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Signature of charge migration in modulations of double ionization
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We present a theoretical investigation of charge migration following strong-field ionization in a multielectron
system. We study a model homonuclear molecule with two electrons, each restricted to one dimension (1 + 1D),
interacting with a strong, static electric field. We show that in this system charge migration results from the
interplay between multiple ionization channels that overlap in space, creating a coherent electron-hole wave
packet in the cation. We also find that, in our case, charge migration following the first ionization manifests as a
modulation of the subsequent double-ionization signal. We derive a parametrized semiclassical model from the
full multielectron system and we discuss the importance of the choice of cation electronic-structure basis for the
efficacy of the semiclassical representation. We use the ab initio solution of the full 1 + 1D system as a reference
for the qualitative and quantitative results of the parametrized semiclassical model. We discuss the extension of
our model to long-wavelength time-dependent fields with full-dimension, many-electron targets.
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I. INTRODUCTION

With the progress in ultrafast laser technology, strong-field
physics is now able to probe the structure and dynamics of
matter at the space and time scale of the electron [1–7]. For
time-resolved analyses, the temporal coherence of the laser
electric field defines an intrinsic clock, with a period of a
few femtoseconds in the near- to midinfrared regime [8–15].
For instance, in a linearly polarized laser field, recollision
events [16,17]—where a previously ionized electron revisits
its parent cation—define a subcycle reference associated with
the different recollision trajectories [18,19] and, therefore,
with subfemtosecond resolution in the infrared. Bringing to-
gether high temporal and spatial resolution for the “real-time”
observation of electron dynamics has long been a goal of
ultrafast physics. In this context, the observation and analysis
of the phenomena of charge migration have attracted a lot of
attention recently [20–27]. Charge migration is the coherent,
correlation-driven, purely electronic dynamic immediately
following the excitation or ionization of a molecule, before the
nuclei have had time to move. It has been widely speculated
that the attosecond electron dynamics can play a crucial role in
the longer-time-scale phenomena like charge transfer and bond
rearrangement, which implies that the control of attosecond
dynamics can determine such chemical processes [21,28].

Coherence and correlation are at the core of strong-field
physics, especially given that the initial systems are usually
atoms or molecules in their ground state. For instance, nonse-
quential double ionization [29–32]—and its “knee” signature,
which exceeds simple sequential ionization predictions by
orders of magnitudes—spotlights the central role of elec-
tron correlation in strong-field processes [33–35]. Further
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analyses of the dynamics have revealed a rich variety in the
pathways leading to nonsequential double ionization [36–38].
Laser-induced electron diffraction [39]—exploiting the in situ
coherent probe of a preionized electron scattering on its parent
ion—has been used to retrieve the nuclear geometric structure
of molecular compounds [40,41]. Alternatively, still using
the intrinsic coherence of strong-field laser-matter interac-
tion, direct imaging of the electronic structure has been per-
formed with tomographic reconstruction of molecular orbitals
[42–44]. Even without recollision, strong-field ionization stud-
ies have proven a powerful probe of the electronic structure and
properties of matter [9,45,46].

In this article, we present a theoretical and numerical investi-
gation of charge migration following strong-field multichannel
ionization. We consider a model homonuclear molecule with
two electrons, each restricted to one dimension (1 + 1D),
interacting with a strong, static electric field. Somewhat
counterintuitively we find the dynamics in such a static field
physically enlightening, despite the absence of any explicit
time dependence. Indeed, the removal of a first electron by
the field starts a molecular clock in the cation which can be
probed later, e.g., with the ionization of a second electron.
We show that the charge migration results from the interplay
between multiple ionization channels that overlap in space,
i.e., a coherent electron-hole wave packet in the cation. In our
1 + 1D system, we identify a signature of the cation charge
migration dynamics, a modulation of the subsequent double-
ionization signal. From the full multielectron system, we derive
a parametrized semiclassical model where the hypotheses
and approximations leading to the analytical prediction are
identified. Of all the ionization and molecular parameters
in the model, we highlight the importance of the cation
electronic-structure basis for the efficacy of the semiclassi-
cal representation. We validate the model, qualitatively and
quantitatively, against reference ab initio solutions of the full
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1 + 1D system. We discuss the extension of our parametrized
semiclassical model to long-wavelength oscillating laser fields
with full-dimension, many-electron targets.

