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Ultracold collisions between spin-orbit-coupled dipoles: General formalism and universality

Jia Wang, Christiaan R. Hougaard, Brendan C. Mulkerin, and Xia-Ji Liu
Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122, Australia

(Received 11 October 2017; revised manuscript received 24 January 2018; published 23 April 2018)

A theoretical study of the low-energy scattering properties of two aligned identical bosonic and fermionic
dipoles in the presence of isotropic spin-orbit coupling is presented. A general treatment of particles with arbitrary
(pseudo)spin is given in the framework of multichannel scattering. At ultracold temperatures and away from
shape resonances or closed-channel dominated resonances, the cross section can be well described within the
Born approximation to within corrections due to the s-wave scattering. We compare our findings with numerical
calculations and find excellent agreement.
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I. INTRODUCTION

Many novel behaviors and phases in quantum few- and
many-body systems can be understood from the competition
between kinetic and interaction energies. The extraordinary
degree of control in systems of ultracold quantum gases there-
fore provides versatile platforms to study these quantum phe-
nomena [1–4]. For instance, short-range interactions (or, more
precisely, s-wave scattering lengths) between atoms can be
tuned to virtually arbitrary values via magnetic Feshbach reso-
nances [5], allowing us to access the unitary regime [6–8] and
study Efimov physics [9–11]. On the other hand, long-range
interactions, especially the anisotropic dipole-dipole interac-
tions, can significantly change the excitation spectrum [12]
and the stability diagrams of Bose-Einstein condensation
(BEC) [13–15], which has attracted intense interest in gases of
ultracold heteronuclear ground-state molecules [16,17], and
magnetic dipolar atoms such as 52Cr [14], 164Dy [18,19],
and 168Er [20]. More recently, manipulating kinetic energies
and corresponding dispersion relationship has been realized
via the innovative synthetic spin-orbit coupling (SOC) tech-
nique, i.e., coupling a particle’s canonical momentum with its
(pseudo)spin degrees of freedom [21,22]. The realization of
SOC provides an important ingredient for studying the frac-
tional quantum Hall effect and topological insulators [23,24]
and has been a fundamental advancement in ultracold quantum
gases in recent years [25,26].

There are currently several experimental techniques to
realize SOC in cold-atom systems, such as lattice shaking [27]
and Raman coupling [28]. In particular, the Raman laser
scheme has been applied to achieve one-dimensional SOC (an
equal mixture of Rashba and Dresselhaus spin-orbit coupling)
[28–33] and two-dimensional SOC [34–36] in ultracold gases
of alkali-metal atoms. However, Raman coupling for alkali-
metal atoms usually also comes along with atomic heating due
to spontaneous emission. This heating leads to the loss of quan-
tum degeneracy and trap population, which is a major challenge
to study many-body quantum phenomena that manifest at
a lower temperature and longer timescales. For atoms with
higher ground state orbital angular momentum, spontaneous
emission can be eliminated while still producing large Raman
coupling [37], making the open-shell lanthanide atoms Dy and

Er suitable candidates. These elements also possess a large
magnetic dipole moment, allowing studies of the interplay
between SOC and long-range dipole-dipole interactions that
do not exist in alkali-metal atomic gases, but requiring a
more sophisticated theoretical model. Experimentally, SOC
has been recently achieved by Ref. [38] in 161Dy, which has
allowed for the realization of a long-lived SOC degenerate
dipolar Fermi gas. The bosonic system of SOC dipolar gas
has also been theoretically investigated previously in BEC of
52Cr [39].

The existence of long-range dipole-dipole interactions in
these systems is expected to give an interesting interplay
with the SOC, leading to intriguing new quantum phases.
Previous theoretical studies on the interplay between short-
range two-body interactions and SOC in Fermi gases have
explored superfluid states in the BEC-BCS crossover [40–44].
For a BEC with SOC, new quantum phases, such as a stripes
phase, have been predicted for a certain range of the Raman
coupling strengths determined by the inter- and intraspecies
scattering lengths [45–48]. The anisotropic and long-range
dipole-dipole interaction can be regarded as an additional
degree of freedom, which might lead to new physics, but also
brings new challenges in theoretical studies. To construct a
concrete theoretical model for SOC dipolar quantum gases,
the low-energy scattering between two dipoles in the presence
of SOC needs to be understood first, which is the main topic
of our study here.

