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We introduce a method to dispersively detect alkali-metal atoms in radio-frequency-dressed states. In particular,
we use dressed detection to measure populations and population differences of atoms prepared in their clock states.
Linear birefringence of the atomic medium enables atom number detection via polarization homodyning, a form
of common path interferometry. In order to achieve low technical noise levels, we perform optical sideband
detection after adiabatic transformation of bare states into dressed states. The balanced homodyne signal then
oscillates independently of field fluctuations at twice the dressing frequency, thus allowing for robust, phase-locked
detection that circumvents low-frequency noise. Using probe pulses of two optical frequencies, we can detect
both clock states simultaneously and obtain population difference as well as the total atom number. The scheme
also allows for difference measurements by direct subtraction of the homodyne signals at the balanced detector,
which should technically enable quantum noise limited measurements with prospects for the preparation of spin
squeezed states. The method extends to other Zeeman sublevels and can be employed in a range of atomic clock
schemes, atom interferometers, and other experiments using dressed atoms.
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I. INTRODUCTION

Radio-frequency (rf) dressing of atoms in magnetic traps
provides robust and very versatile control of the external
degrees of freedom. This technique is used in a variety of
cold-atom experiments (see [ 1] for arecent review). The depen-
dence of the trapping potential on magnetic-field amplitudes
in the rf regime renders dressed traps robust against some
low-frequency, environmental field noise. The first atom-chip
based beam splitter for matter waves was demonstrated with
this method [2]. Versatility comes from the dependence of the
trapping potential on the polarization of the rf field relative to
the local static field; this provides greater design freedom com-
pared to quasistatic magnetic traps. Experiments and proposals
for interesting trap geometries include lattices [3,4], rings
[5-8], and hollow traps shaped as spheres [9], cylinders [10],
and tori [5]. Species- and state-dependent control becomes
possible in some scenarios [8,11], because the trap defining
rf polarization component depends on the atomic g factor.
Such control provides prospects for quantum simulations of
many-body physics as well as atom interferometers without
any free propagation [12].

In this paper, we present a method for dispersive detection
of atoms that benefits directly from the intrinsic modulation of
the atomic signal via phase-locked spin precession. Dispersive
light-matter interaction at a very low technical noise level
resulting from operation at radio frequencies is a prerequisite
for quantum-non-demolition (QND) measurements in a range
of vapor cell experiments with very large atom numbers (n ~
10'?) and consequently low relative quantum noise, including
spin squeezing [13], deterministic quantum memory [14],
and teleportation [15]. Such QND measurements also play
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a role in atom interferometry where it is desirable to lower
the quantum projection noise [16] inherent to any atomic
magnetometer [17], clock [18], or interferometer [19] by
using spin squeezed states [20,21] or other nonclassical states
[22] as inputs. Destructive detection methods, e.g., based on
fluorescence imaging, are routinely used to achieve atomic
shot-noise limited detection for small [23] to large ensembles
[24]. They are, however, not capable of generating spin
squeezing needed to lower the projection noise. In contrast,
dispersive measurements based upon off-resonant atom-light
interactions enabled experimental demonstration of 18-20-dB
spin squeezing [25,26]. These experiments used high-finesse
optical cavities to achieve strong atom-light interaction with
low atom numbers, and require significant technical effort to
stabilize to sufficient robustness. In particular, measurements
on standard atomic clock states, i.e., magnetic-field-insensitive
states with magnetic quantum number m = 0, do not seem
compatible with the relatively simple low-noise techniques
used with vapor cells that are based on the Faraday ef-
fect and polarimetric common path interferometry with rf
sideband detection. Here, we demonstrate that another type
of birefringence, the Voigt effect [27], can in principle be
used to detect these states by similar means. We perform
two-state detection to observe Rabi cycles with low tech-
nical noise and discuss prospects for achieving quantum
limited performance.

More generally, the method presented here gives state-
selective detection and provides additional experimental ca-
pabilities. E.g., the signal depends on the position of atoms
through the resonance condition for the dressing frequency.
In a system with multiple rf fields [3,28,29] the signal gives
information about the spatial distribution of the atoms [30].
Methods based on either the Voigt or Faraday effect can be
readily implemented in dressed atom experiments to provide
low-noise detection with little additional overhead.
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FIG. 1. Linear birefringence. An example level scheme for an
F =1 — F’ =1 transition is shown on the left. Only o transitions
are allowed for atoms in |1,0), and corresponding polarization com-
ponents of near-resonant light will acquire a phase shift proportional
to atom number. An initial 45° polarization as shown on the right will
become elliptical, measured by Stokes operator Si at the output.

The paper is organized as follows. In Sec. II, we describe
dispersive interaction in the context of radio-frequency dress-
ing. This treatment predicts detected signals at harmonics of
the dressing frequency. Section III reports experimental results
using our method and discusses the observed noise behavior as
well as future extensions. Section IV presents our conclusions.
Details on dispersive interaction and quantum-mechanical
interaction strengths are given in Appendices A and B.

II. RADIO-FREQUENCY-DRESSED DISPERSIVE
LIGHT-MATTER INTERACTION

A. Circular and linear birefringence

In this section, we review the dispersive atom-light in-
teraction arising from off-resonant laser light propagating
through an atomic medium. In particular, we consider linear
birefringence of an ensemble that has been prepared in a certain
Zeeman sublevel, e.g., in an atomic clock state.

The basic principle can be understood by considering the
simplified example in Fig. 1 for an atom with total spin F = 1
and an optical transition to an excited state with F’' = 1. Off-
resonant light fields experience little absorption but acquire
a phase-shift proportional to transition strength and atom
number. If atoms are prepared in a single Zeeman sublevel,
the interactions with w- and o-polarized fields will differ,
described by different Clebsch-Gordan coefficients. For the
depicted case of the quantization axis chosen along e, and
atoms prepared in state |FF = 1,F, = 0), the interaction with
m-polarized light, i.e., linearly polarized along the y axis,
completely vanishes because of selection rules considering
only coupling to excited states with F' = 1. Any orthogonal
polarization, however, experiences a phase shift. Light prop-
agating along e,, polarized at 45° with respect to the x and y
axes, becomes elliptically polarized, and this provides a means
to measure atom number.

For a more comprehensive description of the interaction,
the atomic multilevel character and arbitrary light polarization
must be included. As detailed in Appendix A, these can be
captured by a frequency dependent polarizability tensor « that
describes the medium, and Stokes operators that describe the
photon flux.