For realistic polyatomic molecules, brute-force ab initio
solutions of the full time-dependent Schrödinger equation
(TDSE) are out of analytical and computational reach. As an al-
ternative, one could turn to quantum-chemical techniques like
time-dependent density functional theory (TDDFT) [47–52].
Such an approach, however, faces two fundamental difficulties:
(i) the validity of the chosen exchange-correlation functional in
the nonlinear regime and (ii) the interpretation of correlation-
driven charge migration dynamics in a framework that treats
electrons as virtually independent particles. As a second
alternative, one could stick to the TDSE framework and break
the problem into smaller components, corresponding to the
key elements of the charge migration, and piece them together
with relevant system parameters [53,54]. Such approaches are
built to facilitate the analysis and interpretation of the process,
but they also suffer from fundamental difficulties of their own:
(i) the determination of the model parameters and (ii), even
assuming that these are perfectly known, the intrinsic precision
of the semiclassical approximation. Here we take advantage
of the simplicity of our 1 + 1D model to address the second
difficulty, as one can perform brute-force integration of the
full TDSE, for reference, and all ionization and molecular
parameters can be computed with a high precision.

The paper is organized as follows: Section II introduces
some key concepts of our analysis of charge migration, and
its signature in the modulation of double ionization, in a
static field from the point of view of classical mechanics.
Section III introduces our quantum model and theoretical
treatment of multichannel ionization. Section IV details the
derivation of the corresponding semiclassical model. Section
V applies it to the analysis of our 1 + 1D model and the
signature of charge migration in double ionization. Finally, in
Sec. VI we conclude the paper, summarizing the key findings
and discussing perspectives for real systems and real laser
fields. Unless otherwise specified, we use atomic units (a.u.)
throughout the paper.

II. MODULATION OF DOUBLE IONIZATION AS A
SIGNATURE OF CHARGE MIGRATION

Although we are ultimately interested in the full quantum
ionization dynamics, it is useful to first look at the classical
limit, where the Coulomb interaction with the core and other
electrons is negligible (strong-field approximation). Following
ionization, the dynamics of an electron in a static electric field
of amplitude E can be solved for analytically,

r(τcl) = −E
2

τ 2
cl ⇔ τcl =

√∣∣∣∣2r

E

∣∣∣∣, (1)

assuming that the electron is initially at the origin and with zero
velocity. Here we are most interested in the reciprocal part of
the equation: Static fields spatially separate electrons based on
the delay since ionization τcl and the ionization distance r can
be seen as a time axis. The use of static dc fields elides two types
of interferences that would be present in their ac counterparts:
(i) the cycle-to-cycle interference responsible for individual
peaks in the above-threshold ionization and high-harmonic-

FIG. 1. Upper panel: Two-electron density |ψ(r1,r2)|2 for our full
1 + 1D TDSE simulations. In the molecular model we set the inter-
nuclear distance R = 3.5 a.u., the electron-nucleus/electron-electron
softening parameter aen/aee = 0.5/1, effective charge Z = 1, and
static electric-field amplitude E = 0.13 a.u. Solid arrows label the
charge migration between the two molecular centers, following the
first multichannel ionization event. Dashed arrows represent the
subsequent double-ionization bursts, as signatures of the charge
migration in the cation. Lower panel: Comparison of the electron
density in the cation, (15), for selected r1 sections (labeled with small
arrows in the upper panel) of the TDSE and semiclassical models,
(13). The ionization delay τ used here is defined in Eq. (14). For a
qualitative understanding, its classical limit introduced in Eq. (1) can
be used instead.

generation spectra and (ii) the subcycle interference of quan-
tum paths leading to the same observable [19], e.g., direct and
backscattered photoelectrons in above-threshold ionization
and short and long trajectories in high-harmonic generation.

Now consider (sequential) double ionization in the same
static field. The arguments of Eq. (1) can be applied to each
electron coordinate r1 and r2 individually. This means that the
analysis of the spatially correlated two-electron density gives
us information about the dynamics following the first ionization
event and eventually leading to the second ionization. An
illustration of that analysis is displayed in the upper panel in
Fig. 1, where the density has been obtained from our 1 + 1D

model wave function |ψ(r1,r2)|2 (defined later). In the lower
part of the panel we observe diagonal “stripes” in the density
(highlighted with dashed arrows), which we therefore identify
as a modulation of the double-ionization signal with respect
to τcl. Interestingly, in the upper part of the panel, we note
that this modulation is synchronized with another type of
density motion, between the two centers of the molecule (solid
diagonal arrows). Later we show that this corresponds to a
migration of the charge in the cation following multichannel
ionization and that the modulation of the double-ionization
signal is a signature of that charge migration dynamics.