Our theoretical formalism is inspired by several previous
studies on ultracold collisions between two nondipole particles
in the presence of the three-dimensional (3D) isotropic SOC
(which is a 3D analog of Rashba SOC) [49–54]. While the
3D isotropic SOC has not yet been realized experimentally in
cold-atom systems, proposals have been made that are based
on adding more laser fields. Recently, the realization of 2D
isotropic SOC using this scheme has been reported [55]. The
laser scheme to realize 3D isotropic SOC is ideally suited
for lanthanide atoms, where there is less atomic heating.
On the other hand, the 3D isotropic SOC is more closely
related to the cases in condensed-matter physics due to the
high symmetry [56,57]. This symmetry also allows for a fully
analytical treatment of low-energy scattering in the presence
of SOC.
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The low-energy scattering is strongly affected by the asymp-
totic behavior of atoms at large distances. In our system, the
SOC persists even for atoms with infinite separation, which
changes the threshold energies, and modifies the dispersion
relation [25]; on the other hand, a dipole-dipole interaction
also dominates potential energies at large distances. The com-
petition between SOC and dipole-dipole interaction therefore
gives rise to special threshold behaviors. The details of our
formalism to study this problem are outlined below in Sec. II.
An analysis by applying the first-order Born approximation
is given in Sec. III. A comparison with numerical results for
spin-1/2 dipolar fermions is given in Sec. IV. A summary of
our study is given in Sec. V.

II. FORMALISM

In our model each dipole is treated as a point particle with
mass m. The interaction potential V (�r ) between two dipoles
aligned to the z axis and separated by a large distance �r
is therefore given by V (�r ) → Vd (�r ) = d2(1 − 3 cos2 θ )/r3.
Here θ is the polar angle of �r in spherical coordinates and
d = μm

√
μ0/4π denotes the dipole moment, where μm is the

magnetic dipole moment and μ0 is the vacuum permeability.
The characteristic length scale of the dipole potential Vd (�r )
is given by the dipole length D = μd2/h̄2, where μ = m/2 is
the two-body reduced mass. Correspondingly, a natural energy
scale can be defined by the dipole energy ED = h̄2/μD2.
To mimic the experimentally available control of short-range
interactions by using methods such as Feshbach resonances,
we model the short-range potential by a simplistic hard-wall
potential, i.e., V (�r ) = Vd (�r ) for r � rc and V (�r ) = ∞ for
r < rc. This specific chosen form of the short-range potential,
however, does not limit the generality of our study of ultracold
collisions especially near potential resonances, which will be
elaborated on later.

Similar to Refs. [49–54], we focus on the scattering in the
center-of-mass frame. With the presence of 3D isotropic SOC,
the Hamiltonian in relative coordinates is given by

H = �p 2

2μ
+ kSO

2μ
�p · (�s1 − �s2) + V (�r ), (1)

where �s1 and �s2 are the spin operators for atom 1 and atom 2,
�p is the relative momentum operator, and kSO is the strength of
SOC in the units of inverse length. The energy scale for SOC
can therefore be defined by the recoil energy Er = h̄2k2

SO/2m.
Following the same spirit as Refs. [51–54], we solve

the relative Schrödinger equation formally as a multichannel
problem, i.e., using channel functions (basis) of �, all degrees
of freedom except for r , to expand the τ th independent solution
as

�τ (�r ) =
∑

ν

�ν(�)
Fντ (r)

r
. (2)

The channel functions adopted here are the tensor spherical
harmonics that are simultaneous eigenstates of { �j 2,jz,�	 2,�s 2}
whose eigenvalues are collectively represented by ν. Here �	 is
the (relative) orbital angular momentum operator, �s = �s1 + �s2

is the total spin operator, �j is the total angular momentum, and
jz is the projection to the z axis in the laboratory frame. The

tensor spherical harmonics are defined as

�ν(�) ≡ 〈θ,φ|(	s)jmj 〉
= i	

∑
m	,ms

C
jmj

	m	;sms
Y	m	

(θ,φ)χ (s,ms), (3)

where C
jmj

	m	;sms
are the Clebsch-Gordan coefficients, Y	m	

(θ,φ)
are the usual spherical harmonics, and χ (s,ms) denote the spin
states. The i	 phase term is introduced to make the matrix
elements of the Hamiltonian all real, which will be convenient
for carrying out numerical propagation later. The matrix
elements for the first two terms in Eq. (1) (except for an
additional phase associated with the i	 term) have been derived
previously in Refs. [51,52]:

〈(	′,s ′)j ′m′
j |

�p2

2μ
|(	,s)jmj 〉 ≡ h̄2

2μ

(
−Iν ′ν

d2

dr2
+ B

(2)
ν ′ν

)

=
(

− h̄2

2μ

d2

dr2
+ h̄2	(	 + 1)

2μr2

)
× δjj ′δmj m

′
j
δ		′δss ′ (4)

and

〈(	′,s ′)j ′m′
j |

kSO

2μ
�p · ( �s1 − �s2)|(	,s)jmj 〉

≡ h̄2

2μ

(
Aν ′ν

d

dr
+ B

(1)
ν ′ν

1

r

)

= δjj ′δmj m
′
j

{
s ′ 1 s

	 j 	′

}
(−1)j+	+s ′+s1+s2

×
[
−(−1)s

√
s1(s1 + 1)(2s1 + 1)

{
s1 s2 s

s ′ 1 s1

}

+ (−1)s
′√

s2(s2 + 1)(2s2 + 1)

{
s2 s1 s

s ′ 1 s ′
2

}]

×
(

− h̄2kSO

2μ

)[(
d

dr
− 	 + 1

r

)√
	 + 1δ	′,	+1

+
(

d

dr
+ 	

r

)√
	δ	′,	−1

]
, (5)

which are all real. Here the curly bracket denotes the
6-j symbol. Since the isotropic SOC preserves total angular
momentum, different j ’s are not coupled by these two terms.
However, the anisotropic dipole-dipole interaction will couple
different j ’s and only mj is still a good quantum number due to
the azimuthal symmetry. The matrix elements for dipole-dipole
interaction are then given by

〈(	′,s ′)j ′m′
j |Vd (�r)|(	,s)jmj 〉 ≡ h̄2

2μ
B

(3)
ν ′ν

1

r3

= −i	−	′ 2d2

r3
(−1)	

′−	+s+j δs ′s	j	′C
j ′m′

j

jmj ;20

{
	 s j

j ′ 2 	′

}

×
(

	′ 2 	

0 0 0

)
, (6)

where 	j	′ = √
2	 + 1

√
2j + 1

√
2	′ + 1. These matrix ele-

ments are also real despite the i	
′−	 factor, since the 3-j symbol

at the end of Eq. (6) ensures that 	′ − 	 = 0,±2. In addition,
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the Clebsch-Gordan coefficient C
j ′m′

j

jmj ;20 shows that mj is a good
quantum number and only channels with |j − j ′| � 2 can be
coupled (in particular, ifmj = 0, only channels with |j − j ′| =
0,2 are coupled). In principle, one needs to include channels
with all possible angular momenta for an exact calculation,
however, only a finite number of channels j � jmax is needed
in practice to obtain a converged result for the scattering cross
sections, where jmax is sufficiently large (about 40 for our
chosen parameters).1

In terms of these matrix elements, the Schrödinger equation
in matrix form can then be written as(

−I
d2

dr2
+ A

d

dr
+ B(r) − k2I

)
F (r) = 0, (7)

where the underlined variables M denote matrices with matrix
elements Mν ′ν , I is the identity matrix, E = h̄2k2/2μ is the
incident energy, and B(r) = B(1)/r + B(2)/r2 + B(3)/r3. The
logarithmic derivative matrix L = F ′F−1 can be obtained
by propagating from rc to a sufficiently large distance rmax

(about 104D for our chosen parameters). The details of the
propagation method are elaborated in Appendix A. The K

matrix and S matrix are therefore given by

K = (Lg − g′)−1(Lf − f ′) (8)

and

S = (I + iK)(I − iK)−1, (9)

respectively, where f and g are the regular and irregular
solutions in matrix form.

