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Energy distributions of an ion in a radio-frequency trap immersed in a buffer
gas under the influence of additional external forces
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An ion held in a radio-frequency trap interacting with a uniform buffer gas of neutral atoms develops a
steady-state energy distribution characterized by a power-law tail at high energies instead of the exponential
decay characteristic of thermal equilibrium. We have previously shown that the Tsallis statistics frequently used
as an empirical model for this distribution is a good approximation when the ion is heated due to a combination
of micromotion interruption and exchange of kinetic energy with the buffer gas [Rouse and Willitsch, Phys. Rev.
Lett. 118, 143401 (2017)]. Here, we extend our treatment to include the heating due to additional motion of the
ion caused by external forces, including the “excess micromotion” induced by uniform electric fields and rf phase
offsets. We show that this also leads to a Tsallis distribution with a potentially different power-law exponent from
that observed in the absence of this additional forced motion, with the difference increasing as the ratio of the
mass of the neutral atoms to that of the ion decreases. Our results indicate that unless the excess micromotion is
minimized to a very high degree, then even a system with very light neutrals and a heavy ion does not exhibit a
thermal distribution.
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I. INTRODUCTION

Ultracold atoms, ions, and molecules are of great interest
in atomic, molecular, and chemical physics, from testing fun-
damental concepts with precision spectrosopic measurements
to investigating the nature of elementary chemical reactions
[1–7]. By reducing the kinetic energy of the particles to reach
temperatures below 1 mK, cross sections and reaction rates
can be measured with high resolution. For neutral atoms, the
combination of Doppler, Sisyphus, and evaporative cooling
enables reaching temperatures as low as the nanokelvin regime.
Charged particles, however, are usually trapped in much
smaller numbers, and so evaporative cooling no longer offers
a route to extremely low temperatures. It may seem possible to
prepare a sample of ultracold atoms at the desired temperature
and bring the ions into thermal contact with these atoms in a
hybrid trapping setup to reduce their energy to an equally low
temperature via cooling collisions [3–6]. While it is true that
in each collision the ion may transfer energy to the atom, there
is a complication due to the experimental techniques usually
employed to trap ions. If the charged particles are held in a
radio-frequency (rf) trap, then the ion’s motion consists of a
spectrum of frequency components, containing low-frequency
secular motion and high-frequency micromotion. A collision
with a neutral atom leads to a randomization of the phase and
amplitude of this motion, and the outgoing trajectory of the ion
may correspond to a higher average energy than the trajectory
before the collision even if the ion’s velocity is reduced to zero
by the collision [8–10].

This effect is typically referred to as micromotion inter-
ruption and has two important consequences. First, the mean
energy of the ion may be several times larger than that
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predicted if it was in thermal equilibrium with the atomic
cloud, and second, the ion’s energy no longer follows a thermal
distribution [8,10]. The observed distribution has frequently
been empirically modeled using Tsallis statistics [8,11,12],

fE(E) =
(

nT

〈β〉
)−k−1

�(k + nT + 1)

�(k + 1)�(nT )

Ek( 〈β〉E
nT

+ 1
)k+nT +1 ,

(1)
where E is the energy of the ion, Ek represents the density of
states [k = 2 for a three-dimensional (3D) harmonic oscilla-
tor], �(x) is the Gamma function, 〈β〉 is a scale parameter, and
the Tsallis exponent nT parameterizes the degree of departure
from thermal equilibrium, with nT → ∞ corresponding to
thermal equilibrium. At high energy, this distribution exhibits
an asymptotic decay of the form E−(nT +1), while in the
limit nT → ∞ Eq. (1) converges to a thermal distribution.
Tsallis statistics emerge as a limiting case in the formalism
of superstatistics, in which a system is viewed as being in
an instantaneous thermal equilibrium but with a fluctuating
temperature, in which case 〈β〉 represents the mean value of
the “inverse temperature” β = 1/(kBT ) [13]. Regardless of
the exact nature of the fluctuations of the temperature, it can be
shown that Tsallis statistics arise as a first-order approximation
to the energy distribution, and in the special case in which
the temperature follows an inverse-Gamma distribution, this
approximation becomes exact for all energies [13]. We have
previously demonstrated that the inverse-Gamma distribution
is a good approximation for the distribution of the secular
temperature of an ion immersed in a uniform neutral buffer
gas undergoing Langevin collisions, thus leading to Tsallis
statistics for the ion’s secular energy distribution [14]. We
now extend our treatment to include the case where there is
an additional component of motion due to the presence of
external forces, such as the “excess micromotion” (EMM)
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of the ion [15]. Such forces usually arise from experimen-
tal imperfections, e.g., electric fields from patch potentials,
which are ubiquitous in realistic settings unless carefully
compensated. We present an overview of the motion of an
ion in a rf quadrupole trap subject to an additional spatially
independent force and clarify the differences between the
intrinsic micromotion due to the rf field and the additional
motion induced by the combination of these external forces and
the trapping potential, including in-phase excess micromotion
as a special case. From this, we derive analytical expressions
for the mean steady-state energy when the ion interacts with a
neutral buffer gas which may be used to evaluate the effects of a
wide range of forms of forced motion of the ion. Furthermore,
we show that the presence of this motion alters the power-law
exponent by contributing an additional source of additive noise,
with the effect becoming more pronounced at low neutral-to-
ion mass ratios. This has implications for, e.g., experiments
employing lithium as a buffer gas [16,17], since unless excess
micromotion is compensated to a very high degree it cannot
be assumed that the ion will exhibit a thermal distribution.
The results of our analytical model for the mean energies and
values of nT are compared to numerical simulations and show
excellent agreement.

II. THEORY

A. Ion motion

1. Basic equations

The classical motion of a single ion in a rf quadrupole
trap with no other external forces has been described in detail
elsewhere [18–20] and so we provide only a brief description of
the standard equations to establish notation. A list of the most
commonly used symbols is given in Table I for reference. The
combination of two quadrupole potentials, one static and one
proportional to cos(�t), results in the homogenous Mathieu
differential equation describing the motion of an ion in the
trap,

r̈j (τ ) + [aj − 2qj cos(2τ )]rj (τ ) = 0, (2)

TABLE I. Table of symbols.

Symbol Definition

aj ,qj Mathieu stability parameters.
� rf drive frequency.
τ Dimensionless unit of time, τ = �t/2.
c2m,j Fourier series coefficients of the Mathieu functions.
βj Mathieu characteristic exponent.
Wj Wronskian, Wj = ce(aj ,qj ,0)ṡe(aj ,qj ,0).
Aj Amplitude of the intrinsic motion.
φj Phase of the secular motion.
Ej Secular energy.
gj (τ ) External, spatially constant force.
mi,mb Mass of the ion and buffer gas, respectively.
m̃ Mass ratio = mb/mi .
fx(x) Probability distribution of the random variable x.

nT Tsallis (power-law) exponent.
n∗

T Estimate of nT from the multiplicative model.
n̂T Estimate of nT from the method of moments.

where τ = �t/2,j ∈ (x,y,z) and aj ,qj parameterize the static
and time-varying fields, respectively. We assume throughout
that the values of aj and qj result in stable motion [20].
For |qj | � 0.1, an approximate solution to Eq. (2) may be
found by treating the ion as undergoing harmonic motion in a
static pseudopotential superimposed by small high-frequency
oscillations, referred to as the secular motion and micromotion,
respectively [18]. This adiabatic approximation is not accurate
enough for our purposes and so we use the exact solutions to the
Mathieu equation. We take the pair of fundamental solutions
ce(aj ,qj ,τ ) and se(aj ,qj ,τ ) as defined in Ref. [20] and which
stand for cosine elliptic and sine elliptic. For brevity, we denote
these cej (τ ) and sej (τ ). The solution to Eq. (2) is

rj (τ ) = rh,j (Aj ,φj ,τ ) = Aj [cej(τ ) cos φj − sej(τ ) sin φj ],

(3)

where we have parameterized the two constants of integration
in terms of an amplitude Aj and a phase angle φj by analogy
to the harmonic oscillator, and the index h indicates that this is
the solution to the homogenous equation. The function cej(τ )
may be expanded into a Fourier series of the form [20]

cej(τ ) =
∑
m

c2m,j cos[(βj + 2m)τ ], (4)

where βj is the characteristic exponent. The coefficients are
functions of aj ,qj , and m, and are normalized such that∑

m c2
2m = 1 [20]. The series for sej(τ ) is defined analogously

to Eq. (4) in terms of sine functions. Substituting these
expressions into Eq. (3) and simplifying the result produces

rh,j (Aj,φj ,τ ) = Aj

∑
m

c2m,j cos[(βj + 2m)τ + φj ]. (5)