III. MODEL

We consider the quantum-mechanical dynamics of an N -
active electron system, as described by the TDSE,

i∂tψ(rN ; t) = ĤN (rN )ψ(rN ; t), (2)
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in the presence of a static electric field of amplitude E .
Here ĤN and |ψ〉 are the Hamiltonian operator and total
N -electron wave function, respectively. For simplicity we use
rN as a short-hand notation for the multielectron coordinates
r1, . . . ,rN .

A. Molecular model for numerical simulations

For numerical simulations we consider the simplest system
that fulfills the requirements for charge migration following
ionization discussed in Sec. I. It is given by the 1 + 1D soft-
Coulomb potential [55]

V̂(r1,r2) = − Z√(
r1 ± R

2

)2 + a2
en

− Z√(
r2 ± R

2

)2 + a2
en

+ 1√
(r1 − r2)2 + a2

ee

, (3)

where aen and aee are the electron-nucleus and electron-
electron softening parameters, respectively. This model is
simple enough to allow for full ab initio TDSE computations,
to serve as a reference in quantitative analysis, and yet it is com-
plex enough to exhibit multichannel ionization and subsequent
charge migration in the cation. For all figures shown here, we
take the internuclear distance R = 3.5 a.u. (1.9 Å), effective
charge Z = 1, aen/aee = 0.5/1, and static-field amplitude E =
0.13 a.u. (the same amplitude as an ac field with an intensity
of 6 × 1014 W/cm2). For reference, with these parameters the
energy difference between the (dressed) ionization channels is
about 12 eV, which gives the period of about 14.5 a.u. (about
350 as) for the charge migration observed in the cation. We note
that full-dimensional molecular systems with closely spaced
energy states generally can be dipole coupled with much lower
field amplitudes than considered here.

In order to discriminate between the channels, we consider
a system with two spatially different orbitals and so use the
lowest-energy triplet state as the initial condition. In the dipole
approximation the 1 + 1D Hamiltonian operator H2 in Eq. (2)
preserves the (anti)symmetry of the initial condition, which
prevents any leakage to a lower-lying symmetric state. From
the practical point of view, it also means that one needs only to
record the ionization wave function in one of the two electron
coordinates. We choose r2 as this coordinate and absorb the
outgoing wave function along the other electronic coordinate.

In numerical simulations we first smoothly ramp up the field
from the (field-free) triplet initial state to reach the desired
static-field amplitude. All numerical analyses are performed
after a sufficient static-field duration such that all transient
effects associated with the ramp-up have moved outside of the
simulation box. We have checked the robustness of our results
with the ramp-up and static-field durations, field strength,
and molecular and discretization parameters. Later we use
the result of these ab initio full TDSE simulations as a
reference against which parametrized semiclassical models
can be quantitatively tested.

B. Single-ionization effective model

In the physical picture of the TDSE, (2), single ionization
corresponds to portions of the wave function elongated in

exactly one electronic coordinate, e.g., rN , while the other
(rN−1) remain localized. In such regions, the dynamics
between the ionized and the cation electrons becomes
decoupled and the total Hamiltonian operator splits into two
effective ones [13,54]:

ĤN (rN ) ≈ ĤN−1(rN−1) + Ĥ1(rN ). (4)

In this formulation, we identify three components of the
total wave function, which should be clearly distinguished.
First is the neutral component—later labeled with the “n”
superscript—with all N electron coordinates close to the core
region and from which originates ionization. Next are the
cation and ionized electron components, respectively, with
N − 1 and 1 electrons and described with the effective opera-
tors ĤN−1 and Ĥ1. Although they are decoupled, it is important
to keep in mind that the dynamics of the cation and ionized
electron components are still correlated (entangled), through
the ionization condition: Dynamically, they are both born out
of the same neutral component at the time of ionization.

The decomposition, (4), is most interesting in that it
naturally defines orthonormal representation bases for each
subspace: The cation component can be expanded in a basis of
N − 1 electron states, which we generically denote |ψ̃k〉 (here
the tilde is used to discriminate the neutral, with N electrons,
and the cation, with N − 1 components). Throughout the
paper, these correspond to our ionization channels. The most
intuitive basis corresponds to the ionic-field-free eigenstates,
labeled with a “0” superscript in what follows. In a single Slater
determinant approximation, such states can be labeled by the
orbital of the electron-hole. As we later show, other “smarter”
choices of basis are also possible. On the other hand, the
ionized electron component is described with a one-electron
continuum, which we generically label |v〉. Depending on
the degree of precision required, one can use, e.g., plane
waves/Volkov states, Coulomb waves [56], and exact one-
electron continuum states [57].