The dispersive interaction can be decomposed into spin
dependent, irreducible tensor components of different rank k =
0,1, and 2. The components are associated with corresponding
polarizability contributions (x , which depend on the total
spin quantum number F of the atomic ground-state hyperfine
level. The ¥’Rb atoms used in this paper have nuclear spin
I =3/2 and, consequently, ground-state levels with F =
1,2. For atoms driven near the D1 lines (J = J' = 1/2) the
contributions [see general expressions in Eqs. (A5) and (A6)]
are explicitly given by

) oy 1 5 i| 0) Ol]/l: 1 1 i|
o =—|—4+—1, o =—|—+ —,
! 6 |:A1,1 Arp 2 2 [Ax1 A
1) oy -1 5 i| 1) Ol]/[ -3 -1 i|
o =—4+—1, o' =——|—+ —,
! 8 |:A11 A 2 8 LAx1 A

—1
o = ( ”F[A“*A”}’ (1)

with the far-detuned, scalar polarizability coefficient oy =
60)\.3, I';. /872, which depends on the D1-line parameters I"j, =
2w x 5.75 MHz and X; = 795 nm. We defined detunings
Afr p = o, — wp, p of the light field with respect to the optical
F — F’ transition frequencies. The ground- and excited-state
hyperfine splittings are Ay pr — A pr & 2w x 6835 MHz and
Apy — Apy ~ 2w x 817 MHz. This large difference relative
to the small probe detuning used in our experiments justifies
treating the two F = 1 and 2 subensembles independently.
The frequency dependence of the polarizability contributions
and expected spontaneous decay coefficients, together with
experimental data, are shown in Fig. 2.

The scalar polarizabilities (k = 0) do not affect the polariza-
tion of a light beam. The higher-order terms are linked to spin-
dependent circular (k = 1) and linear (k = 2) birefringence,
named Faraday and Voigt effect, respectively. We assume
a quasi-one-dimensional scenario with cross section A, and
describe a coherent laser beam, polarized at 45°, by photon flux
Sy. Stokes operators S, . ~ 0 quantify quantum-mechanical
uncertainty of the input beam’s polarization [see Eq. (A2)
for definitions]. For small optical phase shifts (<1 rad),
neglecting light retardation and backaction onto the traversed
atomic ensemble, the polarization rotation and ellipticity of the
output beam are measured by the operators

8. =38, —gp's, ZFZ,-, )
8§ =3.+g/s, Z - £7)), 3)

which sum individual atomic spin operators, with coupling
constants g( = aF wL/(Aeochk) [see Eq. (A16)].

For known spin states, both signals can in principle be used
to measure atom numbers. If all n atoms in the F manifold
are in the same state, we can express the expectation values by
individual atomic operators as

(81) = —gWS,nr(Fy), (4)

(81) = g Synp(F2 — F7). (5)
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FIG. 2. Frequency dependence of spontaneous emission and
atomic polarizability. (a) Experimental decay rates y., (circles) for
both clock states using light polarized at 45° with respect to the
quantization axis. The expected behavior (solid lines) for atoms in
F =1 (blue group, right) and F = 2 (red group, left) is based on
measured light powers and beam sizes with 30% correction to one
of the probe lasers, possibly due to slight misalignment. (b) The
k-rank tensor contributions to the off-resonant D1 line polarizability
(dashed, dash-dotted, and solid lines fork = 0,1, and 2, respectively).
A single fit parameter was used to scale the measured linear birefrin-
gence (circles) to match the expected behavior of the k£ = 2 terms.
(c) Theoretical, off-resonant approximation, and experimental data
for the figure of merit x = (ag)/a,r)zlo/y, i.e., the ratio of squared
polarizability to decay coefficient (per beam intensity I, = P/A),
which determines the maximally achievable, signal-to-noise-power
ratio for fixed on-resonant optical density [see Eq. (B13)].

For standard clock states, which have one zero spin
component (m = 0), the population cannot be detected
by measuring Faraday rotation due to lack of any
orientation, i.e., (F) =0. But for atoms in an eigenstate
of the I:“y operator, linear birefringence is proportional to
Ep(Fy) = (F.F,| F} — F?|F.Fy) /h*. The moment &(m) =
(F(F +1) —3m?)/2 is extremal for m = +F as well as
for m = 0 (bosons) or m = £1/2 (fermions). Intermediate
Zeeman substates exhibit smaller linear birefringence,
which becomes exactly zero only in rare cases including
|0,0),]1/2,4+1/2),13,£2),]125/2, & 15/2),]48,128),|361/2,
+209/2), etc.

B. Adiabatic radio-frequency dressing

In this section, we outline the principle of adiabatic rf
dressing and discuss its effect on the measurements of atomic
observables.

The magnetic fields that we use in our experiments are
generally weak enough to neglect second-order Zeeman split-
ting within each hyperfine manifold. In this case, rf dressing
can simply be described as a rotation of an effective magnetic
field B.s that combines the effects of real fields and fictitious

forces in a rotating frame. For slow enough rotation of this
effective field with respect to the rotating frame, the atomic
spin will adiabatically follow and precess about the direction
of the effective field with constant spin projection along that
direction.

To first order, the time-dependent interaction Hamiltonian
of an atom with spin F of constant magnitude in a magnetic
field with static and oscillatory components is given by

A==t ‘;gFF- [B.r(wr) + By, ©6)

where up is the Bohr magneton and g is the Landé factor.
The oscillating part can best be expressed in terms of spherical
polarization components. Choosing B4. = Bgc.e, and using the
spherical basis e+ = (e, *ie,)/ V2ande, = e,, we can write

B.t(wt) = Re[(Byes + B_e_ + Bye)e 1. (7)

Using corresponding spin components with the conventional
normalization of raising and lowering operators Fy = F, +
F,, the Hamiltonian is expressed as

~  MB&F|( By~ | B 4 A> it
H = —F,. +—F_+ B,F, e
2h |:(«/§ T2 :

+ Bdcf«;] +H.ec. (8)

We transform to a frame rotating about the z axis at frequency w
with a given phase ¢, such that H,,, = UAU ! + ih%UU‘l,
using the unitary transformation

O(t) = /=t oRIm, ©

where the sign of frequency is chosen equal to the sign of
the Landé factor g, which determines the sense of rotation
that is required to dress atoms resonantly. Using the iden-
tity et I:"ie_"‘Ff o I:"i, the rotating frame Hamiltonian
becomes

A BreFiv . .
rzgt :M;isFI: q:/z F]Fe—Zzwt + By e

Bieiiw A A
Fi + (Bdc - Bres)Fz + H-C~a (10)

+

where we introduced the positive, resonant field Bys =
tho/wpgr.

If the rf field is polarized purely in the e, direction that
corresponds to the Larmor precession, i.e., By = By =0,
atoms will exhibit the same behavior as in an apparently static,

effective field
B, = L(Bie™es + c.c.) + (Byc — Breye,, (11)

described by the corresponding effective, rotating frame
Hamiltonian

A IBEF &
Ay = == F - Bg;. (12)

In particular, an atomic spin will adiabatically follow the
effective field’s orientation provided that any reorientation with
Bt 1 = 2 X Begr occurs at a rate that is much slower than
the effective Larmor frequency, i.e., for |Q2| < wpgr|Bes!/h-
When other rf-polarization components are present, the rotat-

ing wave approximation can be used, thus neglecting the fast
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oscillating terms of ﬁmt as long as w > wupgr|Bes|/h [31].
The resulting behavior remains the same apart from second
order energy shifts [32].