The m = 0 term of this series describes oscillations at the
frequency of the secular motion of the adiabatic approximation
[18]. We therefore identify this term as the secular motion,
which is harmonic oscillations at the secular frequency
ωj = 1

2βj� and amplitude c0,jAj . The remaining terms with
m �= 0 are motion at frequencies given by ωj + m� with
amplitudes c2mAj . Under typical trapping conditions, i.e.,
qj < 0.5, the amplitude of these terms is much smaller than the
amplitude of the secular motion. Thus, these are collectively
referred to as the micromotion of the ion [18]. To distinguish
this from the excess micromotion discussed in the next section,
we adopt the convention that the micromotion proportional to
Aj is the intrinsic micromotion (IMM), and the sum of these
terms and the secular motion is the intrinsic motion. As a result
of the time-dependent trapping potential, the ion’s energy is not
a constant. However, we may define a time-conserved energy
from the secular motion of the ion, i.e., the secular energy,

Ej = mi

2

�2

4
A2

jβ
2
j c

2
0,j , (6)

where mi is the mass of the ion [18].

2. Forced motion

Experimentally, it is likely that the ion will experience
additional forces apart from the trapping potential, requiring
the introduction of corresponding terms in Eq. (2) [15]. The
simplest case is when these forces are independent of the
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position of the ion but may depend on τ . Labelling the sum of
these forces gj (τ ) and including this term in Eq. (2) produces
the inhomogenous Mathieu equation,

r̈j (τ ) + [aj − 2qj cos(2τ )]rj (τ ) = gj (τ ). (7)

The general solution to Eq. (7) can be written in the form [21],
rj (τ ) = rh,j (Aj ,φj ,τ ) + rf,j (τ ), (8)

which is the sum of the solution to the homogenous equation,
i.e., Eq. (3), and a term rf,j (τ ) describing the response of the
ion to the additional force. We will refer to rf,j (τ ) as the
“forced motion” of the ion by analogy to the forced motion
of a harmonic oscillator. The forced motion is given by [21]

rf,j (τ ) = −cej(τ )

Wj

∫
sej(τ )gj (τ )dτ

+ sej(τ )

Wj

∫
cej(τ )gj (τ )dτ, (9)

where Wj = cej(0) ˙sej(0) is the Wronskian. In contrast to the
intrinsic motion, this additional forced motion does not depend
on Aj ,φj , and consequently, the time-averaged kinetic energy
of the forced motion may be orders of magnitude larger than
the secular energy [15]. Throughout, we assume that rf,j (τ ) is
a periodic function and remains bounded at all times.

The numerical results presented in this work employ a time-
independent external force, gj (τ ) = gj , which, for example,
represents the effects of a uniform static electric field [15].
Substituting this into Eq. (9) and evaluating the integrals
produces

rf,j (τ ) = gj

Wj

∑
l

∑
m

c2l,j c2m,j

βj + 2m
cos[2(m − l)τ ]. (10)

The m = l terms correspond to a constant offset of the ion’s
position while the m �= l terms are oscillations at multiples of
�. It is convenient to parameterize the effects of this force in
terms of the displacement due to the m = 0,l = 0 term,

�rj = gj

βjWj

c2
0. (11)

If the force is due to an electric field E then

gj = 1

mi

4

�2
QiE · r̂j, (12)

where Qi is the charge of the ion and r̂j is a unit vector.
Substituting this into Eq. (11) and expanding Wj to first order
in m, Wj ≈ c2

0,j βj , we find

�rj = 1

mi

4

�2

QiE · r̂j

β2
j

, (13)

in agreement with the result given in Ref. [15]. The sum of
the next two largest terms, m = 0,l = ±1, give oscillations
with a magnitude of approximately �rjqj/2 at a frequency of
� and are in phase with the rf trapping field. This is distinct
from the intrinsic micromotion, the components of which have
amplitudes proportional to Aj , are sensitive to the phase of
the secular motion φj , and occur at frequencies offset from
multiples of � by the secular frequency. For consistency with
the literature, we will refer to this specific form of forced
motion as “in-phase excess micromotion,” but we stress that
because this motion is independent of Aj , it is fundamentally
different from the intrinisic micromotion, may well be orders of

FIG. 1. (a) The trajectory of an ion in an rf trap with � = 3 ×
2π MHz, qx = 0.1, and ax defined such that the secular frequency is
given by 100 × 2π kHz. The red (lower) curve shows the motion in
the absence of an external force, whereas the blue (upper) trajectory
includes a static, spatially independent force generating an offset of
�x = 1 μm from the trap center. In both cases, the amplitude of the
intrinsic motion is given by Ax = 1 μm. (b) The numerical Fourier
transforms of the trajectories shown in panel (a).

magnitude larger than the secular motion, and plays a different
role during collisions. Figure 1 shows numerically simulated
trajectories of the ion and their Fourier transforms for a fixed
amplitude with and without EMM.

3. Collisions in the friction model

As another example of the difference between IMM and
EMM, and to motivate the rest of this work, we consider the
effects of a damping force proportional to the velocity of the ion
which may represent effects such as frequent collisions with
atoms of a light buffer gas [18]. The corresponding Mathieu
equation is

r̈j (τ ) + 2μj ṙj (τ ) + (aj − 2qj cos 2τ )rj (τ ) = gj (τ ), (14)

where μj is the dimensionless form of the friction coefficient
[18]. The solution is (see Appendix A)

rj (τ ) = Aje
−μj τ [ce(ãj ,qj ,τ ) cos φj − se(ãj ,qj ,τ ) sin φj ]

+ rf,j (τ ), (15)

where ãj = aj − μ2
j , and rf,j (τ ) is found through the variation

of parameters. The most significant result of the introduction
of damping is that the intrinsic motion exhibits an exponential
decay toward zero. In contrast, the forced motion due to a
constant or periodic g(τ ) does not exhibit this decay; see
Appendix A. This is another example of the difference between
the IMM and forced motion—if cooling is present, then the
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intrinisic micromotion eventually decays to zero whereas the
forced motion does not.

In reality, the amplitude of the intrinsic motion is prevented
from reaching zero as a result of heating of the ion by recoil
during collisions or the existence of other heating mechanisms.
The energy transferred in each collision is a random quantity
and so the secular energy of the ion must be treated as a random
variable. In the model of frequent collisions with light atoms
and in the absence of forced motion, this leads to a Gaussian
distribution for the position and velocity of the ion and hence
Ej follows a Boltzmann distribution, consistent with a particle
in thermal equilibrium with a heat bath [22]. In the opposite
regime, in which collisions take place infrequently and with
atoms of a non-negligible mass, the friction model considered
above is no longer valid. Furthermore, the observed energy
distributions are no longer adequately described by thermal
statistics, but instead exhibit a power-law tail [8–10,12,14]. It
is therefore necessary to investigate the effects of each collision
in more detail to explain these results.