In the product basis, the total N -electron wave function,
with ionization along the electronic coordinate rN , therefore
reads [22,58,59]

|ψ〉 = eiIn
p t |ψn〉 +

Ñ∑
k=1

e
iIp

k
t

∫
βk(v,t)|ψ̃k〉 ⊗ |v〉 dv. (5)

Analytically, finding the coefficients βk is equivalent to solving
the problem. Here |ψn〉 is the neutral component, from which
the single ionization originates, with total ionization potential
I n
p . Although it vanishes in the region of interest, this term is

kept as a reminder of the correlation (entanglement) between
the cation and the ionized electron components, through the
initial ionization condition. Ip

k
is the total ionization potential

of the corresponding cation basis set component |ψ̃k〉. In this
representation I n

p − Ip
k

is the vertical ionization energy to
the channel k. Ñ is the truncation order in the cation basis
expansion. Its actual value is largely system specific and
depends, e.g., on the number of ionization channels, the cation
component basis, and whether excited states are involved in
the process of interest.

C. Retrieving channel populations

To obtain the population in a given ionization channel k we
project the total wave function onto the corresponding cation
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FIG. 2. Charge-migration dynamics and modeling following mul-
tichannel ionization by a strong static laser field. (a, c) The relative
population ρk/ρ, as defined in Eqs. (6) and (7), extracted from full
TDSE simulations for field-free and exact dressed-state cation bases,
respectively. The ionization delay τ is defined with Eq. (14). For a
qualitative understanding, its classical limit introduced in Eq. (1) can
be used instead. (b, d) Differences between the two representation
bases.

state as

ρk(rN ) = N |〈ψ̃k| ⊗ 〈rN |ψ〉|2

= N

∣∣∣∣
∫

βk(v)〈rN |v〉 dv

∣∣∣∣
2

(6)

from Eq. (5). In practice, this corresponds to taking a slice
of the total N -electron wave function at a given ionization
coordinate rN , or equivalently a given ionization delay τ , and
projecting the result onto the cation basis-state element. Here
the prefactor N is introduced to cast the problem in a form
similar to TDDFT, where all properties are functionals of the
single-particle density [49]

ρ(rN ) = N

∫
|ψ(rN−1,rN )|2 drN−1. (7)

In Fig. 2(a) we display the relative populations,
ρk(rN )/ρ(rN ), in the first two field-free states of the cation
for our 1 + 1D molecular model of potential (3). Results
are shown as a function of the ionization coordinate or,
equivalently, the delay since the first ionization (see Sec. II).
Because of the dipole coupling between the cation states [see
Fig. 2(b)] we observe population transfer between them, which
manifests through the oscillations in the curves. Alternatively,
Figs. 2(c) and 2(d) display the populations in a “smart” exact
dressed-state cation basis set [60–62]. In the dressed basis,
the coupling between channels is effectively removed and the
population in each of them is conserved over time.

The cation component basis closure, together with Eqs. (6)
and (7), imposes the charge conservation condition

ρ =
∑
k�1

ρk.

Alternatively, one can use the charge conservation condition to
determine the number of cation states to include in expansion

(5), i.e., Ñ , by tracking the residual population proportion 1 −∑Ñ
k=1 ρk/ρ.

IV. SEMICLASSICAL MODEL

With a static field and truncation of the cation component
basis to order Ñ in Eq. (5), ĤN−1 takes the form of a constant
finite-dimensional Hermitian matrix, which we denote H̃N−1.
We first diagonalize the matrix

H̃N−1

∣∣ψ̃d
k

〉 = −I d
p

k

∣∣ψ̃d
k

〉
and rewrite the problem in an orthonormal basis of eigenstates.
Immediately, we see that the I d

p
k

and |ψ̃d
k 〉 correspond to

the dressed ionization potential and cation component state.
Effectively, this decouples the dynamics of the dressed chan-
nels, which can be treated as virtually independent systems—
with populations conserved in time—while fully retaining the
dipole couplings with the external field. Here as well, it is
important to keep in mind that, although decoupled, the dressed
ionization channels remain correlated (entangled), through the
multichannel ionization condition. In what follows, dressed
states and associated parameters/quantities are labeled with a
“d” superscript.

