinates. Then, we formulate the
driven matrix equation to be solved with a basis set of parabolic
quasi-Sturmian functions.
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A. Square-integrable Coulomb-Sturmian basis functions

Consider the scattering-state Floquet components as the
expansions

F (±)
n =

∞∑
m=−∞

∞∑
n1,n2=0

Cn(±)
n1n2m

|n1n2m〉, (25)

with

|n1n2m〉 = eimφ

√
2π

ϕ|m|
n1

(ξ ) ϕ|m|
n2

(η), (26)

where the square-integrable functions ϕ
|m|
n are defined in terms

of the associated Laguerre polynomials L
|m|
n [31],

ϕ|m|
n (ρ) =

√
2b�(n + 1)

�(n + 1 + |m|) (2bρ)|m|/2e−bρL|m|
n (2bρ). (27)

Hereb is the basis scale parameter. The basis functions |n1n2m〉
are orthogonal to

|ñ1n2m〉 = 4

(ξ + η)
|n1n2m〉, (28)

i.e., 〈 ˜n′
1n

′
2m

′|n1n2m〉 = δn′
1n1δn′

2n2δm′m.
A method for solving a Lippmann-Schwinger equation

in the context of square-integrable functions can be found
elsewhere (see, e.g., [32]). Specifically, in order to write out
a matrix equation for the coefficients Cn(±)

n1n2m
of expansion

(25), one uses the formal basis set (26) representations of the
potentials Vn and Green’s operators G(±)

n :

Vn =
∑

n1,n2,m

∑
n′

1,n
′
2,m

′
|ñ1n2m〉〈n1n2m|Vn|n′

1n
′
2m

′〉〈 ˜n′
1n

′
2m

′|

=
∑

n1,n2,m

∑
n′

1,n
′
2,m

′
[V ]nn1n2m; n′

1n
′
2m

′ |ñ1n2m〉〈 ˜n′
1n

′
2m

′|, (29)

G(±)
n =

∑
n1,n2,m

∑
n′

1,n
′
2,m

′
|n1n2m〉〈ñ1n2m|G(±)

n | ˜n′
1n

′
2m

′〉〈n′
1n

′
2m

′|

=
∑

n1,n2,m

∑
n′

1,n
′
2,m

′
[G(±)]nn1n2m; n′

1n
′
2m

′ |n1n2m〉〈n′
1n

′
2m

′|. (30)

Using the two equivalent forms of the unit operator

I1 =
∑

n1,n2,m

|n1n2m〉〈ñ1n2m|, I2 =
∑

n1,n2,m

|ñ1n2m〉〈n1n2m|,

(31)

one can rewrite Eq. (19) as

F(±) = S(±) − I1G
(±)I2VI1F

(±). (32)

The n = 0 components of S(±), which are given by ψ
(±)
C ,

are expanded as

S
(±)
0 (E,r) =

∑
n1,n2,m

S (±)
n1n2m

|n1n2m〉, (33)

where the coefficients S (±)
n1n2m

≡ 〈ñ1n2m|ψ (±)
C 〉 can be readily

derived in terms of the Gauss hypergeometric function 2F1

[31]:

S (+)
n1n2m

= δm0

2π
e− 1

2 πβζ−iβ�(1 + iβ)
(1 + 1

ζ
)(1 + ζ )

2b
(−ζ )n1−n2

2F1(−n2,−iβ; 1; 1 − ζ 2), (34)

S (−)
n1n2m

= δm0

2π
e− 1

2 πβζ−iβ�(1 − iβ)
(1 + 1

ζ
)(1 + ζ )

2b
(−ζ )n1−n2

2F1(−n1,iβ; 1; 1 − ζ−2). (35)

The parameter ζ is defined by

ζ = b + i k
2

b − i k
2

. (36)