The regular solutionsf are obtained by projecting the plane-
wave solutions onto the tensor spherical harmonics, Eq. (3).
The plane-wave solution with scattering energy E = h̄2k2/2μ

can be written as

〈�r |ξ,ζ ; +k̂〉 =
√

1

2 + 2δξζ

[ei�kξζ ·�r |ξ,+k̂〉|ζ,−k̂〉

+ (−)pbe−i�kξζ ·�r |ζ,−k̂〉|ξ,k̂〉], (10)

where pb equals 0 (1) for identical bosons (fermions) and
|ξ,n̂〉 is a single-particle state with the projection of spin
along the quantization axis n̂ being h̄ξ . In the presence
of 3D isotropic SOC, the particle can be well described
by its helicity state, where the quantization axis is along
the direction of its canonical momentum. Here �kξζ is the
canonical momenta with direction �k and magnitude kξζ =√

k2 + κ2
ξζ − κξζ , where κξζ = (ξ + ζ )kSO/2. The expansion

gives the matrix elements of f as fντ = uντ kτ rjl(kτ r)/
√

Nτ ,

where Nτ = πh̄2
√

k2 + κ2
ξζ /2μ is the normalization constant

chosen to ensure flux density conservation and

uντ =
√

2	 + 1

2j + 1
C

j,ξ−ζ

	,0;s,ξ−ζ C
s,ξ−ζ
s1,ξ ;s2,−ζ

1 + (−)s1+s2−s+	+pb√
2 + 2δξζ

.

(11)

1With the same jmax, we have also reproduced the results of Ref. [58]
for dipole-dipole scattering without the presence of SOC.

Correspondingly, the matrix elements of the irregular solutions
g are given by gντ = uντ kτ rnl(kτ r)/

√
Nτ , where jl and nl

are the regular and irregular spherical Bessel functions, re-
spectively. Hereafter, unless specified otherwise, we use ν =
{j,mj ,	,s} to collectively represent the quantum numbers of
the channel function in Eq. (3) and τ = {j,mj ,ξ,ζ } to represent
the partial wave of a particular helicity state. Therefore,
Eq. (11) can also be regarded as a unitary transformation
between the helicity basis denoted by {ξ,ζ } and the spin singlet
or triplet basis in the absence of SOC indicated by quantum
number {	,s} for a particular partial wave of {j,mj }. The
explicit values of uντ for spin-1/2 fermions and spin-1 bosons
have been previously obtained for j = 0 in Refs. [51,52],
respectively, which can be used to verify our Eq. (11) (after
carefully taking care of the i	 factor). The form of regular
and irregular solutions guarantees the K matrix to be real and
symmetric (and hence the S matrix to be unitary), where the
proof is given in Appendix B. Finally, the cross section from
one partial wave {j ′,m′

j } of helicity states {ξ ′,ζ ′} to another
partial wave {j,mj } of another helicity channel {ξ,ζ } is given
by

στ ′τ = 2π

k2
τ ′

|Sτ ′τ − δτ ′τ |2. (12)

III. FIRST-ORDER BORN APPROXIMATION

One of the most important observables in ultracold colli-
sions is the threshold law behavior determined by the compe-
tition between SOC, short-range, and long-range interactions.
In this work we are mostly interested in magnetic dipolar atoms
whose dipole lengths are about 1–10 nm for different species.
Therefore, we are focusing on the case kSOD < 1, as the
SOC strength is reasonably estimated to be kSO ≈ 1–10 μm−1.
We remark that the parameter regime of kSOD > 1 might be
achieved in systems of heteronuclear molecules or Rydberg
atoms, which is, however, beyond the scope of this paper.

The threshold behaviors for dipolar scattering without SOC
have been discussed in Refs. [59–62], where the scattering
cross sections of partial waves with 	 > 0 are universally
determined by the dipole length. The physical explanation is
that scattering at low energy can only occur at distances larger
than the centrifugal barrier, where the potential is dominated
by the dipole-dipole interaction. In addition, the 1/r3 behavior
of dipole-dipole interaction is weak at large distances, which
allows the application of the perturbative first-order Born
approximation. We apply the first-order Born approximation
within the multichannel framework, where the K matrix can
be approximated by [63,64]

K(Born)
τ ′τ = π

∫ ∑
ν ′ν

f ∗
ν ′τ ′(r)2d2 B̃

(3)
ν ′ν

r3
fντ (r)dr, (13)

where B̃
(3)
ν ′ν = B

(3)
ν ′ν/4D by comparing with Eq. (6). Inserting

the expression of the regular solution fντ , we arrive at

K(Born)
τ ′τ = 4D

h̄2π

2μ

kτ ′kτ√
Nτ ′Nτ

∑
ν ′ν

u∗
ν ′τ ′B̃

(3)
ν ′νuντ�

τ ′τ
	′	 , (14)

where �τ ′τ
	′	 = ∫

drj	′(kτ ′r)j	(kτ r)/r . Since we are in the per-
turbative regime, i.e., K(Born)