A. Approximate solution

With each dressed state behaving as an independent channel
we follow the procedure of the Lewenstein model [18] and
combine the wave function decomposition, (5), with the TDSE,
(2), and effective Hamiltonian, (4). For illustration and simi-
larly to Ref. [18], we consider a plane wave and strong-field
approximation description of the continuum electron such that,
in the length gauge, the dynamics is described by

iβ̇d
k − v̇rNβd

k = e
i

(
In
p−I d

p
k

)
t
dd

k (v) + v2

2
βd

k + ErNβd
k

for each dressed channel. Here dd
k is the (complex) transition

element describing ionization from the neutral to the dressed
ionization channel k, |ψn〉 → |ψ̃d

k 〉 ⊗ |v〉. The strong-field
approximation imposes v̇ = −E , and we solve the differential
equation analytically [18],

e
iI d

p
k
t

∫
βd

k (v,t)
∣∣ψ̃d

k

〉 ⊗ |v〉 dv

= −i

∫∫ t

dd
k (v(t0))eiSd

k [t0,t,rN ,v] dt0dv
∣∣ψ̃d

k

〉 ⊗ |Id〉, (8)

where |Id〉 is the identity—the contribution from the continuum
(plane-wave) |v〉 is included in the global phase term—and Sd

k

is given by

Sd
k = I d

p
k
t + (

I n
p − I d

p
k

)
t0 −

∫ t

t0

v(s)2

2
ds + vrN, (9)

with v(s) = v + E(t0 − s). Beyond the present case of dc
ionization, we note the similarity in the analytical solution
above to other semiclassical treatments of multichannel/active
electron systems in strong-field physics [7,23,25,54].

Physically, Eqs. (8) and (9) can be interpreted as the
ionization time t0 and initial velocity v required for a classical
electron to reach the coordinate rN at time t . Similarly,
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I d
p

k
(t − t0) and − ∫ t

t0

v(s)2

2 ds are the phases accumulated by the
dressed cation component k and ionized electron, respectively,
following ionization. The term I n

p t0 ensures the synchroniza-
tion of phases between the neutral and the ionization channel,
at the instant of ionization, and the term vrN is due to the spatial
dependence of the continuum state.

More interestingly, in Eq. (8) we recognize the tempo-
ral factorization of the wave function in terms of the two
steps of the ionization process: ionization, with dd

k (v(t0)),
and propagation, with eiSd

k [t0,t,rN ,v]. Here, for each dressed
channel k, the result reads as a single-active-electron system
would. Assuming that one can generalize the notion of such
dressed states to oscillating fields (see Sec. VI), it opens a
clear perspective for extending quantitative rescattering (QRS)
results [63] and similar high-harmonic-generation spectrum
factorization [64] to multichannel processes. This would be
done by performing the temporal-to-frequency factorization
[57] for each dressed channel independently and coherently
summing all contributions. We stress that this is possible
only because the dressed channels are virtually independent
systems. Indeed, QRS factorization relies on the generality of
the propagation component of the factorization, which is found
to be very similar across targets. This property breaks down
when population transfer (charge migration) happens between
the different cationic states, e.g., as it does in the field-free
cation-state basis.

B. Stationary phase approximation

With its multidimensional integrals, Eq. (8) is rather cum-
bersome for analyses of the charge migration dynamics. To
simplify its expression we consider the familiar stationary
phase approximation (SPA). Without loss of generality we
assume that the static field is fully on at time t = 0 and
select a position rN along the ionization direction and time
t �

√|2rN/E |, (1), to avoid transient effects of the laser ramp-
up. For each dressed channel, the SPA condition ∇Sd

k = 0 is
defined by the two equations

I n
p − I d

p
k
+ v2

2
= 0 and

∫ t

t0

v + E(t0−s) ds − rN = 0.

(10)

By definition, the neutral ionization potential is larger than that
of any of the cations, such that the SPA velocity is a purely
imaginary number,

v = −i
√

2
(
I n
p − I d

p
k

)
,

which is sometimes interpreted as a generalized energy con-
servation condition for ionization, extended to the complex
plane. Then the second equation defines the corresponding SPA
ionization time

t0 = t −
v +

√
2
(−ErN − I n

p + I d
p

k

)
E .

This equation defines the classically forbidden region rN >

−(I n
p − I d

p
k
)/E , assuming E > 0, and corresponds to the pic-

ture of tunnel ionization through a barrier corresponding to the
vertical ionization energy to channel k.