We now consider the specific transformation of atomic spin
operators when an eigenstate of F., initially prepared in a static
field along the z direction, is dressed by adiabatically changing
the components of the effective field. For the purpose of this
paper, we assume an rf field that is linearly polarized in the x-y
plane, described by

B.t(wt) = Byt (ex cos @ + e, sin (p) cos wt, (13)

for which case By = Bye™%/+/2 and B, = 0. The phase ¢
describes the direction of field oscillation and determined our
above choice of phase for the rotating frame. Consequently,
we find for either effective field

B

B;tff = Trf
The initial state | F, F;) is an eigenstate of U.(r) and appears
identical in both laboratory and rotating frame. For B,y = Qitis
an eigenstate of either frame’s Hamiltonian and differs only in
its evolution of dynamical phase or its quasienergy, which we
can ignore for our purposes. Upon changing the effective field,
we obtain the adiabatic state by applying the corresponding
rotation about the (rotating) y axis according to

e + (Bdc - Bres)ez- (14)

W) = P |F, F), (15)
by an angle
0= % — tan”"! —Bd;;/gr“. (16)
The same state in the laboratory frame is then given by
(W) = UL (O Wror)- 17

Finally, we can express any laboratory frame atomic observable
O using

(W) O|W(1)) = (F,F,|RORL'|F,F,), (18)

Ro(t) = e 5 0, (r). (19)

The result is a time-dependent geometrical rotation of
coordinates given by the explicit transformation

F/(1) =Re(OFRL' (1) = Re()F
cosfcospL(t) —singi(t) —sinb cospL(t)
=| cos@singi(t) cospi(t) —sin6sinepy(t) I,
sin 0 0 cosf
(20)

where we defined R4 () = R [¢+(#)]R,(—6) as acombination
of rotations about coordinate axes according to Ryv = ey (ey -
v)(1 —cosa) + vcosa + e, x vsina (Rodrigues’s rotation
formula) and the time-dependent angle ¢..(t) = £wt + ¢.

C. Linear birefringence of dressed eigenstates

To consider different experimental geometries, in particular
for light propagation parallel or orthogonal to the static field,

we use rotated light coordinates, expressed by a general
rotation matrix M, such that (x’,y",7")T = M(x,y,z)T. Using
Eq. (3), linear birefringence of eigenstates of the dressed
Hamiltonian is then measured by

8.(t) = 8.(t) + &S, Z 0]

S.(1) + &S, ZF,-T Q.Fi, @1

introducing the quadratic form

-1 0 0
Q:=RI®OM"| 0 1 0|MRL(). (22)
0 0 0

Since the matrix Q4 is symmetric and the expectation
values of mixed anticommutators vanish for the original state
(F,F,| {I:"j,f?k} |F,F;) ;4 = 0, the expression for the expected
signal from an ensemble of identically prepared atoms reduces

to the trace
3 P
(8(1)) = g Synr Z (F.F.|QL FYF.F),  (23)
which can be expressed in terms of spectral rf components as

2
($7.(1)) —g(z)Sy FSF( Foh Zh )" +cc.  (24)
n=0

We can restrict the description of light geometry to two
degrees of freedom, because rotations about the laboratory
fixed z axis are equivalent to arotated rf field, already described
by ¢. We choose sequential rotations M = R, ()R, (B) =
R, (B)R (@) leading to the result

(ho,h1,h2)" (0)
143 cos 260 (coszﬁ (3—cos 28) cos 2
- 4

4 2
s o sin 2 —cos 2f) sin 2 i
(cos azsm B . (3—cos 4/3) sin 2o ei"/’

= sin 26

. 2 <in oy < .
in’o ( (3—cos2B) CT a+2cos2p i sin a;m 28 ) eizw

(25)
For the parallel setting « = 8 = 0, the chosen coordinate

systems for atomic and light variables coincide. In this case,
the spectral components reduce to

hg 0
h | 0) = 0 . (26)
ho —eF2i% 5in%0

A setting with light propagation orthogonal to the static field
is described by = /2. In this case, o describes a rotation
of beam polarization, with o = 0 for unchanged polarization,
i.e., at 45° with respect to the static field. The amplitudes of
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FIG. 3. Principal behavior of zeroth (dashed red, n = 0), first
(dash-dotted green, n = 1), and second (solid blue, n = 2) harmonic
signal components across rf resonance for the orthogonal case (8 =
/2) plotted as A/, = (£0)"v/2h, with g = 0, @ = 7/4.

the spectral components are then given by

ho —i(l + 3 cos26) cos 2c
hy | 8) = | Fiet'? sin 20 sin 2 . 27
hy) | —3e*%% 5in’6 cos 2u

The principal behavior of these functions across rf resonance
is shown in Fig. 3.

The results show that due to the axial symmetries of both
the setup and the initial state, a parallel measurement only
produces signals at the second harmonic, i.e., at frequency 2w.
This setting also leads to the maximum possible signal oscil-
lation with full swing between £Sp.x = :I:g S n p.fp(m)h2
when the rf resonance condition 8 = 0 is met. The orthogonal
setting with « = 0 contains a dc part that is reminiscent of
undressed detection with off-resonant amplitude S;,,x and leads
to a weaker signal at 2w on resonance with an amplitude swing
between zero and — Sy« In both cases, a signal at frequency
w arises only due to misalignment or rotated light polarization,
with a zero crossing at resonance.

For detection of atomic population, the variations in signal
strength will become important. Both changes in magnitude
of the static field By., which shifts the resonance condition,
as well as field rotations or equivalent beam misalignment
affect the resonant 2w signal only to second order. Since the
rf amplitude has no effect, it is advantageous to use higher rf
amplitudes to broaden the resonance. The signal becomes less
sensitive to fluctuations of external magnetic fields reducing
the requirements for magnetic-field shielding. A limit to this
strategy will be imposed by effects from second-order Zeeman
splitting, which we do not analyze here.

III. EXPERIMENTAL REALIZATION

A. State preparation

We apply our detection method to an ensemble of approxi-
mately 10% 8’Rb atoms, which we prepare in superpositions of
the two clock states |[F = 1,mp = 0) and |F = 2,mp = 0) by
driving the clock transition with a resonant microwave pulse
of variable duration.