The matrix elements of Green’s function,

[G(±)]nn1n2m; n′
1n

′
2m

′ ≡ δm′mG|m|(±)
n′

1n
′
2; n1n2

(βn,kn), (37)

where

G|m|(±)
n′

1n
′
2; n1n2

(βn,kn) =
∫ ∞

0
dξ

∫ ∞

0
dη

∫ ∞

0
dξ ′

∫ ∞

0
dη′ϕ|m|

n′
1

(ξ )ϕ|m|
n′

2
(η)G|m|(±)(kn; ξ,η; ξ ′,η′)ϕ|m|

n1
(ξ ′)ϕ|m|

n2
(η′) (38)

can be expressed as the finite sum

G|m|(±)
n′

1n
′
2; n1n2

(β,k) = ±2i

k
(1 − ζ±2)(−ζ )±K

√(
n′

1 + |m|
n′

1

)(
n′

2 + |m|
n′

2

)(
n1 + |m|

n1

)(
n2 + |m|

n2

) u+v∑
�=0

c� ζ∓2�

×�(|m| + � + 1 ± iβ)�(K + 1 − 2�)

�(K + |m| + 2 − � ± iβ)
2F1

(
K + 1 − 2�,−|m| − � ± iβ; K + |m| + 2 − � ± iβ; ζ±2

)
, (39)
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where K = n′
1 + n′

2 + n1 + n2; the coefficients c� are given by

c� =
min(�,u)∑

j=max(�−v,0)

(
n1

j

)(
n′

1
j

)(
n2

�−j

)(
n′

2
�−j

)
(

j+|m|
j

)(
�−j+|m|

�−j

) ,

with u = min(n1,n
′
1) and v = min(n2,n

′
2).

Substituting the expansions (29), (30), and (33) into Eq. (32), one obtains for the expansion coefficients of Eq. (25) the
following equations:

Cn(±)
n1n2m

= δn0S (±)
n1n2m

−
∑
n′

∑
n′

1,n
′
2,m

′

∑
n′′

1 ,n
′′
2 ,m

′′
[G(±)]nn1n2m; n′

1n
′
2m

′[V ]n−n′
n′

1n
′
2m

′; n′′
1n

′′
2m

′′C
n′(±)
n′′

1n
′′
2m

′′ . (40)

B. Parabolic quasi-Sturmian basis functions

An alternative and, in principle, more efficient way consists of representing the solutions of Eq. (19) as expansions on
basis functions possessing the expected asymptotic behavior rather than on square-integrable ones (26). Expressing the Floquet
components F (±)

n in the form

F (±)
n (E,r) = F̃ (±)

n (E,r) + δn0ψ
(±)
C (r), (41)

Eq. (19) can be recast as follows:

(H + V − E I)̃F
(±) = −VS(±), (42)

whose solutions exhibit, for r → ∞, outgoing or incoming spherical wave behavior. Thus, they can be expanded in terms of
Sturmian functions [13].

Here, our proposal consists of expanding the components F̃ (±)
n ,

F̃ (±)
n (E,r) =

∞∑
m=−∞

∞∑
n1,n2=0

Cn(±)
n1n2m

Q(±)
n1n2m

(kn; ξ,η,φ), (43)

over parabolic QS functions subject to the appropriate boundary conditions as defined in Ref. [14] through Green’s operator G(±)
n ,

namely,

Q(±)
n1n2m

(kn; ξ,η,φ) = G(±)
n |ñ1n2m〉. (44)

One possible representation of these QS functions is in terms of the basis functions (26):

Q(±)
n1n2m

(k; ξ,η,φ) =
∞∑

n′
1,n

′
2=0

G|m|(±)
n′

1n
′
2; n1n2

(β,k)|n′
1n

′
2m〉. (45)

Here, we separate out the φ variable

Q(±)
n1n2m

(k; ξ,η,φ) = eimφ

√
2π

P |m|(±)
n1n2

(k; ξ,η), (46)

and use the integral representation (24) to write the “radial” part as

P |m|(±)
n1n2

(k; ξ,η) = 2(1 + ζ±1)

√
n1!n2!