B. Ion-neutral collisions

To simplify the problem, it is assumed that collisions are
classical, short range, and instantaneous such that the ion’s
trajectory is defined at all times by Eq. (7). The trajectory after
the collision must therefore have the same general form as
Eq. (8), but with the constants of integration Aj ,φj updated to
new values,

r ′
j (τ ) = rh,j (A′

j ,φ
′
j ,τ ) + rf,j (τ ), (16)

where primes indicate postcollision quantities. Note that since
rf,j (τ ) does not depend on Aj ,φj , it is identical before and
after the collision, whereas both the magnitude and phase of the
intrinsic motion may be altered. For an instantaneous collision,
the ion’s position must remain unchanged. Equating r ′

j (τ ) and
rj (τ ) and then subtracting rf,j (τ ) from both sides produces

rh,j (A′
j ,φ

′
j ,τ ) = rh,j (Aj,φj ,τ ). (17)

Next, we consider the velocity after a collision. We assume a
model of elastic, hard-sphere collisions in which the postcol-
lision velocity is given by [8–10,14]

v′ = 1

1 + m̃
v + m̃

1 + m̃
vb + m̃

1 + m̃
R(v − vb), (18)

where bold-faced variables indicate vectors, e.g., v =
(vx,vy,vz)T , vb is the velocity of the colliding particle of buffer
gas, m̃ = mb/mi is the buffer gas-to-ion mass ratio, and R is
a rotation matrix determined by the scattering angles. As with
the position, the velocity of the ion is given by the sum of the
intrinsic and forced motion, vj (τ ) = vh,j (Aj ,φj ,τ ) + vf,j (τ ),
where the forced term is independent of Aj ,φj and so is
unchanged by the collision. We therefore obtain

v′
h = 1

1 + m̃
vh + m̃

1 + m̃
(vb − vf )

+ m̃

1 + m̃
R[vh − (vb − vf )]. (19)

Taken together, Eqs. (17) and (19) indicate that the problem is
equivalent to that of an ion with no forced motion colliding
with a particle of velocity vb − vf . This is similar to the
frame transformation used in Ref. [23] in which the intrinisic

micromotion is assigned to the buffer gas, but in the present
case is performed only for the forced motion and is valid for
all qj .

Using the procedure detailed in Ref. [14], we obtain a set of
coupled equations for A′2

j and hence the secular energies after
a collision,

E′
j =

∑
(k,l)∈(x,y,z)

(ηjkl

√
Ek

√
El + a1,jkl

√
Ekvb,l

+ a2,jklvb,kvb,l + a3,jkl

√
Ekvf,l

+ a4,jklvf,kvf,l + a5,jklvf,kvb,l), (20)

where the coefficients ηjkl and ai,jkl describe the transfer of
energy between the motion along the three coordinate axes and
between the different components of the ion’s velocity and the
velocity of the buffer gas. The coefficients of this expression
depend on the elements of the random rotation matrix R, the
set of phases φj , and the time of collision τ . As Supple-
mental Material to this article, we provide a MATHEMATICA

notebook containing details of this procedure and the full form
of Eq. (20) [24].

To gain a better understanding of the collision process, it
is useful to average over the collision parameters to obtain
the mean postcollision energy for a given set of precollision
energies, 〈E′

j |Ex,Ey,Ez〉. To do so, we must introduce some
further assumptions. The Langevin model of collisions has
been shown to be accurate for the classical trajectories con-
sidered here [9,10] and so we adopt this. This results in two
useful simplifications. First, the rotation matrix R is isotropic
in this model and so is uncorrelated from the velocity of the ion
and neutral particle. Second, collisions occur at a uniform rate
which is independent of the energy of the ion, and so τ can be
assumed to follow a uniform distribution. We assume that the
density of the buffer gas is low and uniformally distributed
in space, which results in collisions occurring with equal
probability at all points in the ion’s trajectory, such that φj

follows a uniform distribution. We also assume that the velocity
of the buffer gas follows Maxwell-Boltzmann statistics and is
characterized by a fixed temperature Tb. Both the density and
the temperature of the buffer gas are taken to remain constant;
i.e., the heating of the buffer gas due to the collisions is assumed
to be negligible. With these assumptions, the averaging can be
performed over φj , vb,k , τ , and the elements of the isotropic
random rotation matrix by integrating the coefficients over
the distributions of each of these variables in turn; see the
Supplemental Material [24] for details. The coefficients of
the terms in Eq. (20) where k �= l average to zero, as do the
c1,c3,c5 coefficients, significantly simplifying the expression.
The remaining terms are given by

〈E′
j |Ex,y,z〉 =

∑
k∈(x,y,z)

[〈ηjk〉Ek + 〈
a4,jkv

2
f,k

〉] + κjkBTb,

(21)
where the coefficients are defined as

〈ηjk〉 = δjk

m̃ + 1
+ m̃κj (3δjk + 1)

6β2
k c

2
0,k

Mj [ ˙cek(τ )2 + ˙sek(τ )2]

(22)
and 〈

a4,jkv
2
f,k

〉 = m̃mi�
2κj

24
(3δjk + 1)Mj [vf,k(τ )2]. (23)
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In the above expressions, δjk is the Kronecker delta, κj is
defined by

κj = m̃

(1 + m̃)2

β2
j c

2
0,j

W 2
j

, (24)

and the operator Mj is defined as

Mj [h(τ )] = lim
L→∞

1

2L

∫ L

−L

h(τ )[cej(τ )2 + sej(τ )2]dτ. (25)

In principle, the above procedure may be adapted to arbitrary
distributions for the velocity of the buffer gas by averaging
over these in place of the Maxwell-Boltzmann distribution.
This would allow for an investigation of the results when,
e.g., Fermi-Dirac or Bose-Einstein statistics are required to
correctly characterize the buffer gas. In practice, however, such
statistics become relevant at collision energies low enough so
that a classical description of the motion may no longer be
valid. Moreover, at such low energies the long-range nature
and finite duration of the ion-neutral interaction introduces
an additional heating effect from dislocating the ion from its
position in the rf field. At higher collision energies, this heating
effect becomes less significant [25]. To simplify both the
analytical model and the numerical calculations, we proceed
by assuming that the energy of the ion is large enough so that
these effects can be neglected.

The mean energy after a large number of collisions can be
calculated from Eq. (21) as follows. Averaging over the pre-
collision energies, corresponding to setting 〈E′

j |Ex,Ey,Ez〉 →
〈E′

j 〉 and Ej → 〈Ej 〉, produces

〈E′
j 〉 =

∑
k

〈ηjk〉〈Ek〉 + 〈εj 〉, (26)

where 〈εj 〉 is the sum of the energy-independent terms arising
in the averaging procedure. Depending on the values of the
〈ηjk〉, the mean energy will either increase with every collision
or tend toward a finite value for which 〈E′

j 〉 = 〈Ej 〉. In the latter
case, substituting this equality into Eq. (26) and solving for the
mean energies produces⎛
⎝〈Ex〉

〈Ey〉
〈Ez〉

⎞
⎠ =

⎛
⎝I3 −

⎛
⎝〈ηxx〉 〈ηxy〉 〈ηxz〉

〈ηyx〉 〈ηyy〉 〈ηyz〉
〈ηzx〉 〈ηzy〉 〈ηzz〉

⎞
⎠
⎞
⎠

−1⎛
⎝〈εx〉

〈εy〉
〈εz〉

⎞
⎠,

(27)

where I3 is the 3 × 3 identity matrix. The mean total kinetic
energy, 〈Ej,K〉, of the ion including the contributions from the
micromotion and the forced motion can then be evaluated from
the values of 〈Ej 〉 (see Appendix B),

〈Ej,K〉 = 〈Ej 〉
2β2

j c
2
0,j

∑
m

c2
2m(β + 2m)2 + 1

2
mi

�2

4
v2

f,j , (28)

where v2
f,j is the mean-square velocity of the forced motion.

For simplicity, however, we will continue to use the secular
energy, since for low mass ratios and low values of qj this is
approximately equal for each axis, whereas the time-averaged
energy is significantly larger for axes with qj �= 0 compared to
axes with qj = 0 [10]. It is possible that the matrix inversion
in Eq. (27) cannot be performed or results in a negative energy,
corresponding to a breakdown of the assumption that 〈E′

j 〉 =
〈Ej 〉 and implying that the mean energy does not converge to

FIG. 2. (a) The analytically calculated value of the mean secular
energy 〈Ej 〉 for j = x (blue solid line), y (red dashed line), and z

(black dotted line) as a function of the neutral-to-ion mass ratio, m̃,
due to the presence of excess micromotion (EMM) and collisions
with a buffer gas of temperature Tb = 0 K. The points indicate the
results obtained from numerical simulations (106 iterations for each
value of m̃). The trap parameters correspond to an ideal linear trap with
qr = 0.2, az = 0.000 625 and the excess micromotion is generated by
a uniform electric field with a magnitude of ≈0.5 V/m, corresponding
to a displacement of the ion from the center of the trap by 100 nm along
the x axis. The inset shows the trend as m̃ → 0. Error bars represent
the standard error of the mean calculated from the numerical data and
are typically smaller than the size of the symbols. (b) As in panel (a),
but with a buffer gas temperature of Tb = 100 μK and no EMM. In
both figures, the vertical asymptote indicates the point at which the
mean energy diverges; see main text for details.

a fixed value. The mass ratio at which this occurs for a given
set of trapping parameters is referred to as the critical mass
ratio [10], and since it is independent of the εj , it is unchanged
when forced motion is present.