A sketch of the experimental setup is shown in Fig. 4(a).
In order to start from a pure state, we use an optical
pumping and cleaning sequence to initially prepare atoms in
|F = 1,mp = 0). After releasing a cloud of atoms from a
standard, transiently compressed magneto-optical trap [33],

(a)
B(wt)
I | A
~
( -
Balanced PD PBS \\.\\/ )
NS y
z
I i IV .
Pump Bearms MW Field
hold off
AC line signal f T
RF cycle clock JLLLILLUJLILLULLL MW,
: repare . adiabatic || F =2 F=1
peration state|1, 0) drive | transfer  [| detection [|detection
Static field
- o
RF 3 L V 'A'AvAvl'A'A‘ 'AVAv‘vl‘l‘A‘A'l'AvAvlvA'A'l'A'AvAv‘vl‘A‘A‘A'AVAVAVIVA‘A‘A'A'A vl

FIG. 4. Experimental setup. (a) A laser cooled rubidium sample
is prepared in a superposition of two clock states by m-polarized
optical pumping and microwave driving in a static field along y.
After adiabatic dressing with a magnetic 1f field along x and optional
rotation of the static field into the z direction, linear birefringence of
the sample is probed polarimetrically by two consecutive laser pulses
propagating along z. (b) Main timing elements of the experimental
procedure.

we perform optical molasses cooling while we ramp up a
weak magnetic field in the y direction to ~0.3 G. We then
replace the standard F = 1 — F’ = 2 repumping beam by a
pair of counterpropagating, -polarized beams tuned near the
F =1 — F' = 1transition onthe D line for optical pumping.
We use an intensity of 80 W cm™' and a red detuning of
—30 MHz to reduce reabsorption of scattered photons. This
method continues to provide cooling and avoids directional
forces while atoms accumulate in the now dark |1,0) state.
After a period of 6 ms and sequential switch-off of first
pump then cooling beams, we achieve (70 &£ 5)% population
in |1,0) with a final temperature of (80 £ 10) uK and the
remaining atoms populating the |1,£1) states. Purification of
the state is achieved by coherent transfer of atoms from |1,0)
to |2,0) using a resonant microwave 7 pulse emitted from a
sawed-off waveguide and a raised magnetic field of 0.5 G,
followed by a short pulse from the original repumping beam
and a second microwave m pulse, converting |2,0) back to
|1,0). Incoherently transferred atoms then populate only F = 2
levels. We push these away from the cloud by shining a single
resonant beam on the cycling F = 2 — F’ = 3 transition on
the D, line, leaving only the purified |F = 1,mp = 0) state.

B. Dressed state detection

Figure 4(b) shows the experimental sequence for state
preparation, dressing, and state detection. While the purified
ensemble is in free fall, we apply a resonant microwave pulse
for a variable duration Tyw to drive high-contrast Rabi cycles
and prepare superpositions of the two clock states. Atoms are
then adiabatically dressed with a magnetic rf field in the x
direction with frequency w = 27 x 180 kHz, generated by an
external resonant coil. The rf field amplitude is ramped up
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to ~15 mG over 4 ms while the static magnetic field is ramped
down to amagnitude of By, ~ 260 mG, which tunes the atomic
Larmor frequency near resonance. For most experiments, the
static field is simultaneously rotated from the y direction into
the z direction. This procedure maintains the magnitude of the
total collective spin as well as its alignment with the effective
field such that the initial atomic spin projection F) = 0 then
rotates within the x-y plane. While the total populations within
each F manifold remain unchanged, the atomic state then
obeys F, cos(wt) &= F, sin(wt) = 0, where the sign of rotation
depends on the state-dependent Landé factor gp.

We use two-color detection to distinguish populations in the
two hyperfine manifolds. The two D;-line optical frequencies
are detuned by —400 MHz from the F =2 — F’ = 2 transi-
tion and by +240 MHz from the F = 1 — F’ = 1 transition,
respectively, avoiding two-photon resonance. Due to their
separation of ~6.7 GHz, the interaction of each field with
the atomic cloud is dominated by population in one of the
two hyperfine states. The beams have perpendicular, linear
polarizations and are combined with a Wollaston prism to
co-propagate through the atomic ensemble. A half-wave plate
allows us to corotate the planes of polarization with respect to
the coordinate axes, typically adjusted to £45° orientation. To
observe the adiabatic dressing process, the detection beams can
be active during the magnetic-field ramps. For state detection,
we let the magnetic-field amplitudes reach constant values
before the two lasers are pulsed either consecutively or, in
some circumstances, simultaneously as detailed below. Upon
interaction with the atoms, the beams become elliptically
polarized, where the ellipticity or phase shift between -
and o-polarized components is proportional to the atomic
density in the respective states. The phase shift is measured
polarimetrically with a circular analyzer comprising a quarter-
wave plate, a Wollaston prism, a balanced photodetector pair
[34], and an optional high-pass filtering rf amplifier [35].
The quarter-wave plate is aligned such that the differential
photocurrent measures the difference between right- and left-
hand circularly polarized components. The output voltage U
is proportional to the observed ellipticity, i.e., U(t) = g1 S;(¢)
with electronic gain g.. Figure 5 shows examples of typical
raw detector signals together with a signal spectrum, which
shows that signals arise at 180 and 360 kHz above a noise
floor that is limited by photon shot noise at frequencies above ~
150 kHz. At lower frequencies, the spectrum is dominated by
(ac-filtered) square-pulse transients from imperfectly balanced
detector signals. As expected, the main contribution to the
rf signal is found at frequency 2w. We also detect signals at
frequency w in case of geometric misalignment.

The raw signals are processed via digital lock-in detection.
As can be seen in Fig. 5(c), the atomic signals decay due to
spontaneous emission induced by the probe beams. We obtain
signal values proportional to state populations by extracting
spectral mode amplitudes m;, = f ui (U (r)dt from the
if signal U(t) with L?-normalized temporal mode functions
uio(t) = ii(t)e* @+ In the case of square laser pulses of
duration T, their envelopes take the form

2y —yt :
ﬁ(t):{‘/leme L ifO<r<T 28)

0, otherwise,

0 100 200 300 400
(b) frequency f (kHz)

SUU x 1 kHz (dBIl’l)

signal U(t) (V)

-0.31

2(®)] (ms™1/?)

|
I
[6)}

Uu1,2

ac signal U(t) (V)

0 1 2 3 4 5 6 7
time ¢ (ms)

FIG. 5. Typical experimental signals. (a) Single-sided, power
spectral density of the amplified, high-pass filtered signal. Atomic
signals arise at w and 2w. (b) Direct signal for F' = 2, recorded during
asweep of static field strength across the rf resonance in the orthogonal
setting. Atoms are removed before a second probe pulse is used to
determine the signal offset from imperfect detector balance (dashed
line). The signal matches the theoretical response but shows probe
induced decay. (c) Amplified signal for two-color measurement of
both state populations in the parallel setting. Envelopes of the used
temporal mode functions i, »(¢) are shown in red (first pulse, F = 2)
and blue (second pulse, F = 1).

with experimentally determined, probe power dependent decay
rates y. For higher probe powers, we use shaped pulses to
avoid light-shift induced excitation of Larmor precession about
the effective field, which may occur at Rabi frequency ¢
corresponding to the rf field amplitude. For shaped pulses,
we use heuristically adapted mode functions (see shaped
pulses in Fig. 11). Our frequencies and mode functions allow
for slowly varying envelope approximations with negligible
spectral overlap of signals from different harmonics.