After additional calculations and simplifications, we find
that the real part of the stationary phase is given by

Ss
k(rN ,t) = I n

p t +
[
2
(−ErN − I n

p + I d
p

k

)] 3
2

3E . (11)

Alternatively, similar results can be obtained in parabolic
coordinates, where the Coulomb potential plus static-field
problem is separable [65,66]. Finally, following QRS-type
arguments [63], we assume that the spatial profile along the
ionization channel is generic and further factorize the wave
function

|ψ〉 =
√

ρ(rN )

N

Ñ∑
k=1

γ d
k e

i

(
Ss

k (rN ,t)+�d
k

)∣∣ψ̃d
k

〉
, (12)

where γ d
k is the proportion of ionization to, and �d

k is the
absolute ionization phase out of, the dressed channel k.

Interestingly, we note that Eq. (12) corresponds to a
fully parametrized semiclassical (ionization) model, where
the parameters are related to the physical/chemical ionization
properties of each cation channel. Quantum-chemical methods
such as TDDFT or Hartree-Fock theory provide means to
obtain such parameters [23]. A detailed discussion about how
these should be computed goes beyond the scope of the present
paper.

V. NUMERICAL SIMULATIONS

We now turn to the 1 + 1D molecular system introduced
in Sec. III A for a quantitative analysis of the parametrized
semiclassical model of Eq. (12). In our 1 + 1D model, in
Fig. 2(c) we see that most of the population is captured by
the first two field-free cation states. For reference, in the exact
dressed-state basis, the residual population is about three orders
of magnitude smaller than the populations in the first two
dressed states. We therefore take Ñ = 2 in the parametrized
semiclassical model, (12), which leads to the two-electron
density

||ψ〉|2 = ρ(r2)

2

∣∣γ d
1 ψ̃d

1 (r1) + γ d
2 ei

(
Ss

12(r2)+�d
12

)
ψ̃d

2 (r1)
∣∣2

, (13)

with Ss
12 and �d

12 = �d
2 − �d

1 the stationary and ionization
phase differences between the two (dressed) channels.

A. Ionization delay

From the expression of the stationary phase, (11), we note
that the phase difference between the two ionization channels,

Ss
12(r2) =

[
2
(
−ErN −In

p+I d
p2

)] 3
2 −

[
2
(
−ErN −In

p+I d
p1

)] 3
2

3E ,

is independent of the absolute time t . We have confirmed
numerically that once the static-field-ionized wave packet has
reached a given ionization coordinate r2, the two-electron
density remains constant at all later times. This ensures that
we can reconstruct the ionization delay from the coordinate
r2, by providing a consistent reference from full TDSE com-
putations: The charge migration dynamics in the cation, and
its signature in the modulation of subsequent ionization, only
depends on the time since the first ionization, i.e., how far the
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ionized electron has traveled. Throughout the remainder of the
paper we therefore omit the absolute time variable t in most
equations.

In the leading-order expansion, the phase difference be-
tween the two channels becomes

Ss
12(r2) ≈|r2 |
1

(
I d
p2

− I d
p1

)
τcl.

This factorizes as the energy difference between the two
dressed states multiplied by the classical ionization delay, (1).
It corresponds to the fully classical picture for the ionized
electron, where the two ionization channels have the same con-
tinuum dynamics and therefore the same accumulated phase.
These cancel and the phase modulation is fully determined by
the energy difference between the two ionization channels.

For higher-order results, we keep the full semiclassical
expression and define the ionization delay as

τ (r2) = Ss
2(r2) − Ss

1(r2)

I d
p2

− I d
p1

. (14)

In all figures, Eq. (14) is used to perform the conversion from
the ionization coordinate r2 to the delay τ in the analysis of our
TDSE simulations. Physically, compared to the fully classical
limit, (1), higher-order terms can be interpreted as accounting
for channel-specific ionization conditions due to the different
ionization barriers I n

p − I d
p1,2

(see Sec. IV B).
We now have all the ingredients necessary to study charge

migration following multichannel ionization in our 1 + 1D

molecular model. More specifically, as a function of the
ionization delay τ , (14), the electron density in the cation is
given by

|ψ̃(r1,τ )|2 = |ψ(r1,r2(τ ))|2
ρ(r2(τ ))/2

. (15)

We display the result for various delays in Fig. 3 (thick
black curves; each panel corresponds to section 1©– 3© in other
figures); a video of the charge migration is also available in the
Supplementary Material [67]. It confirms the observations in
Sec. II: Following multichannel ionization a migration of the
charge is observed between the two molecular centers (vertical
lines). Looking closely at the double-ionization dynamics
(r1 � −1) we see that a burst of ionization is generated
following the full localization of the electron density downfield
center ( 1©), and the double-ionization channel is suppressed
when the electron is delocalized over the two centers ( 3©).
This is a clear signature of the charge migration dynamics
in the double-ionization oscillations, through the control it
exercises on the release of the second electron (localization
in the downfield molecular center).