We now focus on the case of in-phase EMM in an ideal linear
quadrupole trap defined by qr and az, taking qx = −qy = qr ,
qz = 0, and ax = ay = −az/2. The constant offset in the ion’s
position caused by the spatially independent force does not
appear in either Eq. (17) or Eq. (19), and so the most significant
effect is the oscillations described by vf,j (τ ) ∝ sin(2τ ). Hence,
the present results can also be adapted to the case of excess
micromotion due to an rf phase offset, which also results in
forced motion with the same form of the velocity [15]. In
Fig. 2(a), the predicted mean secular energies for the case
of excess micromotion along the x axis and Tb = 0 K are
shown and compared to the results of numerical simulations
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(see Appendix C for details), while the results in the absence
of EMM but with a nonzero buffer-gas temperature (Tb =
100 μK) are shown in Fig. 2(b) for comparison. At low mass
ratio, there is a clear difference in the qualitative behavior of
the mean energies obtained for the two cases. In this regime,
forced motion leads to one high-energy component (Ex) and
two components with lower energy (Ey,Ez), and in the limit
m̃ → 0 these all converge to 0. In contrast, a nonzero value of
Tb results in two high-energy components and one low-energy
component which converge to nonzero values as m̃ → 0. Note
that the radial and axial components have different mean values
even in this limit. As the mass ratio increases, the transfer of
energy between the motion along the x and y axes becomes
more efficient such that in both cases there are two high-energy
and one low-energy component. We may therefore predict that
the differences between the two cases will be most significant
at low mass ratio. In both cases, all energies diverge at the
same mass ratio ≈1.2, confirming that the critical mass ratio
is unaffected by the presence of forced motion.

III. ENERGY DISTRIBUTIONS

It has previously been established that the distribution of the
ion’s energy does not, in general, follow a thermal distribution
regardless of whether or not forced motion is present and that
it closely follows Tsallis statistics in both cases [8–10,12,14].
Before proceeding further, we must first confirm that the
Tsallis distributions obtained through numerical simulations
can be successfully predicted from our analytical model for
the collision process. To simplify matters, we investigate the
distribution of the total secular energy E = Ex + Ey + Ez by
making the change of basis,

Ex = E sin2 θρ cos2 φρ,

Ey = E sin2 θρ sin2 φρ,

Ez = E cos2 θρ,

(29)

where θρ,φρ ∈ [0,π/2) describes the relative distribution of
the total energy E between the three axes. The advantage of
this basis is that it allows E to be factored out of expressions
involving

√
Ek

√
El in Eq. (20), e.g.,

ηjxy

√
Ex

√
Ey = Eηjxy sin2 θρ sin φρ cos φρ. (30)

Summing over j in Eq. (20), applying this change of basis, and
neglecting terms with a mean value of zero, we obtain

E′ = ηE +
∑

j

[
a2,j vn,j +

∑
k

(
a4,jkv

2
d,k

)] = ηE + ε,

(31)
where η contains the ηjkl multiplied by functions of θρ,φρ .
As a consequence of the random rotation of the trajectory
during a collision, these two angles evolve on a faster timescale
than E. Therefore, the correlations between E and θρ,φρ

can be neglected and these angles averaged over, resulting in
the linear recurrence relation Eq. (31) for a single variable.
However, since these angles reflect the distribution of energy
between the axes, their mean values will differ depending on
the presence and form of forced motion, leading to a change
in the distribution of η. That is, while the ηjk are independent

of the form of the additive noise, η is not. Note that, however,
for any given collision η and ε are approximately independent
of each other and of E.

A. The existence of the steady state

We now move on to the question of finding the energy
distribution of the ion given that it evolves in each collision
according to Eq. (31). Linear stochastic recurrence relations
of this form have been widely studied [26–30] and so we
summarize the relevant results. First, if Tb = gj (τ ) = 0 such
that ε is always zero, then E′ = ηE. Note that in this model,
E = 0 represents a fixed point, i.e., an absorbing state, since
for E = 0 and any value of η the result of a collision is
E′ = E = 0. The energy after n collisions is given by [14]

E(n) = E(0)

i=n∏
i=1

η(i). (32)

Here, we use the notation x(n) to indicate the value of the
variable x at collision number n. We assume that collisions are
infrequent enough that there is no correlation between them,
and so the η(i) are independent and identically distributed.
By taking the logarithm of both sides of Eq. (32), we find
ln E(n) = ln E(0) + ∑

n ln η(i), and so ln E(n) undergoes a
random walk with steps of size ln η [29]. The long-term
behavior of ln E(n) therefore depends on the sign of 〈ln η〉
to determine in which direction this random walk is biased.
If 〈ln η〉 > 0, then ln E(n) → ∞ as n → ∞. Conversely, if
〈ln η〉 < 0, then ln E(n) → −∞ in this limit, and so the ion’s
energy tends toward zero. Using the terminology of Ref. [30],
we refer to the 〈ln η〉 < 0 situation as the contractive case and
〈ln η〉 > 0 as the divergent case.

For large n, the product
∏

η(i) = �η,n follows a log-normal
distribution and the distribution of E(n) may be found by
averaging over the initial conditions [31]

fE(n) (E(n)) =
∫ ∞

0

1

E(0)
f�η,n

(E(n)/E(0))fE(0) (E(0))dE(0). (33)

Evaluating this integral requires specifying the initial en-
ergy distribution; see Ref. [14] for the result whenE(0) follows a
thermal distribution. The energy distribution obtained through
this method does not converge to a steady state as the number
of collisions increases, which is a known property of an un-
bounded purely multiplicative random process [26,29,30,32].
In the contractive case, each collision on average reduces the
energy of the ion no matter how small it may already be, while
if 〈ln η〉 > 0 the energy increases on average in each collision.
Establishing a steady-state distribution requires either that
the energy is bounded from below in the contractive case or
bounded from above in the divergent case [29]. For the model
considered in this work, there is no upper bound on the energy
and so we will not consider the divergent case further, although
we note that a nonuniform buffer gas can introduce an upper
bound [23]. There is, however, a lower bound if at least one of
gj (τ ) or Tb are nonzero, since if this is true, then ε may take a
nonzero value. Consequently, if E 
 ε, then after a collision
E′ = ε and so the convergence toward E = 0 is interrupted.
This applies if ε has a nonzero probability to take any nonzero
value, no matter how small the resulting value may be. This

042712-6



ENERGY DISTRIBUTIONS OF AN ION IN A RADIO- … PHYSICAL REVIEW A 97, 042712 (2018)

is a result of the fact that when E → 0, it will eventually
become smaller than any nonzero value of ε. In terms of
the random-walk analogy used in Ref. [29], the presence of
ε corresponds to the introduction of a barrier preventing the
energy from reaching the absorbing state at E = 0, altering
the boundary conditions of the problem and hence leading to
a different distribution. The combination of the drift toward
this barrier due to η (in the contractive case) and the reflection
from it leads to a steady-state energy distribution exhibiting
a power-law tail [29]. In contrast, the tail of the distribution
obtained from Eq. (33) depends on the initial conditions of
the ion and does not exhibit a power-law tail for an initially
thermal distribution [14,33].