The mode amplitudes are referenced to the input light ac-
cordingto m’ly2 = m /P12, where P, , are the simultaneously
measured, pulse-averaged probe powers, proportional to S,.
This is used to correct for small light power fluctuations,
neglecting power-dependent changes in the decay rates. We
extract real signals by correcting each mode amplitude for an
experimentally determined constant phase ¢; », which includes
effects from the geometry and choice of polarization [see
Egs. (26) and (27)], as well as phases introduced by the
detection electronics. State populations n;, are estimated

from the mode amplitudes, assuming m/ , = gf;p)n 1.2, where

the experimentally determined signal gains g%p) are cali-
brated against atom number estimates from absorption imaging
data and account for the combined factors of interaction
coefficients, detuning from resonance, photon energy, and
electronic gain. Finally, values for individual measurements
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FIG. 6. Scan across rf resonance. (a) Experimental mode ampli-
tudes (small circles) at 2w arising from an equal superposition of
the two clock states together with fitted s, functions (solid lines,
left axis) and their ratio (dashed line, right axis) are shown as a
function of static field strength in the parallel setting. The stronger
signal (upper red curve) arises from atoms in F' = 2 due to larger
£¢(0). (b) Measured variance ((Ao.)?) as a function of static field
amplitude. The noise is reduced (red circles) by synchronizing with
an ac mains signal compared to asynchronous measurements (blue
crosses). Deliberately introduced static field noise (black diamonds)
leads to peaked behavior following the derivative of signal ratio.

of the normalized Bloch-vector component are obtained as
o, = (np —ny)/(na + ny).

Figure 6(a) shows measured mode amplitudes for a scan
across rf resonance in the parallel setting and approximately
equal populations in the two clock states. The fit of model
functions according to the 4, component of Eq. (27) allows us
to extract position and width of the resonances, which we use
to calibrate the strength of the applied static field as well as the
rf field amplitudes. In this case, the amplitudes were measured
to be |By| = (15+£ 1 mG) and |B_| = (14 = 1 mG). We at-
tribute the small amplitude difference to stray rf fields from
induced eddy currents that make the field polarization slightly
elliptic at the location of the atomic ensemble.

In order to measure atomic populations with high signal-
to-noise ratio it is desirable to measure the corresponding
mode amplitudes at 2w in the parallel setting exactly on
rf resonance. Here, the signals are maximal and exhibit
only a second-order dependence on the static magnetic field,
which should reduce noise from external field fluctuations.
However, it is important to note that even in the regime
of vanishing second-order Zeeman splitting at low magnetic
fields the hyperfine structure leads to a first-order difference
of Larmor frequency between the two hyperfine manifolds.
The two corresponding g factors differ in magnitude by
Algr| = —2g;, where g; is the (negative) nuclear g factor.
For ¥Rb this corresponds to a field dependent frequency
difference of —2g,;up/h = 2.78565 kHz/G [36]. This affects
the suppression of common mode noise when () is estimated
from the two signals measured at the same static field. Common
mode noise includes total atom number fluctuations as well as
signal strength variations. While the suppression of noise due to

—~
o

residual Ao~
o
o
o
(6]

-0.005

0 0.05 0.1 0.15 0.2
microwave pulse length Ty (ms)

FIG. 7. Experimental detection of Rabi cycles. (a) The popula-
tions of both clock states | 1,0) (blue crosses) and |2,0) (red circles) are
measured as a function of microwave pulse duration. (b) Normalized
population difference (circles) together with model function (solid
line). (c) The residuals indicate an oscillating noise amplitude. Each
data point corresponds to a single experimental cycle.

external field fluctuations improves with resonance width, it is
highest when the ratio of the two signal strengths as a function
of external field is extremal or, equivalently, when the ratio of
signal strength to signal slope is identical for the two states. The
static field that meets this condition depends on frequency shift
and widths of both resonances. For equal resonance width, i.e.,
|By| = |B_| = | Byl /ﬁ and resonant field difference AB =
—hw/2g; g, the optimal static field is found shifted from the
resonance mean by :i:%\/ |Bi|> + (AB)?. As a consequence,
signal strength must be traded for maximal common mode
noise suppression. This can be improved by deliberately
increasing the imbalance between the two By components,
which shifts the optimal point closer to the resonance peaks.

Figure 6(b) shows experimental variances ((Aoc,)?) for
an equal superposition of clock states across the resonance
for different experimental conditions. Away from resonance,
noise increases due to diminishing signal strength at constant
detection noise (electronic and photon shot noise). For a small
amount of deliberately introduced noise in the static field
amplitude, the resulting variance peaks near maximum signal
strength and follows the expected behavior. Generally, we
achieve best performance near the point of stationary signal
ratio closest to signal maximum. In our unshielded experiment,
disabling synchronization with a 50-Hz line signal increases
noise, which we attribute mainly to state preparation noise in
the fluctuating environment as this noise contribution remains
fairly constant across the scan.

Measurement results of relative population difference o,
for driven Rabi cycles are shown in Fig. 7. We observe high
contrast fringes of Rabi frequency Qs = 5.5 kHz, which we
model including a small exponential decay accounting for in-
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FIG. 8. Scaling of detection noise with probe power. The linear
dependence confirms shot-noise limited performance for both probe
lasers. Electronic noise is negligible in the typical operating range of
a few hundred microwatts probe power. The shot-noise scaling can
be used to calibrate the electronic gain g = U/S. = 2w, U/AP,
relating output voltage U to photon flux or light power difference
A P incident on the two detectors. For pure shot noise from the input
light field of power P and known quantum efficiency of the detector
n < 1 (electrons per photon), the electronic gain can be measured as
g = 2/MhwrC (Syy) /P ~ 1.3 x 10713 V/Hz, assuming quantum
efficiency = 0.86 and an estimated noise power correction factor
¢ =~ 0.5 due to aliasing.

homogeneous microwave coupling across the atomic cloud.
The residuals typically show noise variances on the order of
1076 to 1073 varying across individual Rabi cycles. The noise
is usually somewhat larger in the vicinity of zero crossings and
increases with the number of cycles, indicating a contribution
of state-preparation noise that scales with duration and power
of the microwave driving.

C. Noise analysis

Analysis of different noise contributions to our measure-
ments and distinction between technical and quantum noise
can be based on parameter scaling.

Our balanced detector pair [34] is photon shot noise limited,
confirmed by the linear dependence of noise power spectral
density Sy of the rf signal on light power in absence of atoms
(see Fig. 8). The detection electronics, including amplification
and analog-to-digital conversion, introduce a small amount of
electronic noise that is negligible for the used light powers of
typically a few hundred microwatts. In principle, the shot-noise
scaling allows for the determination of electronic gain g and
thus linking the output amplitude to observed atom number
nr, according to Eq. (24). In practice, separate calibration is
required due to inhomogenoeus atomic densities and Gaussian
beam profiles. The measurements presented here also suffer
from the lack of a dedicated antialiasing filter, which leads
to increased noise in the observed rf frequency band due to
aliasing of photon shot noise.

Further noise stems from fluctuations in signal strength,
caused by magnetic-field fluctuations, as well as varying laser
detunings, beam steering, and imperfect correction of light
power fluctuations. Additional technical noise stems from the
microwave driving and thus preparation of the atomic state,
and ultimately atomic shot noise. For further analysis, we

fl x L L
0 5 10 15 20
pulse area Qyw T (rad)

(nAc,)? =1.7x 10" + 9.4 x 106 n?
(nAc.)? =1.5 x 101 + 3.7 x 109 n?

(nAo,)?
-~

number variance

o
&)
.