τ ′τ � 1, the cross section can be
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approximated by

σ
(Born)
τ ′τ ≈ 2π

k2
τ ′

∣∣2K(Born)
τ ′τ

∣∣2
. (15)

We would like to remark here that due to the absence of a
centrifugal barrier in the s-wave channel, the first-order Born
approximation should not apply to terms in the expansion
when 	′ = 	 = 0 as the integral �τ ′τ

00 is divergent. However,
this is not a problem, as B̃

(3)
ν ′ν = 0 for 	′ = 	 = 0, and hence

gives no contribution to K(Born)
τ ′τ . Similar to the argument

for the non-SOC case [59], the s-wave contributions can be
included later by supplementing the Born approximation with
a short-range contribution that can be determined from the full
close-coupling calculations.

The threshold behavior for partial waves satisfying the first-
order Born approximations can be further explored by using
the analytical properties of the integral �τ ′τ

	′	 ,

�τ ′τ
	′	 =

(
kτ ′

kτ

)	′
π�

[
1
2 (	 + 	′)

]
8�

[
1
2 (3 + 	 − 	′)

]
�

(
3
2 + 	′)

× 2F1

[
1

2
(−1 − 	 + 	′),

1

2
(	 + 	′),

3

2
+ 	′,

k2
τ ′

k2
τ

]
(16)

for kτ � kτ ′ , where 2F1(a,b,c,z) is the hypergeometric func-
tion. Due to the symmetry of the integral, one can obtain �τ ′τ

	′	
for kτ < kτ ′ by simply switching the primed and unprimed
indices on the right-hand side. In addition, we only need to
focus on the cases with 	′ − 	 = 0,±2, since B̃

(3)
ν ′ν equals zero

otherwise. The integral can therefore be further simplified for
kτ = kτ ′ ,

�τ ′τ
	′	 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2	′(	′ + 1)
, 	′ = 	

1

6(	′ + 1)(	′ + 2)
, 	′ = 	 − 2

1

6	′(	′ − 1)
, 	′ = 	 + 2.

(17)

For kτ = kτ ′ , the integral can also be simplified in the limit
kτ ′/kτ � 1,

�τ ′τ
	′	 →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(	′ − 1)!2	′−1

(2	′ + 1)!!

(
kτ ′

kτ

)	′

, 	′ = 	

	′!2	′

3(2	′ + 1)!!

(
kτ ′

kτ

)	′

, 	′ = 	 − 2

(	′ − 2)!2	′−2

(2	′ + 1)!!

(
kτ ′

kτ

)	′

, 	′ = 	 + 2,

(18)

where the (double) exclamation marks denote a (double)
factorial.

We remark here that, at the regime kSOD � kD � 1,
kτ ≈ kτ ′ ≈ k; therefore, �τ ′τ

	′	 can always be approximated by
Eq. (17). Furthermore, if we investigate the case of s1 =
s2 = 0 (and therefore j = 	, j ′ = 	′, and mj = mj ′ = m	),
one can verify that |2K(Born)

τ ′τ | ≈ |δτ ′τ − S (Born)
τ ′τ | agrees with

the T -matrix element |T (m	),Born
	′	 | found in Refs. [59,61] for

dipole-dipole scattering without the presence of SOC.
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FIG. 1. The K-matrix elements and cross sections for elastic
scattering in channels of (j,mj ) = (2,0), represented by thick curves,
and (4,0), by thin curves. The incoming and outgoing helicity states for
each curve are indicated in the figure. The solid curves are results from
numerical calculation with kSOD = 0.1 and rc = 0.22D, compared
with the dashed curves from the first-order Born approximation. For
the (j,mj ) = (4,0) channels, the dashed curves and solid curves are
essentially on top of each other and cannot be distinguished visually
at this scale.