If the ion’s initial energy is large compared to ε, then it may
take a large number of collisions for E to reach the regime in
which ε contributes significantly to the outcome of a collision.
Consequently, for a small number of collisions, the distribution
may be close to the one obtained when ε is always zero [29].
An order-of-magnitude estimate for the number of collisions
required for ε to become relevant to the dynamics may be found
as follows. We denote this number of collisions nε , assume that
〈η〉 < 1 and that E(0) � 〈ε〉, and approximate that 〈E(n)〉 ≈
〈η〉n〈E(0)〉. By setting 〈E(nε )〉 = 〈ε〉, we obtain

nε = ln(〈ε〉/〈E0〉)
ln(〈η〉) . (34)

As 〈ε〉 → 0, the required number of collisions for the ad-
ditive term to have an effect increases but remains finite as
long as 〈ε〉 �= 0. For typical trapping parameters q = 0.1,a =
0.000 625, m̃ = 0.1 and in the absence of excess micromotion,
we find 〈ε〉 ≈ 0.25kBTb and 〈η〉 ≈ 0.92 [14]. Thus, for an ion
with an initial temperature of 1 mK and a hypothetically very
low buffer gas temperature of Tb = 1 fK, Eq. (34) predicts that
the ion’s energy will be of the same order of magnitude as ε

after approximately 360 collisions. This does not mean that the
distribution has reached the steady state by this point, but rather
that E is in the regime in which ε can no longer be neglected.
In Fig. 3, we plot the energy distributions obtained under these
conditions for a varying number of collisions and compare
these to the distributions obtained for the same parameters with
Tb = 0 K. For the distributions corresponding to between 1 and
250 collisions, there is little difference between Tb = 0 and
Tb = 1 fK, since the ion’s energy is significantly larger than the
additive term due to the temperature of the buffer gas. However,
at greater collision numbers it can be seen that this is no longer
the case, and a clear difference is visible at 360 collisions, in
agreement with the above prediction that this is when ε alters
the dynamics. For Tb = 0 K, the distribution continues to move
toward lower values of E as the number of collisions increases,
but for Tb = 1 fK the distributions for 500 and 1000 collisions
are largely identical to each other and are significantly different
to the distributions obtained for the same number of collisions
at Tb = 0 K. This is due to the influence of the lower bound
on the energy caused by ε, which in this case prevents E from
reaching values more than a few orders of magnitude lower
than 10−15 K. We reiterate that since E otherwise decreases
without limit, any nonzero value of ε is sufficient to produce
a lower bound and a distribution with a power-law tail after
a sufficiently large number of collisions, while if ε is always
zero, then this lower bound does not exist and a qualitatively

FIG. 3. The energy distribution of an ion in a linear rf trap with
qr = 0.1,az = 0.000 625, colliding with a buffer gas of neutral-to-ion
mass ratio m̃ = 0.1 after n collisions. The ion’s initial energy is taken
from a thermal distribution with a temperature of 1 mK, and the buffer
gas temperature is set to either (a) Tb = 0 fK or (b) Tb = 1 fK. The
inset in panel (a) shows the distributions obtained for n = 500 and n =
1000 collisions, which are not visible on the scale used for the main
figure. 1 000 000 simulations are performed for each combination of
collision number and Tb to produce the numerical distributions.

different distribution is obtained due to the change in boundary
conditions. Although these two distributions are initially close
(for the same initial conditions), they diverge as the number
of collisions increases. From this point on, we assume that at
least one of Tb or gj (τ ) are nonzero and that the ion’s energy
distribution has reached the steady state.

The form of the energy distribution does not depend on the
units of energy apart from a constant scaling factor. That is, if
the energy follows a distribution fE(E) and we define Ẽ = aE

where a is a positive constant, then the distribution of Ẽ is given
by [31]

fẼ(Ẽ) = 1

a
fE(Ẽ/a). (35)

Since ε also has units of energy, it follows that we may
choose these units such that a nonzero value of ε has an
arbitrary magnitude without altering fE(E) beyond applying
this scaling transformation. This means that multiplying ε by
a fixed constant is equivalent to changing the units of energy
and therefore effectively applies a scaling factor to fE(E).
This property is why the magnitude of ε is unimportant in
establishing the steady state, since we may always define units
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FIG. 4. (a) The energy distribution of an ion in a rf trap with q =
0.1,a = 0.000 625, colliding with a buffer gas of neutral-to-ion mass
ratio m̃ = 0.1 after 1000 collisions with a buffer gas of temperature
Tb = 1 fK (blue circles) or Tb = 1 MK (red squares) in the absence of
excess micromotion. (b) As panel (a), but with Tb = 0 K and excess
micromotion parameterized by an offset of either �x = 1 pm (blue
circles) or �x = 1 m (red squares) along the x axis. The energies
obtained have been rescaled by the mean energy for that distribution
to make the similarity between the two distributions more apparent.

of energy in which ε is large, and it is reasonable to assume that
the existence of the steady state does not depend on the units
in which the energy is measured. The exception is if ε = 0
in all cases, since then it will not be nonzero in any units of
measurement. A particularly useful choice is to measure the
energy in units of the mean energy, that is, taking a = 1/〈E〉,
assuming that this exists and is not equal to zero. Doing so, we
find that if gj (τ ) = 0, then the same distribution for E/〈E〉
is obtained for any nonzero value of Tb; see Fig. 4(a) for
a comparison of Tb = 1 fK and Tb = 1 MK. Likewise, the
same result is obtained when setting Tb = 0 K and varying
the amount of EMM; see Fig. 4(b) for offsets of 1 pm and
1 m. Note, however, that if both Tb and gj (τ ) are nonzero
simultaneously, then rescaling one does not have the same
effect, which we will discuss in more detail later.

B. Tsallis statistics

The exact form of the steady-state energy distribution
fE(E) depends on the distributions fε(ε) and fη(η) but can
be approximated by Tsallis statistics, that is, Eq. (1), when the
heating is due to a nonzero value of Tb. This result was derived
in our previous work, Ref. [14], by employing the formalism
of superstatistics, in which the energy distribution is taken to

be of the form [13]

fE(E) =
∫ ∞

0
Ek 1

�(k + 1)

1

(kBT )k+1
e−E/(kBT )fT (T )dT .

(36)
Equation (36) expresses the energy distribution fE(E) as a
thermal distribution averaged over the steady-state probability
distribution of the secular temperature, T , and is related to the
Laplace transform of the distribution of the inverse tempera-
ture. The value of T is altered in each collision according to

T ′ = ηT + 〈ε〉
(k + 1)kB

, (37)

where the assumption has been made that the fluctuations in
E due to ε lead to an approximately constant increase in the
temperature with each collision [14]. That is, the variance of
the additive term in the temperature domain is assumed to
be negligible. This does not require that the additive term
itself is small, only that the inverse Laplace transform of
ε has a very narrow distribution. The steady-state form of
fT (T ) corresponding to Eq. (37) is approximately given by
an inverse-Gamma distribution, and evaluating Eq. (36) using
this distribution produces Eq. (1) [13,14,34]. This distribution
is defined by three parameters, 〈β〉, k, and nT . Of these, k and
nT are dimensionless, while 〈β〉 has units of inverse energy
and so may be set to an arbitrary value by redefining the
units of energy. That is, substituting the Tsallis distribution
into Eq. (35) produces

fẼ(Ẽ) =
(

nT

〈β〉
)−k−1

�(k + nT + 1)

�(k + 1)�(nT )

1
a

(Ẽ/a)k( 〈β〉
nT

Ẽ
a

+ 1
)k+nT +1 ,

(38)
and the factor of a may be absorbed by defining 〈β̃〉 = 〈β〉/a.
Note that nT and k are left unchanged by this rescaling, and
so the overall shape of the distribution is unchanged, as can be
seen in Fig. 4.

The value of k depends on the effective density of states.
In the ideal case, this is simply the density of states for
a three-dimensional harmonic oscillator, leading to k = 2.
However, as noted in the previous section, the mean energy
for each axis differs such that not all degrees of freedom are
equal. In the extreme case when the energy of one axis is
much greater than the others, e.g., Ex � Ey,Ez, then E ≈ Ex ,
and so is approximately a one-dimensional system. Hence, the
density of states would be much closer to that expected for a
one-dimensional harmonic oscillator, k = 0. In practice, this
effect is sufficiently small that we will simply assume that
k = 2 except for the purposes of fitting the Tsallis distribution
to numerical data, for which k is treated as a free parameter
(Appendix C). Thus, all that remains is to predict the value
of nT .