(n1 + |m|)!(n2 + |m|)! (2b
√

ξη)|m|e−b(ξ+η)

×
∫ 1

0
ds (1 − s)±iβ+|m|(1 − ζ±1s

)∓iβ+|m|(
1 − s − ζ±1s

)n1+n2 exp

[
2b(ξ + η)

ζ±1s

(1 + ζ±1)

]
×L|m|

n1

(
2bξ

(1 − s)(1 − ζ±1s)

(1 − s − ζ±1s)

)
L|m|

n2

(
2bη

(1 − s)(1 − ζ±1s)

(1 − s − ζ±1s)

)
. (47)

This representation allows one to show analytically that the leading asymptotic behavior is given by

P |m|(±)
n1n2

(k; ξ,η) −→
r→∞ A|m|(±)

n1n2
(θ )

exp {±i[kr − β ln(2kr)]}
kr

, (48)

where the amplitudes A|m|(±)
n1n2 are expressed as

A|m|(±)
n1n2

(θ ) = ±i

√
n1!n2!

(n1 + |m|)!(n2 + |m|)! ζ−iβe− 1
2 πβ

[
±

(
1

ζ
− ζ

)]|m|+1( sin θ

2

)|m|

× (−ζ±1)n1+n2

n1∑
ν1=0

n2∑
ν2=0

c(n1,|m|)
ν1

c(n2,|m|)
ν2

�(±iβ + |m| + ν1 + ν2 + 1)(1 − ζ∓2)ν1+ν2

(
cos

θ

2

)2ν1
(

sin
θ

2

)2ν2

, (49)
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with

c(n,κ)
ν = (−1)ν

(n + κ)!

(n − ν)!(ν + κ)!ν!
(50)

being the coefficients of xν in the Laguerre polynomial Lκ
n(x) [31].

From Eqs. (43) and (44) we deduce that

F̃ (±)
n (E,r) = G(±)

n F̄ (±)
n (r), (51)

where

F̄ (±)
n (r) =

∞∑
m=−∞

∞∑
n1,n2=0

Cn(±)
n1n2m

|ñ1n2m〉. (52)

Inserting Eq. (51) into Eq. (42) and accounting for Eq. (21), we thus obtain a driven matrix equation

(I + VG(±))F̄
(±) = −VS(±). (53)

Substituting expansions (29), (30), and (33) into Eq. (53) and projecting onto the basis functions (26), we obtain the equations
for the expansion coefficients

Cn(±)
n1n2m

+
∑
n′

∑
n′

1,n
′
2,m

′

[
V G(±)

]n; n′

n1n2m; n′
1n

′
2m

′C
n′(±)
n′

1n
′
2m

′ = −δn0Dn1n2m, n = 0, ±1, ±2, . . . , (54)

where

[V G(±)]n; n′
n1n2m; n′

1n
′
2m

′ =
∑

n′′
1 ,n

′′
2 ,m

′′
[V ]n−n′

n1n2m; n′′
1n

′′
2m

′′[G(±)]n
′

n′′
1n

′′
2m

′′; n′
1n

′
2m

′ , Dn1n2m =
∑

n′
1,n

′
2,m

′
[V ]0

n1n2m; n′
1n

′
2m

′S (±)
n′

1n
′
2m

′ .

IV. ILLUSTRATION

As indicated in the Introduction, we wish to apply the pre-
sented Floquet formulation to study laser-assisted processes.
Here we shall consider the (e,2e) process (1) in asymmetric
kinematics, where the transferred momentum q = p0 − ps is
very small compared to the momenta p0 and ps of, respectively,
the incident and scattered electrons. With these momenta being
much larger than the momentum of the ejected electron kf ,
exchange effects between the two electrons can be safely
neglected. The energy of the projectile electron (E0 = p2

0/2
and Es = p2

s /2) is taken high enough to treat the S matrix of
the ionization process in the first Born approximation