0 0.2 0.4 0.6 0.8 1.0 12 1.4x10°

atom number n

FIG. 9. Analysis of technical noise for (anti)symmetric super-
positions of the two clock states. (a) State preparation noise is
identified by driving the clock transition with odd multiples of 7 /2
pulse areas and quantifying the quadratic scaling of variance for
100 measurements. For a 7/2 pulse, we estimate an uncertainty
contribution of Ao, = +/2.4 x 10~77/2 ~ 0.08%. (b) Experimental
data for variance of atom number difference show quadratic scaling
with total atom number n for two experimental conditions. Signals
were measured at constant magnetic field, fulfilling the rf resonance
condition only for atoms with F =2 (black squares). A small
magnetic-field shift introduced between the two probe pulses allows
for resonant measurements on both states and reduces technical noise
introduced by field fluctuations (blue circles). The model fits (solid
lines) separate photon shot-noise equivalent (dotted) and technical
noise. Dashed lines indicate the estimated level of state preparation
noise above photon shot noise.

generated (anti)symmetric superpositions of the two clock
states, i.e., (6;) = 0, and measured the variance of relative
population difference for different atom numbers and mi-
crowave durations (see Fig. 9). The scaling with atom number
shows that measurements at low atom number are limited by
photon shot noise while measurements at high atom number
(n ~ 10%) are dominated by technical noise contributions on
the order of ((Ac.)?) = 107°~1073, depending on the precise
setting of static magnetic-field strength. Our photon shot-noise
equivalent atom number resolution is An ~ /1.5 x 1010 ~
1.2 x 10°, i.e., ~22 dB above atomic shot noise for n = 108
atoms. The scaling with microwave duration shows a small
contribution of state preparation noise.

D. State-to-quadrature mapping

We attribute a significant amount of technical noise in our
measurements to the use of two independent probe beams,
which do not probe the exact same volume. As a conse-
quence, fluctuations in the position and shape of the atomic
ensemble will translate into independent signal fluctuations. In
addition, the lasers exhibit independent frequency and power
fluctuations. While power fluctuations are comeasured and
compensated for, small imperfections like nonlinearity and
electronic noise in the detection system will degrade the
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FIG. 10. Dependence of 2w-signal phases 2¢;, on half-wave
plate angle in the parallel setting (corresponding to ¢/2). (a) Ex-
perimental data are shown together with linear fits with slopes
+(3.99 + 0.01) deg/deg, matching the expected value of 4. (b) The
strong anticorrelation of residuals shows that the dominant uncertainty
stems from the wave-plate setting.

performance. It is in principle possible to use a two-color
beam from a single laser, or phase and amplitude locked
beams. Simultaneous detection of both states will then achieve
suppression of common mode noise. To distinguish the two
signals, use can be made of the fact that the rf phase of
the detected signal is adjustable and state dependent, as
represented by the sign of the phase ¢ in Egs. (25)—(27).

The phase ¢ describes the orientation of the rf field with re-
spect to the coordinate axes. In the parallel setting, a rotation of
the rf field is fully equivalent to a rotation of light polarization.
We confirmed this by populating only one hyperfine manifold
at a time and measuring the rf phase of the 2w signal for various
angles of a half-wave plate that we use to corotate the linear
input polarization of our light fields. The results presented in
Fig. 10 exhibit the expected behavior. The choice of angle
therefore allows for direct subtraction of signals at the pho-
todetector for A(2¢) = m as well as mapping of the two signals
onto orthogonal rf quadratures for A(2¢) = £m/2, called
IQ-modulation (short for in-phase and quadrature). The latter
situation is demonstrated in Fig. 11, which shows experimental
data of the two signals for a superposition of clock states.

IV. CONCLUSIONS

We analyzed and demonstrated dispersive detection of
alkali-metal atoms in radio-frequency-dressed states. An ex-
perimentally simple polarimetric setup allows for low-noise
measurements of atom numbers due to modulation of the
atomic response at radio frequencies. Linear birefringence
measurements of driven Rabi cycles between atomic clock
states show technical noise on the cycle phase on the order
of 2 mrad. Future improvements may include the use of
simultaneous probing of both states with two frequencies
generated by a single, modulated laser. The ability to perform
state to rf-quadrature mapping makes it possible to measure
differential state population directly and potentially generate
spin squeezing in the regime of strong light-matter coupling at
sufficient optical density. The method can be used in various
internal state atom interferometry experiments and may be
extended to other dressed state schemes.

The datasets generated for this paper are accessible at [47]
(Nottingham Research Data Management Repository).
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APPENDIX A: DISPERSIVE
MEASUREMENT OPERATORS

We consider a quasi-one-dimensional situation with cross
section A and light propagating along e,, and adopt a
continuous medium real space description of atomic and
electromagnetic-field operators as described in [37]. The
electric field of a narrow-band light field of frequency
wy is described by Heisenberg operators for orthogo-
nal polarizations j as K = Zj(fj —1—4‘:’;), with fj(z,t) =

ge-"JLzTr [ g je'* e dk, where g = /Tiwy [2€0A scales the
field strength per photon, and e; are unit polarization vectors.

This can be written as
B(z.0) = glaj(z.0e; +al(z.0€]]. (A1)

Here, the creation and annihilation operators are defined
as density amplitudes in position space, obeying [&,-,&J]f.] =

(a) 0.3

o =
— 6
= ]
S &
= +
g o
2 g
_03 o
(b) -
S04 104 2~
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0 0
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FIG. 11. Demonstration of state-to-quadrature mapping. Two
probe pulses of different duration are sent through the atomic cloud
with temporal overlap. (a) The [Q-modulated rf signal from the atomic
response (oscillating black curve) is shown together with total light
power P; + P, (upper red curve). The light pulse edges have been
shaped to suppress excitation of Larmor precession in the effective
field, which can occur at higher laser powers. (b) The rf response
is demodulated with 10-kHz bandwidth centered at 2w = 360 kHz
and separated into two orthogonal quadratures I;;(¢) and Qy (¢). The
light polarization was adjusted to obtain out-of-phase responses from
atoms in F = 1 (thick blue line) and F = 2 (thin red line), i.e., by
choosing ¢, — ¢ ~ /2.
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d;,j6,(z) for orthogonal polarizations i and j, such that caTA

describes photon flux. Different light polarizations are con-
veniently described by introducing Stokes vector components
that measure photon flux differences

3. ala, — ala, ala_+a a,
& 2 IS At A Cl..f4 At A
y =§ 4,0, —dydx, =§ la_ay —tiaza- |,
: ala, —ala ala, —ala
(A2)
where a, _ = (4, Fid,)/v2, a, ~ = (£a, +a,)/+/2, and

ay,y describe circular oT, linear +45°, and horizontal and
vertical polarizations, respectively. The Stokes vector com-
ponents obey commutation rules of angular momentum, i.e.,
[S.(1),8,(t")] = i8(t — 1')S.(¢) and cyclic permutations [38].
In addition, we can measure the total photon flux of a beam
of power P as 28, = c(a a;+a a]) = P/hw; using any
orthogonal pair e; ;.