C. Estimation of the Tsallis exponent

If T follows a linear stochastic recurrence relation with a
constant, nonzero additive term, i.e., Eq. (37), and if η has
some probability of being greater than 1, then the tail of fT (T )
follows a power law of the form T −(ν+1), where ν is defined by
〈ην〉 = 1 [29,30]. If fT (T ) exhibits a power-law tail, then, by
the properties of the Laplace transform, fE(E) has the same
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power-law tail, which for Tsallis statistics is fE(E) ∼ E−(nT +1)

for large E [33]. In Ref. [14], we obtained an estimate for
nT , which we here denote n∗

T , by requiring that it satisfies
〈ηn∗

T 〉 = 1. In this treatment, the exponent is solely defined by
the properties of the distribution of the multiplicative noise
η. However, as discussed previously, the distribution of η and
hence the value of n∗

T depends on φρ,θρ , which describe the
distribution of the energy between the axes of motion. That
is, if more of the total energy E is associated with the motion
along an axis with a large value of qj , then the value of η

will typically be larger than if most of the energy is along
an axis with a value of qj close to zero due to the greater
amount of intrinsic micromotion in the first case. When the
heating is due to a nonzero value of Tb, this leads to a small
but non-negligible effect on n∗

T ; see Ref. [14]. Forced motion
leads to a much greater change in how the energy is distributed
between the axes of motion, as was shown in the previous
section. Therefore, even if Eq. (37) continues to accurately
model the dynamics, we expect some difference in the value
of n∗

T obtained when forced motion is present as a result of the
increase in the energy of one axis relative to the others.

In general, if T is a random variable then the resulting
superstatistical energy distribution may be approximated by
Tsallis statistics, even if there is no multiplicative noise [13,35].
Moreover, if ε has a heavier tail than η, then the power-law
tail of E is defined from fε(ε) and not fη(η) [30]. Thus,
since n∗

T is calculated from fη(η), it may produce an incorrect
estimate for the power-law tail and hence for nT if the additive
fluctuations are larger than the multiplicative fluctuations. We
therefore introduce another estimator for nT by matching the
moments of the Tsallis distribution to the analytical mean and
mean-square energy, which does not require the assumption
that the deviation from a thermal distribution is caused by the
multiplicative noise. The mean value of the Tsallis distribution
is given by

〈ET 〉 = (1 + k)

〈β〉
nT

nT − 1
(39)

for nT > 1. The mean energy in terms of the collision parame-
ters may be calculated using Eq. (27), and by equating 〈ET 〉 =
〈E〉 = 〈Ex〉 + 〈Ey〉 + 〈Ez〉 we obtain an equation relating nT

to the mean energy. We require a second equation to eliminate
〈β〉, which is obtained from calculating the second moment
of the Tsallis distribution 〈E2

T 〉 and equating this to 〈E2〉 =∑
j

∑
k〈EjEk〉,(j,k) ∈ (x,y,z). The 〈EjEk〉 are found by

multiplying together E′
j and E′

k as given by Eq. (20), averaging
over all the collision parameters and solving for the steady
state, analogously to the mean energy. These second-order
moments diverge at a lower mass ratio than the first-order
moments, and in terms of the Tsallis distribution are defined
only for nT > 2. This requires small values of m̃ and qj and
so we primarily focus on this regime from this point onward.
In terms of these mean energies, we find

n̂T = (2 + k)〈E〉2 − 2(1 + k)〈E2〉
(2 + k)〈E〉2 − (1 + k)〈E2〉 , (40)

where n̂T indicates that this is an estimation and is exact
only if the distribution exactly follows Tsallis statistics with
a known value of k, which following the discussion in the

FIG. 5. The energy distribution for an ion exhibiting excess
micromotion colliding with a buffer gas of temperature Tb = 0 K
(blue, solid line) and without excess micromotion colliding with
a buffer gas of temperature Tb = 100 μK (red, dashed line) for
(a) m̃ = mb/mi = 0.1 and (b) m̃ = mb/mi = 0.5. The data have
been scaled by the analytically calculated mean energy to make the
difference between the two distributions more apparent. The trapping
parameters are given by qr = 0.2, az = 0.000 625, and when present
the excess micromotion is defined by a static electric field such that
the equilibrium position is displaced by 100 nm along the x axis. The
solid lines indicate the predicted Tsallis distributions while the dotted
line gives the distribution for an ion in thermal equilibrium. Each
distribution is obtained from 10 000 000 iterations of the numerical
simulation and binned into logarithmically spaced bins, normalized
by the bin width.

previous section we assume is given by k = 2. If the value
of n̂T is in good agreement with n∗

T , then we may take this
as evidence that the power-law tail is caused primarily by
the multiplicative noise. However, if these estimates do not
agree, then this indicates that another source of noise must be
responsible for the deviation from thermal statistics.

To confirm that the use of Tsallis distributions and the
values of n̂T from Eq. (40) are accurate, the distributions
obtained from numerical simulations are compared to the
distribution predicted using n̂T for m̃ = 0.1 [Fig. 5(a)] and
m̃ = 0.5 [Fig. 5(b)], finding good agreement. At low mass
ratio m̃ ≈ 0.1 and for the trapping parameters employed (qr =
0.2,az = 0.000 625), it is generally assumed that the ion will
exhibit a thermal energy distribution. It can be seen in Fig. 5(a)
that this is approximately true in the absence of forced motion,
for which the numerical data and predicted Tsallis distribution
are both close to a thermal distribution. However, this does not
hold when there is forced motion. The distribution still closely
follows Tsallis statistics, but with a more pronounced power-
law tail, i.e., a smaller value of nT . As the mass ratio increases,
the distribution for nonzero Tb also deviates from a thermal
distribution as expected; see Fig. 5(b). At high energies, a small
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FIG. 6. A comparison of the analytically estimated and numer-
ically simulated values of the Tsallis exponent nT as a function of
mass ratio for a buffer gas with Tb = 0 K and a static electric field
resulting in an offset of 100 nm (blue, lower) and a buffer gas with a
temperature of Tb = 50 μK with no offset (red). The data points give
the values found from maximum-likelihood estimation performed on
the numerical data. The error bars indicate the calculated standard
error and are typically smaller than the size of the symbols. The
blue (lower) and red solid lines show the predicted value of the
exponent from the analytically calculated mean and mean-square
energy, denoted n̂T in the main text. The dashed and dotted lines show
the prediction from the multiplicative coefficient η, n∗

T , for the thermal
and forced cases, respectively [14]. The trap parameters are given by
qr = 0.1, az = 0.000 625, and 200 000 simulations are performed for
each data point.

deviation from the Tsallis distribution can be seen, typically
accounting for 0.1% of the data set. This is likely a result of the
approximations made during the derivation of Tsallis statistics
in Ref. [14] and the assumption that k = 2. Nonetheless, the
bulk of the distribution is adequately described by the present
treatment, and it is clear that there is a difference between the
two cases.

In Fig. 6, we compare the exponents obtained from numeri-
cal simulations to both the predicted value due to multiplicative
fluctuations from Ref. [14], n∗

T , and the predicted value from
Eq. (40), n̂T , as a function of mass ratio, both including and
excluding EMM. It can be seen that n∗

T is a good predictor
for the observed exponent in the absence of forced motion,
as was demonstrated in Ref. [14]. Furthermore, at high mass
ratio it also successfully predicts the exponent when forced
motion is present, which is found to approach the value in the
absence of forced motion. However, at low mass ratio there is
no longer an agreement between nT and n∗

T , demonstrating that
the multiplicative model with an additive constant developed
in Ref. [14] does not fully explain the dynamics in the regime
of a low mass ratio with forced motion. In contrast, n̂T remains
reasonably accurate over all mass ratios. Both n̂T and the
numerical simulations show that at low mass ratio the Tsallis
exponent does not diverge to infinity if the ion is subject to
forced motion; i.e., a thermal distribution is not obtained in
this case.