B. Cation component representation basis

One could fit the results of the TDSE calculation as a means
of extracting the parameters of the semiclassical model, (13).
This all-at-once-fit strategy is unreliable, yielding unstable and
sometimes unphysical results. Alternatively, and similarly to
what would be done for systems where brute-force TDSE is not
feasible, we have determined these parameters independently
through physically reduced models, e.g., corresponding to the
electronic structure of the cation for the different ionization

FIG. 3. Comparison of the electron density in the cation 2|ψ |2/ρ
from the TDSE vs our semiclassical model, with field-free and exact
dressed ion states (see legend), for the section labeled in Figs 1
and 2. The associated video can be found in the Supplemental Material
[67].

energies I d
p

k
. This method has proven successful, leading to

well-defined (stable) parameters. We have checked the robust-
ness of our ability to obtain these with changing electric-field
and molecular parameters.

As discussed above, the most natural representation basis
for the cation component is built from field-free eigenstates,
as they are unambiguously defined by the cation component
effective Hamiltonian ĤN−1. The corresponding semiclassical
electron density, with truncation order Ñ = 2, is displayed by
light-blue curves in Fig. 3. Compared with the TDSE reference
(thick black curve), we see that this model reproduces very
well the charge migration dynamics in the core region, around
the molecular centers (vertical lines). Away from the core,
however, the model fails to describe the (double-) ionization
dynamics. These observations are confirmed in the lower panel
in Fig. 1, where the semiclassical density (light-blue curve)
reproduces very well the TDSE reference (thick black curve) in
the upfield center (r1 = R/2 set of curves) but completely fails
to capture the modulation in the density away from the core,
in the double-ionization region (r1 = −8 a.u.). The failure to
account for subsequent double ionization is hardly a surprise
given the chosen basis of field-free states, which represent
bound electrons. In order to capture double ionization one
would probably have to expand drastically the representation
basis with Ñ 
 2 and include, e.g., many Rydberg states.

The aforementioned failure to reproduce all of the full 1 +
1D TDSE dynamics is not to be put on the semiclassical model,
(13), but solely on the choice of the cation component basis
representation. Indeed, for comparison, we have performed a
precise computation of the dc-field dressed states, including the
distant—double-ionization—region from the core. We refer
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to these as the “exact” dressed states throughout the paper.
The resulting semiclassical prediction is displayed by thin red
curves in the bottom panel in Fig. 1 and in Fig. 3. The results
fall almost perfectly on top of the TDSE reference (thick black
curves) and captures both the charge migration dynamics, fol-
lowing multichannel ionization, and the modulations it induces
in subsequent (sequential) double ionization. Compared to
the “natural” field-free-state representation, the exact dressed
states can be heuristically interpreted as follows: First, one
builds the effective cation Hamiltonian operator matrix H̃N−1

including many (Rydberg) states, so as to span distant regions
from the core, to include subsequent ionization routes. Then
one performs the diagonalization of the extended matrix to
find the dressed states (as described in the introduction of
Sec. IV). Finally, one performs the truncation to order Ñ = 2,
e.g., noting that the first two exact dressed states capture
virtually almost all of the electron population in the cation [see
Fig. 2(d)]. Compared to the field-free model described above,
the inversion of the “Hamiltonian matrix diagonalization” and
“truncation” steps has two main advantages: First, it offers a
much more precise modeling; it quantitatively reproduces the
full TDSE results, including the modulation in double ioniza-
tion. Second, it keeps the number of dressed states involved in
the model minimal, with only two effective channels here.

VI. CONCLUSION: BEYOND STATIC FIELDS

In conclusion, we have shown that even in the simplest case
of a static (dc) field, ionization to more than one channel can
lead to subsequent charge migration in the cation. A signature
of this charge migration can be found in the modulation of
subsequent double ionization, even though it happens through
a sequential process; with a static field, recollision is not
possible. Mathematically, the charge migration can be linked
to the different rates at which each ionization channel accu-
mulates phase and the resulting constructive and destructive
interferences in the coherent superposition of involved cation
states. Physically, the modulation can be understood in terms
of the ionization delay-dependent localization of the electron
density on the cation. In our case only the full localization
of the electron in the downfield molecular center can lead
to double ionization, while the double-ionization channel is
suppressed when the electron is delocalized over the two
centers.