We are particularly interested in describing light-matter
interaction in the off-resonant regime where absorption of
the fields can be neglected. Here, the interaction reduces to
spin and polarization dependent dispersion, governed by the
frequency dependent polarizability tensor & of the medium.
The interaction energy can be expressed as a second-order per-
turbation with state-dependent dipole density d, i.e., as a light
shift of the atomic ground states. The effective Hamiltonian
can be stated as

N A

EM, fl & f,é
Aur = / E'aé)Adz = Z f S Ad,

(A3)

which sums contributions from transitions to excited states
with resonant frequencies w, and corresponding detunings
A, = o, — w,. The projector flg reduces the description
of atomic dynamics to the relevant ground-state manifold.
For alkali-metal atoms in their electronic ground state, the
atomic dipole moment depends on the individual spin F;,
which we describe by a continuous operator function f(z)
for dimensionless spin per atom. The collective spin of N
atoms distributed over any finite length / with density p(z)
is expressed as ZlN:l F, = f, p(2)f(2)hAdz.

Using this description, the effective interaction Hamil-
tonian for an atomic (sub)ensemble in one of the elec-
tronic ground-state hyperfine manifolds (L =0,J = %) of
certain F can be expressed with irreducible tensor compo-
nents. Following [37,39-41] with some corrections, we use
the expression

L
A =5 / i1 {268 + 205, 7.
+ a2 [28(F2 = f2/3) + 8. f2 + 8 f2]} M1 ppAdz,

(A4)

where fi = fy +i f) and S, = §, + i§ This approximate
Hamiltonian depends on the strengths a ) of the scalar, vector,
and tensor components of the polarlzablhty, k=0,1, and 2,
respectively. Considering only off-resonant driving of atoms

to excited levels with electronic angular momentum J’, each
component can have up to three contributions from transitions
F — F' = F,F £ 1, given by

o) =ALT AL+ AT

o3[t
=3 F F(F+1) F4+1/[
(2) 3 AFfl A; AFJrl
*F FQF—1) F(F+1)  (F+DQF+3) |

(AS5)

The three contributions A? for transitions from F to F’
are given by the respective detunings together with reduced
dipole moments (which, by isotropy convention, sum up three
orthogonal polarizations):

AF/_1|<J,F||€1'||J’,F')|2
el
3 TN
_meacy @J'+ DRF + D} Iy (A6)
Appra)a/ F I '

Here, we used a Wigner 6-j symbol and introduced decay
rate I';, and frequency w; of spontaneous emission from the
excited J' levels [36]. We assume A? = 0 for nonexisting
transitions with undefined 6-j symbol, and for the mathemat-
ically indeterminate case where F' = 0 in the denominator the
higher-order terms are a(l 2 =0,

The effective Hamlltonlan leads to Heisenberg equa-
tions for the Stokes vector S, given by (9, +CBZ)S(z,t) =
[S(Z,t),l:leff] /ih. Neglecting retardation of light as it propa-
gates across short samples, i.e., ignoring the time derivative,
andusing [a(z,1),a'(z',t")] = 8(z — 2), results in the following
propagation equations for the Stokes parameters:

a8,  2g%pA A A A A N
== =[-8 o+ a8 (f2 - £2)] @D
0z he
98, 28%pAr . 1), s
e =g e S — a8 (- )] a8
38, 2g pPA el ~ .
S x - 9 A9
B 2R, (f2 - 1) - 82— ) »9)
where we used 45° rotated operators f o= (£ fo+ fy) /N2

for better clarity. The first two equations, as well as the two
terms in the last expression, are each unitary equivalent under
a 45° rotation about the z axis. Terms containing Sy in the
Hamiltonian [see Eq. (A4)] cause global phase shifts but do
not change polarization. It can be seen that the set of equations
describes rotations of the Stokes vector and that the rank-1 and
rank-2 components of the polarizability are linked to circular
and linear birefringence, respectively. Linear polarizations S‘X, y
experience Faraday rotation about the z axis, proportional

to a%)J and longitudinal spin components f., i.e., atomic

orientation along z. Similarly, circular polarization S, couples

to S’x, y» proportional to oz( ) and the alignment of transversal
spin.
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For the case of small optical phase shifts (<1 rad), the
induced rotations of the Stokes vector along the atomic en-
semble will be small. If we also neglect backaction of light
onto the atomic spin on the time scale of light traversion
through the sample, we can approximate the right-hand sides
of the propagation equations to be constant. As a result, the
interaction with the atomic ensemble can be described using
symmetric collective operators defined as

% = / p(f2 = f)Wadz =3 (F2, - F2).  (A10)

i

%, = [ o7 - oA = 3 (F, — £2). (A

f.= [ ofinadz =y Fus

with corresponding definitions for individual atomic operators
F ;i [42]. With these definitions and approximations, the Stokes
operators describing a probe beam after interaction with the
atomic ensemble result from the integration of propagation
equations as

(A12)

§ =38 -V T +¢78.%,, (A13)
8 =38, + g8, T. — ¢ 8. %, (A14)
§ =38 +¢718,%, — 5, %,1, (A15)

with coupling constants gff) = 2g2ag‘) Jch**1. The first terms
in these equations are the Stokes operators for the input light
and are responsible for photon shot noise in any polarimeter
detection process.

For simplicity, we only consider strong classical probe
light that is linearly polarized along the 45° axes when it
enters the atomic ensemble, i.e., S'x,z ~ 0 and S‘y ~ §,. In this
case, Egs. (A7) and (A9) and corresponding Eqgs. (A13) and
(A15) reduce to describing circular and linear birefringence
independently. The resulting Faraday rotation and resulting
ellipticity reduce to

S‘; = S'X - g;?l)syfz’

§ =58 +gs X, (A16)
with signal strengths proportional to photon flux S,. The link
between these measurement operators and operators for the
collective pseudospin formed from a two-level subspace is
discussed in Appendix B.

APPENDIX B: QUANTUM-MECHANICAL
INTERACTION STRENGTH

In the following, we discuss our measurement scheme in the
context of quantum noise and collective interaction strength
between light and atoms, with the caveat that we assume the
atomic state to be constant during the detection. Quantum-
mechanical backaction, dynamical phase evolution, as well
as redistribution of population due to spontaneous emission
into random directions are not included in our theoretical

description. The effects on signal noise resulting from back-
action and dynamical phase evolution are essentially caused
by alternating measurement of noncommuting operators. In
principle, they can be circumvented with stroboscopic mea-
surements [43,44] or combined measurements on oppositely
oriented ensembles [45]. Redistribution of population gener-
ally leads to signal loss, but redistribution within or into the
probed manifold will also generate additional signal noise.

It is useful to introduce canonical operators for the in-
volved modes of light and atoms. The collective, two-level
pseudospin is defined by J = % >_; 6, which sums individual
Pauli operators. For large atom number n and near-symmetric
superpositions of the two states, we can define canonical,
atomic operators X,p = fy,z/ (fx>l/2 = \/;271 > i 6y, These
quadratures obey [£,p] A~ i. The variance ((Ap)?) = % de-
scribes the atomic shot noise of level populations 7 ,, for
which we can express v2np = > ;6. =i, —; and thus
((A(#12 — M1))?) = n. Similarly, we define operators for light as
9.6 = 8.../(5,)""?, which obey [$(t),4(t")] ~ i8(t — t') and
correspond to quadratures of the mode that is orthogonally
polarized to the classical input beam.