D. Additive fluctuations due to forced motion

The discrepancy at low mass ratio between the value of
nT obtained from numerical simulations compared to the

FIG. 7. The energy distribution obtained for an ion in a linear rf
trap (qr = 0.1, az = 0.000 625) interacting with a buffer gas of mass
ratio m̃ = mb/mi = 0.1 in a time-dependent trapping potential with
excess micromotion corresponding to an offset of 100 nm along the x

axis (blue circles), compared to the distribution obtained for an ion in
a harmonic pseudopotential colliding with atoms with a velocity given
by vx = sin(2τ ) (red squares). The frequencies of the pseudopotential
trap are set equal to the secular frequencies of the rf trap. The solid line
indicates the distribution for a three-dimensional harmonic oscillator
at thermal equilibrium.

value estimated from fη(η), n∗
T , implies that the multiplicative

fluctuations due to the micromotion interruption are not the
only cause of the deviation from thermal statistics when forced
motion is present. Thus, another source of fluctuations in
the temperature must have an influence on nT . We therefore
re-examine the assumption in Ref. [14] that the additive
fluctuations lead to a fixed increase in the temperature with
each collision. In Eq. (19), it is demonstrated that the velocity
of the forced motion may be assigned to the buffer gas, but
there is an important distinction between the thermal motion
of the buffer gas and the forced motion in that the latter
does not follow a thermal distribution. To lowest order, the
velocity of the in-phase EMM, i.e., the derivative of Eq. (10)
with respect to τ , is described by vf,j (τ ) = |v| sin(2τ ). When
sampled at random collision times, v2

f,j follows a bimodal
distribution with peaks of equal height at 0,|v|2, in contrast to
the single peak for a thermal distribution [36]. To demonstrate
the importance of this, we perform simulations of an ion in
a time-independent harmonic trap, i.e., in the pseudopotential
approximation, undergoing collisions with a buffer gas with
a velocity given by v = |v| sin(2τ ). This leads to the results
shown in Fig. 7, with the distribution close to that found when
forced motion is present in an rf trap. Thus, a nonthermal
velocity distribution of the buffer gas is sufficient to cause the
deviation from thermal statistics for the ion even in the absence
of the time-dependent trapping potential.

As a toy model to better understand this situation, we
assume that each collision samples one of the two peaks of
the distribution of v2

f as if the ion had collided with a buffer
gas of temperature either 0 or Tb with equal probability. The
temperature then evolves according to

T ′ = ηT + B〈ε〉/(3kB), (41)

where B takes values of 0 or 1 with equal probability, and ε

is defined as for a thermal buffer gas with temperature Tb. In
this model, we may view the temperature of the ion as being

042712-10



ENERGY DISTRIBUTIONS OF AN ION IN A RADIO- … PHYSICAL REVIEW A 97, 042712 (2018)

FIG. 8. A comparison of the energy distributions obtained for an
ion in a linear quadrupole trap defined by qr = 0.1, az = 0.000 625
interacting with a buffer gas of mass ratio m̃ = mb/mi = 0.1. Three
cases are illustrated: forced motion and a buffer gas temperature of
Tb = 0 K (blue circles), a fixed buffer gas temperature of Tb = 50 μK
(red diamonds), and a buffer gas temperature which is randomly
chosen in each collision from either Tb = 0 or 50 μK with equal
probability (green squares). 10 000 000 simulations are performed
for each of the three cases.

subject to dichotomous noise in addition to the multiplicative
noise, leading to a different distribution than the one obtained
for a fixed atomic temperature [37,38]. However, as shown in
Ref. [13], the energy distribution obtained will still approach
Tsallis statistics as long as the ion’s energy remains low.

To test this interpretation, in Fig. 8 we show the energy
distribution for a simulation in which the atomic temperature
is chosen from either Tb = 0 or 50 μK with each collision,
which produces a distribution close to that observed in the
presence of forced motion and which is noticeably different to
the one obtained for the same trapping parameters with a fixed
buffer gas temperature. It is interesting to compare this to the
system discussed in Ref. [39], in which an ensemble of ions
underwent a combination of laser cooling with rare collisions
with background gas leading to a large amount of heating.
Neglecting the heating due to photon recoil, this situation is
equivalent to Eq. (41) with B biased such that it has only a
small probability of taking the value 1 and η fixed to a constant,
which we demonstrated leads to Tsallis statistics [39].

So far, we have considered only one of the two sources of
additive fluctuations at a time. That is, either EMM is present
and Tb = 0, or the buffer gas has a finite temperature and there
is zero EMM. In this case, the exponent is independent of
the magnitude of the fluctuations, since changing Tb or gj

while the other is set to zero is equivalent to multipling the
energy by a constant which simply rescales the underlying
distribution without changing its form, and so nT remains
unchanged [31]. In the more realistic case in which both forced
motion and a non-zero buffer gas temperature are present, the
value of nT obtained depends on the relative proportions of
each. In Fig. 9, we show the results of applying an electric
field of varying magnitude while keeping the temperature of
the buffer gas fixed at a nonzero value. It can be seen that the
analytical predictions given by n̂T are in good agreement with
the numerical values obtained, and further that for a buffer
gas at a temperature Tb = 50 μK only a small electric field
is required to tune the exponent from one limit to the other.

FIG. 9. The Tsallis exponent nT as a function of the applied
electric field for a fixed buffer gas temperature of 50 μK from
numerical simulations (points) and the predicted trend calculated
from the mean and mean-square energy, n̂T , (line) for qr = 0.1,az =
0.000 625 over a range of values of the neutral-to-ion mass ratio,
m̃ = mb/mi . Error bars show the estimated standard error. 200’000
iterations of the numerical simulation per data point.

As noted in Ref. [15], uniform electric fields of a magnitude
1 V/m may easily develop during an ion trapping experiment
and this is already sufficient to significantly alter the observed
Tsallis exponent. Furthermore, since this effect applies even
at very low mass ratios, it cannot be assumed that in these
cases the ion will exhibit a thermal distribution unless the
EMM is compensated to a high degree of accuracy such that
it contributes a negligible amount of energy compared to the
thermal energy of the buffer gas.

Finally, let us briefly address the heating effect described
in Ref. [25], which arises due to the finite time of interaction
between the ion and the atom during which the ion can be
displaced in the rf field. By itself, this serves to produce
a lower bound on the energy of the ion analogously to the
effects of nonzero values of Tb and vf,j (τ ). Moreover, it has
been shown numerically and experimentally that at a mass
ratio of m̃ ≈ 1, this effect does not lead to a change in the
observed power-law exponent [12], in agreement with the
results obtained here that at high mass ratio the power-law
tail is a result of the multiplicative fluctuations. At low mass
ratio, however, we have shown that nT is sensitive to the
nature of the additive noise, and the heating effects due to
long-range ion-atom interaction may alter the observed value
of nT in this regime if it dominates over the other additive
contributions.

IV. SUMMARY AND CONCLUSIONS

We have extended previous models of the ion-neutral
collision process of an ion in a radio-frequency trap immersed
in a buffer gas to take into account the motion of the ion
due to external forces in addition to the trapping potential,
providing analytical expressions for the mean steady-state
energy of the ion, and confirmed that the distribution may
be modeled by Tsallis statistics when this motion is present,
in agreement with previous experimental findings [12]. We
have demonstrated that at low neutral-to-ion mass ratio the
effects of excess micromotion result in a lower value of
the Tsallis exponent, i.e., a more pronounced power-law tail
compared to the exponent observed with the same trapping
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parameters in the absence of forced motion. We have shown
that this is a result of the nonthermal additive fluctuations
due to the forced motion. Our results open the possibility
for tuning the achieved energy distribution simply by ap-
plying a uniform electric field across the trapping region,
allowing for deterministic control of a nonequilibrium steady
state.
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APPENDIX A: THE INHOMOGENOUS DAMPED
MATHIEU EQUATION

The equation of motion for an ion in a rf trap in the presence
of both an external force and damping is

r̈j (τ ) + 2μj ṙj (τ ) + (aj − 2qj cos 2τ )rj (τ ) = gj (τ ). (A1)

Defining rj (τ ) = e−μj τpj (τ ) and substituting this into
Eq. (A1) results in an inhomogenous undamped Mathieu
equation,

p̈j (τ ) + (ãj − 2qj cos 2τ )pj (τ ) = gj (τ )eμj τ , (A2)

with ãj = aj − μ2
j . The general solution is given by

pj (τ ) = Aj [ce(ãj ,qj ,τ ) cos φj − se(ãj ,qj ,τ ) sin φj ]