Sf i = −i

∫ ∞

−∞
dt 〈χps

ψf |W |χp0ψi〉. (55)

Here ψi(f )(r,t) is the initial (final) state of the field-dressed
hydrogen atom (Ei < 0 and Ef = k2

f /2 > 0). Setting r0 to
indicate the position vector of the projectile,

χp0 (r0,t) = e−iE0t eip0r0 , (56a)

χps
(r0,t) = e−iEs t eipsr0 (56b)

are Gordon-Volkov wave functions describing, in the KH
representation, the incident and scattered electrons in a
laser field. The perturbation is given by the projectile-target
interaction

W = 1

|r − r0| − Z

|r0 + a(t)| , (57)

where Z = 1 for atomic hydrogen. Using Eqs. (56a) and (56b)
and the Floquet expansion (7), the time integration yields for
the S matrix:

Sf i = −2πi
∑

�

T
(�)
f i δ(Es + Ef − E0 − Ei − �ω), (58)

where the �-photon transition amplitudes are

T
(�)
f i = 4π

q2

∑
n

[∫
dr F

(f ) ∗
n−� (Ef ,r)eiqrF (i)

n (Ei,r)

−Z
∑
n′

Jn′ (−qa0)
∫

drF (f ) ∗
n−n′−�(Ef ,r)F (i)

n (Ei,r)

]
,

(59)

with Jn′ being the Bessel functions of integer order [31].
The triple differential cross section of the laser-assisted

(e,2e) process (1) involving � photons is given by

dσ (�)

dEf d�s d�f

= 1

(2π )2

pskf

p0
|T (�)

f i |2. (60)

A. Calculation of dressed atomic states

Both the initial and final dressed atomic states are ob-
tained within the Hermitian Floquet formulation, with real
quasienergies Ei and Ef . Specifically, in order to test our
parabolic quasi-Sturmian-Floquet approach, the final stateF(f )

of the ejected electron is derived by solving equations (54) with
incoming boundary conditions. In the calculations we truncate
expansion (52), such that n1,n2 < N and |m| � M , and the
potential matrix (14), such that |n| � Nf . For illustrative
purposes and for the sake of convenience, the initial state F(i) is
also constructed in the KH frame, namely, as an eigensolution
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of Eq. (11) satisfying zero boundary conditions. Its Floquet
components are approximated by the truncated expansions

F (i)
n =

M∑
m=−M

N−1∑
n1,n2=0

Cn(i)
n1n2m

|n1n2m〉 (61)

in terms of N = (2M + 1) × N2 Laguerre basis functions
(26). Then, the expansion coefficients Cn(i)

n1n2m
and eigenenergy

Ei represent a solution of the generalized eigenvalue problem

(H + V)C(i) = EiBC
(i), (62)

where H is the block-diagonal matrix obtained from Eq. (13)
by replacing each Hamiltonian Hn with its matrix representa-
tion, whose size is determined by N . Specifically, the matrix
elements of Hn read

〈n′
1n

′
2m

′|Hn|n1n2m〉 = 〈n′
1n

′
2m

′|HC |n1n2m〉
− nω〈n′

1n
′
2m

′|n1n2m〉, (63)

with

〈n′
1n

′
2m

′|HC |n1n2m〉
= 1

4 δm′m(δn′
2n2h

m
n′

1n1
+ δn′

1n1h
m
n′

2n2
− δn′

1n1δn′
2n2 2Z), (64)

where the nonvanishing elements hm
n′n are given by

hm
nn = b(2n + |m| + 1),

hm
nn+1 = hm

n+1n = b
√

(n + 1)(n + 1 + |m|). (65)

The overlap integrals read

〈n′
1n

′
2m

′|n1n2m〉 = 1
4 δm′m(δn′

2n2q
m
n′

1n1
+ δn′

1n1q
m
n′

2n2
), (66)

with nonvanishing qm
n′n given by

qm
nn = 1

2b
(2n + |m| + 1),

qm
nn+1 = qm

n+1n = − 1

2b

√
(n + 1)(n + 1 + |m|). (67)

By analogy withH, the matrixV is constructed from the blocks
of order N for each Vn. The matrix B has a block-diagonal
structure with N × N matrices of the overlap integrals (66)
along the main diagonal.