By varying the internuclear distance R in our potential
model of Eq. (3) (not shown)—which amounts to tuning
the molecular properties of the target—we identify the two
necessary ingredients for charge migration in the cation:
(i) ionization to more than one dressed channel and (ii) spatial
overlap between the dressed cation states, i.e., a coherent
electron-hole wave packet in the cation. For small internu-
clear distances, dressed states strongly overlap spatially but
ionization occurs in only one channel. On the other hand,
with large internuclear distances significant ionization in both
dressed channels is observed but they do not overlap spatially.
In both cases, it leads to the disappearance of the charge
migration dynamics described above. Here, it is important to
note that charge migration is a coherent evolution of charge
from one region of space to another. Charge migration can
be distinguished from typical excitations due to the longer

timescales needed for the larger body of charge to move. In a
larger molecule, for example, charge migration would describe
the motion of charge from one end to the other, whereas
excitations would be dominated by transitions between nearby
atoms.

Our analysis also provides a quantitative validation of
semiclassical models for multichannel ionization and subse-
quent charge migration dynamics. This is particularly rele-
vant given that such approaches have flourished in the past
few years with the attempt to model, analyze, and identify
charge migration in complex multiactive electron systems
[7,11,22–25,43,54], where full ab initio TDSE computations
are out of reach. We stress that the key to the success of the
semiclassical model derivation was to rewrite the problem
in a basis of dressed states, which effectively decouples
the different ionization channels. Each can then be treated
independently, similarly to well-known single-active-electron
systems, and the overall coherence is only located in the
ionization condition (as an initial-condition entanglement).
Another by-product of the dressed-state formulation is that,
after diagonalization of the matrix H̃N−1, the complexity of
computations grows linearly with the number of dressed states.
On the other hand, the complexity scales quadratically if one
stays, e.g., in the field-free basis (the time propagator is a full
matrix).

The comparison between models using reduced field-free
states and exact dressed states with the 1 + 1D TDSE reference
in Figs. 1 and 3 is also instructive for semiclassical models and
analyses. For processes involving only a single ionized electron
we see in our simulations that a reduced basis of field-free
cation states is sufficient to describe the charge migration
dynamics in the core region, with very good accuracy. On
the other hand, if subsequent ionization or the dynamics in
regions distant from the core are of interest, more care/refined
states should be considered in order to account for them in the
semiclassical approach.

Our main motivation for considering a static (dc) field
is that it spatially separates ionization delays, and a single
semiclassical trajectory is associated with each ionized elec-
tron coordinate (see also Sec. II). We used this property to
reconstruct the ionization delay and, from there, the charge
migration dynamics in the cation following multichannel ion-
ization from full ab initio TDSE computations. This allowed
us to quantitatively validate our semiclassical model, (13), and
interpret the signature of charge migration in modulation of
the double ionization. Almost all experiments in strong-field
physics and attosecond science, however, use oscillating (ac)
laser fields. Looking back at Fig. 1, we note that the charge
migration period is about 14.5 a.u. (about 350 as). At this
time scale, midinfrared lasers can be seen as a slowly varying
electric field; in our example the period of the dynamics is
about 1/20 that of a 2-μm laser. In the sequential regime, i.e.,
neglecting recollision-induced double ionization, the wave-
function expansion, (5), is not specific to dc fields and can
equally well be applied to ac ones. From there, the main
difference is that the cation component effective Hamiltonian
operator ĤN−1 now has an explicit time dependence. As a
result the associated matrix H̃N−1 is finite-dimensional with
periodic time-dependent coefficients. For such systems, the
Floquet framework extends the notion of dressed eigenstates
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[68] and can decouple them. For the ionized electron compo-
nent, the dynamics of a continuum electron in an oscillating
field has been repeatedly shown to be very well described by
semiclassical models. This means that working in the Floquet
basis offers the possibility of describing the system as a co-
herent superposition of decoupled—effectively single-active-
ionized electron—channels. For such single-active-electron
processes, QRS [63] has been shown to produce qualita-
tively and quantitatively more accurate results than its semi-
classical counterparts. It therefore opens avenues to extend-

ing the technique to multichannel processes with oscillating
fields.
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