+pf,j (τ ), (A3)

where pf,j (τ ) is found through the variation of parameters
[21],

pf,j (τ ) = −ce(ãj ,qj ,τ )

Wj

∫
se(ãj ,qj ,τ )eμj τ gj (τ )dτ

+ se(ãj ,qj ,τ )

Wj

∫
ce(ãj ,qj ,τ )eμj τ gj (τ )dτ, (A4)

with Wj = ce(ãj ,qj ,0)ṡe(ãj ,qj ,0). Therefore,

rj (τ ) = Aje
−μj τ [ce(ãj ,qj ,τ ) cos φj − se(ãj ,qj ,τ ) sin φj ]

+ rf,j (τ ), (A5)

where rf,j (τ ) = pf,j (τ )e−μj τ . As a first case, we take gj (τ ) =
gj , i.e., a constant force leading to in-phase excess micromo-
tion. Evaluating Eq. (A4) using the Fourier series definitions
of the Mathieu functions, then multiplying by e−μj τ to obtain
rf,j (τ ) results in

rf,j (τ ) = gj

Wj

∑
m,n

c2mc2n

(βj + 2m)2 + μ2
j

{(βj + 2m)

× cos[2(m − n)τ ] − μj sin[2(m − n)τ ]}, (A6)

from which it can be seen that the amplitude of motion does not
decrease over time, although the damping does slightly alter
the amplitude and introduces a term in quadrature phase with
the rf drive.

Next, we take an oscillating external force gj (τ ) =
gj sin(αjτ + ϕj ). In what follows, we assume that this force is
off-resonant, that is, αj �= βj + 2m for any integer m, since in
the resonant case the ion’s trajectory is unstable. The resulting
forced motion is

rf,j (τ ) = gj

2Wj

∑
m,n

c2mc2n

{
(αj + βj + 2m) sin[τ (αj + 2m − 2n) + ϕj ] + μj cos[τ (αj + 2m − 2n) + ϕj ](

α2
j + 2αj (βj + 2m) + β2

j + 4βjm + 4m2 + μ2
j

)
+ (−αj + βj + 2m) sin[τ (αj − 2m + 2n) + ϕj ] − μj cos[τ (αj − 2m + 2n) + ϕj ](

α2
j − 2αj (βj + 2m) + β2

j + 4βjm + 4m2 + μ2
j

) }
.

(A7)

This, again, does not exhibit a decay over time. The largest
term of this motion is typically for m = 0,n = 0, and in the
undamped case (μj = 0) this produces

rf,j (τ ) ≈ βjgj c
2
0

Wj

(
β2

j − α2
j

) sin(ατ + ϕj ). (A8)

Thus, applying a position-independent oscillating force to
the ion produces oscillations at the same frequency and in
phase with this external force. The special case αj = 2,ϕj = 0
corresponds to an external force of the form sin �t , which in
Ref. [15] is used as an approximate model for the effects of a
phase difference between rf electrodes.

APPENDIX B: TOTAL KINETIC ENERGY
OF AN ION IN AN RF TRAP

In the main text, the ion’s energy is characterized in terms of
the secular energy, which represents the energy associated with
the lowest-frequency mode of motion. The procedure used to

calculate the effects of a collision, however, requires only that
this energy be proportional to A2

j , and so also applies to the
time-averaged kinetic energy of the intrinsic motion used in
Ref. [10]. Furthermore, for the purposes of, e.g., calculating
reaction rates, the total time-averaged kinetic energy, including
contributions from the secular motion, instrinsic micromotion,
and forced motion, may be required, as this represents the
kinetic energy available during collisions. The velocity of the
ion is

vj (τ ) = Aj [ ˙cej(τ ) cos φj − ˙sej(τ ) sin φj ] + vf,j (τ ), (B1)

where dots indicates the derivative with respect to τ . To
simplify the notation, we define

vh,j (τ ) = Aj [cos φj ˙cej(τ ) − sin φj ˙sej(τ )], (B2)

where the index h indicates that this is the solution to the
homogenous equation. The average kinetic energy is given
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by [10]

Ej,K = 1

2
mi

�2

4
�[vj (τ )2], (B3)

where the prefactor of �2/4 handles the conversion from the
units of time used in the Mathieu equation to SI units, and the
operator �[h(τ )] is defined by

�[h(τ )] = lim
L→∞

1

2L

∫ L

−L

h(τ )dτ. (B4)

We may write Eq. (B3) as

Ej,K = 1

2
mi

�2

4
(I1 + 2I2 + I3), (B5)

where

I1 = �[vh,j (τ )2], (B6)

I2 = �[vh,j (τ )vf,j (τ )], (B7)

and

I3 = �[vf,j (τ )2]. (B8)

To evaluate I1, we use the Fourier series definitions of the
Mathieu functions to write

vh,j (τ ) = −Aj

∑
m

c2m,j (βj + 2m) sin[(βj + 2m)τ + φj ].

(B9)
Using this expression, we may evaluate I1 term by term to
produce

I1 = A2
j

1

2

∑
m

c2
2m,j (βj + 2m)2. (B10)

Note that 1
2mi

�2

4 I1 corresponds to the time-averaged kinetic
energy of the intrinsic motion and is proportional to A2

j [10].
For the ion’s trajectory to remain bounded, the forced motion
cannot contain any frequency components which coincide with
the frequencies of the intrinsic motion [21]. That is, when
expressed as a Fourier series, it cannot contain terms with
frequencies given by β + 2m for any integer m. Hence, when
vf,j is written in terms of a Fourier series and substituted into
I2, this integral must average to zero due to the orthogonality
of sine and cosine functions [20]. The third integral cannot be
evaluated without specifying the external force and so we shall

simply denote this result as v2
f,j . Thus,

Ej,K = 1

2
mi

�2

4

(∑
m

[
A2

j

1

2
c2

2m,j (βj + 2m)2

]
+ v2

f,j

)
.

(B11)
Recall that the secular energy of the ion is given by Ej =
mi

2
�2

4 A2
jβ

2
j c

2
0,j . Hence,

Ej,K = 1

2
Ej

∑
m

c2
2m,j (βj + 2m)2

β2
j c

2
0,j

+ mi

2

�2

4
v2

f,j . (B12)

Since Eq. (B12) is a linear function of Ej , we may obtain the
ensemble average simply by replacing Ej by 〈Ej 〉, which is
obtained as described in the main text.

APPENDIX C: NUMERICAL METHODS

The numerical simulations were implemented in a C++
program and were performed via matrix propagation for the
reasons of speed and computational accuracy as described
in Ref. [8], adapted to take into account the motion due
to an additional, spatially independent force [21]. For the
simulations performed in this work, the collision rate is a
constant but this may be altered to model a varying collision
rate due to an energy-dependent cross section or a nonuni-
form buffer gas density distribution [9,23]. The density and
temperature of the buffer gas is fixed for these simulations;
see Ref. [9] for a discussion of how they may be updated
after each collision to model the heating of the buffer gas
by the ion. The Mathieu functions were evaluated up to
the m = ±5 Fourier terms with coefficients calculated using
Miller’s algorithm, and the characteristic exponent was found
through numerical integration [20,40]. The energy drift in the
absence of collisions after 300 propagations was found to
be E300/E0 < 10−5 for q = 0.5. The extraction of nT from
numerically calculated values of the energy was performed
using maximum likelihood estimation (MLE) to avoid the
systematic errors introduced by performing linear regression
on the tail of the binned data, and furthermore eliminating
the need to choose appropriate bin sizes and a cutoff point
[41,42]. This estimation treats k,nT ,〈β〉 as free parameters
to be found from the unbinned data and is performed using
MATHEMATICA [43]. The errors on the parameters found via
MLE are calculated from the estimated Fisher matrix [31]. The
analytical expressions for the mean energies were evaluated
using MATHEMATICA’s built-in implementations of the Mathieu
functions (see Supplemental Materials), which were also used
to validate the implementations in the C++ program.
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