Below a method based on Eqs. (61) and (62) is applied for
constructing the solution F(i) associated with the lowest KH
state [23].

B. Numerical results

We inspect the case of the laser-assisted (e,2e) process
(1) in coplanar kinematics, i.e., when the incident electron
momentum p0 and the two outgoing electron momenta ps and
kf lie in the same plane. For the numerical results presented
below the ejected electron momentum is set to kf = 0.93, and
the Laguerre basis (26) scale parameter to b = 0.6. The laser
field is taken with the polarization vector perpendicular to the
scattering plane, a quiver amplitude a0 = 5 and a frequency
ω = 0.05 = 1.36 eV (the values are close to those in the
experiment of Höhr et al. [33], where I = 4 × 1012 W/cm2

and ω = 1.17 eV).
Let us first comment on the advantage of using a basis set

of QS functions instead of the customary square-integrable

FIG. 1. Real and imaginary parts of the “radial” QS function
P3(−)

32 (46) calculated along the θ = π

3 direction, where θ is the angle
between the kf and r vectors in the scattering plane, using the integral
representation (47). In the top panels, the same functions calculated
with expansion (45) in the L2 basis (26), truncated at an upper limit
of 25, are shown with dotted lines. In the bottom panels, the leading
asymptotic behavior (48) is also plotted with dotted lines. All values
are given in a.u.

Coulomb-Sturmian functions. For both of them one uses a
matrix representation in a finite set of L2 Laguerre basis
functions (26), and solving the corresponding matrix equations
gives the basis representations of the wave function. In the
QS case, owing to the asymptotic behavior (48), the truncated
expansion (with the number of terms being equal to the size
of the potential matrix V) allows one to compute the scattering
wave function in the entire configuration space. In turn, with
square-integrable Coulomb-Sturmian functions, the domain
that can be properly described is critically determined by the
number of L2 functions (26): in order to adequately describe
the continuum wave function at large distances one should take
a sufficiently large number. Moreover, the efficiency of a QS
versus Coulomb-Sturmian basis was illustrated, for example,
in Ref. [14] through the representation of the scattering solution
for a Coulomb plus Yukawa-type potential (see also Ref. [34]).

FIG. 2. Convergence behavior of the QS expansion (43) when
Nf = 0. The real parts of the radial functions R0

0 (69) calculated
along the direction θ = π

6 are presented for several values of N radial
basis functions. All values are given in a.u.
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(a) (b)

FIG. 3. Comparison of the Floquet components of the solution
to the driven Eq. (53), obtained with upper limit Nf = 7 in the
Floquet-Fourier expansion (7) of the final dressed hydrogen state. The
calculation is performed along the direction θ = π

6 . (a) Real part of
radial functions Rn

0 (69) of F̃
(−)
n=0,2,4,6. (b) Real part of radial functions

Rn
1 (69) of F̃

(−)
n=1,3,5,7. All values are given in a.u.

In Fig. 1 we show the real and imaginary parts of a radial QS
function P |m|(±)

n1n2 as defined by Eq. (46). On one hand, we com-
pute them using the (exact) integral representation (47) and, on
the other hand, with an L2 (approximate) representation, i.e., a
truncated expansion (45) in the L2 basis (26). The comparison
of the two calculations is shown in the top panels. While a
good match is observed at short distances from the nucleus,
clearly the truncated expansion is not sufficient to provide a
satisfactory description of the QS function at large distances.
In the bottom panels, we compare the numerical radial function
with its asymptotic form (48) in a region well off the origin: a
very good match is observed. This comparison illustrates that
expanding a continuum wave function in terms of the QS basis
functions satisfying the asymptotic boundary conditions (48)
and (49) is very appropriate, and is expected to be efficient in
dealing with scattering problems.