Based on the analysis described above, we can formulate
measurement operators for the detected mode amplitudes.
Separate interaction with hyperfine levels is accounted for
using atomic projection operators 1 = > |F.m) (F,m| in
some basis. Including electronic noise s(¢) in the polarimeter
signal, the real observables, i.e., including both sides of the
symmetric rf spectrum, are then given by

.o « & ®
mrp = _2 u (S + gelsz) + 8el8F S_v

x Y ﬁp,iFiTQiFiﬁp,i}dr +He (Bl

We rewrite the sum by defining numberlike operators A/, =
> i IF.1)i(F,m|;, and introduce the 1f cycle integrated atomic
operator

w
Zﬁn

to make the approximation

QFF=

21 /w . N A
/ HOOETQLFdt + He.  (B2)
0

. u*+u N
g ~ / TG0+ gaSod

+ gagy / iSydt Y " (F.l|Qpp |F.m)if,. (B3)

l,m

This approximation makes use of the periodicity Q4(¢) =
Q. (t + 27 /w) and is valid for slowly varying envelopes, as-
suming @ >> y,T~!, which allows for piecewise integration
over 1f cycles with approximately constant envelope.

We can scale the expression for our mode amplitudes to
canonical operators

Af 1
Plw=—"2 8 =—/(u*+u)

8.
—=, Ju dt. (B4)
NG 5,

/s,
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For simplicity, we assume square laser pulses, i.e., constant
photon flux §, over the support of the mode functions. This
allows us to introduce detection gain gq, and interaction
strength k¢ as

Sdet = 8ely/Sy. kp =gy \/nS, / idt.  (B5)
Using the coupling coefficients
¢l = (Fl1 Qrr |[F.m) /7, (B6)

the resulting mode amplitude can be expressed as

’/hF =8, + 8det |:j>u + KkF chl‘:mﬁllj‘m]v (B7)

I,m

where the contribution from electronic noise is given by s, =
[@* + u)sdt /2.

For atomic population in only one sublevel | F,m), the rele-
vant quadrature operator will be pp = ﬁ,f;m, with correspond-

ing coefficient cy = ¢f = &p(m)ho(6)/ /2. The expectation

m,m

value of the measurement is then given by
(p) = gaet((Yu) + KFCF (PF)). (B8)
Using the atomic operator variance
o = [(F.m| Qpp |F.m) — (F.m| Qpp |F.m)*] /%, (BY)

and neglecting technical noise in detection gain or coupling
strength, the variance of the measured mode amplitude be-
comes

(ArE)) = Sy + ha| (A5

+ i} ( (5? o+ <(Aﬁp>2>>], (B10)

where we introduced the power spectral density S§, =
((As,)?) of electronic noise in the detected voltage U(¢) and
made use of the fact that the operator Q rr does not change the
hyperfine level.

Atomic quantum noise will become relevant in the regime of
strong interaction [k O(F?) Z, 1]. For a coherent input state,
the light noise is ((A$,)?) = % For a symmetric superposition
of one state in each hyperfine manifold, i.e., a coherent
spin state, the anticorrelated atomic operators each have ex-
pectation values (pr) = +/n/2 and variances ((Apr)*) = }T.
Considering different coupling strengths and detection gains,
appropriate weighting of the two mode amplitudes 7, , will
lead to some effective coupling strength #¢ and allow for
measurements of p = (p, — p1)/+/2 with variance ((A p)?) =
% . We have to note, however, that the clock states |1,0) and |2,0)
used here are generally not eigenstates of Q 5, which leads to
additional atomic noise contributions according to Eq. (B10).
In the parallel setting under the resonance condition 6 = 7 /2,
the atomic operator is Qpp = (ﬁyz — ﬁzz)/ﬁ, providing a
true QND measurement of its eigenstate [1,0) with ¢; =
1/ V2 and 012 = 0. Resonant measurement of |2,0) leads to

¢, =3/+/2 and 022 = 3/2. For general states |F,F, = 0) of

bosonic atoms, the additional noise can be calculated from
the variance

. (F — )F(F + 1)(F +2)
(a(2 - B2))’) = . 3

The resulting noise in the combined measurement will
depend on the chosen coupling strengths, detection gains, and
corresponding signal weighting. In principle, a weak measure-
ment of 71, is sufficient to gain information on the total atom
number n when combined with a strong measurement of 7.
Therefore, the optimal measurement strategy and achievable
degree of measurement induced spin squeezing depend on
the uncertainty of total atom number. This analysis together
with consideration of backaction, dynamical phase evolution,
spontaneous emission, and breakdown of other approximations
made throughout the above derivations is beyond the scope of
this paper.

From our measurement data we infer operation in the
weak-coupling regime for the given optical depth. From the
ratio (k€)% ~ n/(1.5 x 10'9¢) of assumed atomic shot noise
to (aliasing corrected, ¢ =~ 0.5) photon shot noise equivalent,
neglecting electronic noise as well as detector inefficiency,
we estimate an effective interaction strength on the order of
k¢ 2 0.14 for the measurement of p for an experimentally
somewhat uncertain atom number n ~ 1.5 x 108, which we
can compare to the prediction. For long pulses, the interaction
is limited by atomic decay. The maximal effective interaction
time resulting from an infinite exponential mode function given
in Eq. (28) using 7 = oo, is [ idt = /2/y. Still assuming
constant atomic signal, we can express an upper bound to the
coupling strength as

o« A2 [anP [
kp = 4Ty —— | —— [ adt (B12)
oy A7 AN he 2
A2 A

< r;,— .
VX J47'[ hc A

(B11)

(B13)

This defines the detuning dependent figure of merit y =
(05%2) /o )PP /Ay shown in Fig. 2(c), which determines the
maximal signal-to-noise power ratio at fixed optical depth.

For our Gaussian atomic density distribution with standard
deviation o 2 1.2 mm and mode matched probe beams, the
effective interaction area is A = 471002 > 18 mm? [46]. With
probe detunings and observed power dependent decay rates
for F =1 (A1 ~240 MHz, y ~ 900 s~ at P = 540 uW)
and F =2 (A, =~ 400 MHz, y ~ 350 s~lat P = 120 uW),
we predict maximal coupling strengths of «;¢; < 0.21 and
Kkacy < 0.35 for n = 1.5 x 10® atoms, using long pulses and
complete decay. Here, we use shorter pulses, with only 1 ms
for the measurement of p,. This minimizes expansion of
the falling cloud as well as an error on the subsequent
measurement of p; due to the increase of population in
F =1 from spontaneous emission. The short pulse duration
reduces the theoretical coupling strength to k,c; < 0.14. The
estimated effective strength compares well with the predicted
values. Further increase of coupling strength and entering the
strong-coupling regime, especially for QND measurements
with minimal atomic loss, requires an increase of optical
depth.
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