Let us now investigate some issues related to the con-
vergence of the proposed expansion for the final dressed
atomic state. We have essentially two truncations. One in the
number 2Nf + 1 of final-state Floquet components taken in
the Floquet-Fourier expansion (7). The other is the number of
QS basis functions, specifically the number N of radial basis
functions for both coordinates ξ and η.

We first solved the driven matrix equation (53) in the Nf =
0 case. In the matrix representation Ṽ0 of the potential Ṽ0 (9)
we restricted the azimuthal quantum number m to range from

−7 to 7. Figure 2 shows the results for the real part of the radial
functions Rn

m (for n = m = 0) defined as

F̃ (−)
n (Ef ,r) =

M∑
m=−M

eimφ

√
2π

Rn
m(ξ,η), (68)

Rn
m(ξ,η) =

N−1∑
n1,n2=0

Cn
n1n2m

P |m|
n1n2

(kn; ξ,η). (69)

We progressively increased the upper valueN up toNmax = 26,
and clearly observed that convergence of the QS expansion is
fast and is achieved for N 
 15.

Next, we set Nf = 7 and compute the different Floquet
components F̃ (−)

n of the solution to the driven equation (53),
for a fixed basis number N = 16 and M = 7 meaning N =
57 600. Figure 3 shows the expected feature that as n grows,
the components decrease in magnitude appreciably.

Let us turn to the initial dressed atomic state. We also
start from Ni = 0, and in this case we find for the lowest
eigenvalue E

Ni=0
i = −0.20182 which agrees well with the KH

state energy EKH = −0.20196 obtained in Ref. [23]. Further,
we successively increase the number 2Ni + 1 of Floquet
components involved in the computation up to 15 (Ni = 7).
For eachNi we choose the eigenstate whose zeroth component
F

(i)
0 is largest, i.e., contains the largest (in modulus) coefficients

C0(i)
n1n2m

in expansion (61). The convergence behavior of the
thereby obtained sequence of such generalized KH states can
be appreciated in Table I, where the eigenvaluesE

Ni

i along with
the corresponding largest coefficients C0(i)

n1n2m
are presented

for Ni = 0,1, . . . ,7. While the E
Ni

i sequence exhibits clear
convergence, it should be mentioned that calculating the initial
dressed hydrogen state within the Floquet theory in the KH
frame is supposed to be efficient in the high-frequency regime,
which is far from the present choice of laser parameters.
Therefore, since our analysis is primarily focused on the
efficiency of calculating the final dressed hydrogen state rather
than the initial one, in the (e,2e) calculations discussed below
we restrict ourselves to the Ni = 7 case in Table I as far as the
initial state is concerned.

As the convergence of expansions is under control, we wish
to test our approach by applying it to the laser-assisted (e,2e)
process (1); we compute TDCS when � = 0, that is, when
the net number of photons exchanged between the colliding
system and laser field equals zero. We consider increasing

TABLE I. Calculated eigenvalues E
Ni

i and the corresponding largest coefficients C
0(i)
n1n20 of the zeroth Floquet component (n = 0) of the

generalized KH states are given for increasing values of Ni . A number in square brackets stands for the power of 10 by which the preceding
value is to be multiplied.

Ni E
Ni

i C
0(i)
000 C

0(i)
100 C

0(i)
110

0 −0.201819 0.551647 −i0.646912[−14] −0.355924 +i0.417389[−14] 0.235527 −i0.276201[−14]
1 −0.326097 0.264437 +i0.254086[−14] −0.199877 −i0.192053[−14] 0.209358 +i0.201163[−14]
2 −0.330410 0.405213 −i0.213726[−12] −0.196557 +i0.103595[−12] 0.112545 −i0.593281[−13]
3 −0.389163 0.350215 +i0.221954[−14] −0.195399 −i0.123909[−14] 0.156212 +i0.993447[−15]
4 −0.419223 0.371691 −i0.890313[−10] −0.184586 +i0.442137[−10] 0.150770 −i0.361136[−10]
5 −0.438350 0.360758 +i0.122863[−14] −0.184227 −i0.629620[−15] 0.159845 +i0.547415[−15]
6 −0.450722 0.360771 +i0.103656[−6] −0.179809 −i0.516623[−7] 0.159936 +i0.459524[−7]
7 −0.459299 0.360064 −i0.483796[−16] −0.176820 +i0.244482[−16] 0.158099 −i0.197072[−16]
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FIG. 4. Convergence behavior of the laser-assisted TDCS in the
� = 0 case when the Nf number in the Floquet-Fourier expansion
of the final hydrogen state is varied from 0 to 7 (N is fixed here
at 16). The field-free TDCS is also plotted (solid line). The quiver
amplitude is a0 = 5 and the laser frequency is ω = 0.05. In the
chosen coplanar geometry, the momenta of the incident and scattered
electrons arep0 = 19.21 andps = 19.17, respectively, and the ejected
electron momentum is kf = 0.93. The scattered electron is observed
at θs = 0.43◦, the electron angles being measured counterclockwise
with respect to the incident electron beam direction. This results in
a momentum transfer of modulus q = 0.15 and pointing into the
direction indicated by an arrow.

values of the 2Nf + 1 terms used in the Floquet-Fourier
expansion (7) of the final atomic state, while this number
for the initial atomic state is fixed as remarked above (i.e.,
Ni = 7). With such dressed atomic states we calculate the
TDCS defined by Eq. (60) and study its convergence behavior
as the number 2Nf + 1 of the final-state Floquet components
is increased. We choose the kinematical situation where the
fast scattered electron energy is Es = 5 keV and the scattering
angle is θs = 0.43◦ (the momentum transfer is q = 0.15). The
first Born approximation in the projectile-hydrogen interaction
is supposed to be well applicable in such kinematics, thus
validating the use of Eq. (55) for the S matrix. The TDCS
results presented in Fig. 4 exhibit a typical pattern of the
ejected-electron angular distribution in the scattering plane,
namely, a two-peak structure with the binary peak in the
direction of the momentum transfer (q) and the recoil peak in
the opposite direction (−q). From comparison with the field-

free cross section (solid line) one can see how significantly
the ionization process is affected by the presence of the laser
field. What matters most here is that one observes a fast
numerical convergence with increasing number of terms in the
Floquet-Fourier expansion (7) of the final atomic state. This
demonstrates that our quasi-Sturmian-Floquet methodology is
able to generate light-dressed states of an electron moving in
a Coulomb field in the presence of laser radiation, and that it
can be applied to study laser-assisted ionization processes.

V. SUMMARY

We have applied the Floquet-Fourier expansion method
to the solution of the time-dependent Schrödinger equation
describing the electron states in combined Coulomb and laser
fields. The system of coupled Floquet equations for the electron
states subject to outgoing or incoming asymptotic boundary
conditions has been formulated in the Kramers-Henneberger
frame. The Floquet components of the electron scattering states
are expanded on parabolic quasi-Sturmian basis functions and
the driven matrix equation is derived in this representation. The
efficiency of the developed approach has been illustrated in the
case of the laser-assisted (e,2e) collision on atomic hydrogen.
Numerical calculations have exhibited fast convergence while
increasing both the number of the components in the Floquet-
Fourier expansion and the size of the parabolic quasi-Sturmian
basis. Thus, one might expect the present approach to be
efficient in the theoretical treatment of electron states in
various laser-assisted radiation and ionization processes. The
formalism was presented in this work for the case of a pure
Coulomb potential and applied here to atomic hydrogen as a
showcase. It can be readily used to treat a general potential with
a Coulomb tail, which typically mimics nonhydrogenic atomic
systems with a single active electron. The only difference
between the two cases will consist in the potential matrix V
involved in the driven matrix equation (53).
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