IV. EXAMPLE: TWO SPIN-1/2 FERMIONIC DIPOLES

We apply our analysis to systems of two identical spin-1/2
fermionic dipoles as an example and focus on the mj = 0 and
even j channels. In order to simplify notation we use+ and− to
represent the helicity +1/2 and −1/2, respectively, in this sec-
tion. Furthermore, to avoid double counting, we always choose
ξ < ζ . Therefore, the three possible two-particle helicity states
for the two dipoles are given by (ξ,ζ ) = (−,−), (−,+) and
(+,+), with canonical momenta k−− =

√
k2 + (kSO/2)2 +

kSO/2, k−+ = k, and k++ =
√

k2 + (kSO/2)2 − kSO/2 and nor-
malization constants N−− = N++ = πh̄2

√
k2 + (kSO/2)2/2μ

and N−+ = πh̄2
√

k/2μ. Using Eq. (11), we find that for
j = 0, only (−,−) and (+,+) are involved and coupled to
the channel functions ν = {j = 0,mj = 0,	 = 0,s = 0} and
{0,0,1,1}. For higher even j ’s, all three possible helicity states
are involved and coupled to ν = {j,0,j,0}, {j,0,j − 1,1}, and
{j,0,j + 1,1}. Therefore, only the partial waves with j = 0 are
coupled to the s wave and the first-order Born approximation
can be applied to all other higher partial waves.

Some of the elastic scattering cross sections and correspond-
ing K-matrix elements are shown in Fig. 1. The solid curves
are numerical calculations using parameters kSOD = 0.1 and
rc = 0.22D, while the dashed curves are the first-order Born
approximations found from Eqs. (14) and (15). The first-order
Born approximation agrees excellently with the essentially
exact calculations at low scattering energy (small k) and
high angular momentum partial waves. The almost perfect
agreement can be understood by realizing the scattering occurs
at larger distances for lower scattering energy and a higher
centrifugal barrier, where the first-order Born approximation
becomes almost exact.

The first-order Born approximation also agrees well for the
essentially numerically exact inelastic process. In Fig. 2 we
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FIG. 2. The K-matrix elements and cross sections for inelastic
scattering from channels of (j,mj ) = (2,0) to (j ′,m′

j ) = (4,0), where
the scattered state remains the same helicity. Other parameters and
notation are the same as in Fig. 1.

present some inelastic cross sections and the corresponding K-
matrix elements from channels of (j,mj ) = (2,0) to (j ′,m′

j ) =
(4,0), but the state remains in the same helicity, which also
shows very good agreement. We can write out the explicit form
for the elastic and inelastic cross sections whose incoming and
outgoing two-particle helicity states are the same,

σ
j,mj →j ′m′

j

(−−)→(−−) = 128πD2C2
τ ′τ

(
√

k2 + (kSO/2)2 + kSO/2)2

k2 + (kSO/2)2
,

(19)

σ
j,mj →j ′m′

j

(−+)→(−+) = 128πD2C2
τ ′τ , (20)

σ
j,mj →j ′m′

j

(++)→(++) = 128πD2C2
τ ′τ

(
√

k2 + (kSO/2)2 − kSO/2)2

k2 + (kSO/2)2
,

(21)

where Cτ ′τ = ∑
ν ′ν u∗

ν ′τ ′B̃
(3)
ν ′νuντ�

τ ′τ
	′	 is a constant with respect

to k and �τ ′τ
	′	 is given by Eq. (17). The threshold power

law at k � kSO can therefore be given by σ
j,mj →j ′m′

j

(−−)→(−−) → k0,

σ
j,mj →j ′m′

j

(−+)→(−+) → k0, and σ
j,mj →j ′m′

j

(++)→(++) → k4.
For inelastic scattering processes with different incoming

and outgoing helicity states, simple formulas for cross sections
without involving the hypergeometric function do not exist.
However, in the limit k � kSO, the threshold behavior can still
be analyzed by using Eq. (18). For example, in the process τ ′ =
{2,0,−,+} → τ = {4,0,−,−} we have k−+/k−− → k in the
low-k limit, which leads to �τ ′τ

	′	 → k	′
. Therefore, the leading

order of the K-matrix element is Kτ ′τ → k	min+1/2, where 	min

is the lowest 	′ that can couple to j ′ = 2, which equals 1 in this
case. The additional factor of 1/2 in the exponent comes from
the factor kτ ′kτ /

√
Nτ ′Nτ . The cross section therefore obeys

the power law στ ′τ → k1. The same analysis can be applied
to other scattering processes and are summarized in Fig. 3 for
cross sections from channels of (j,mj ) = (2,0)–(4,0). We can
see that the power law describes the threshold behaviors well.

We have also carried out calculations for different rc and
observe that the cross sections for j > 0 discussed previously

10-2 10-1
10-10

10-8

10-6

10-4

10-2

100

FIG. 3. Cross sections for inelastic scattering that changes helicity
from channels of (j,mj ) = (2,0) to (j ′,m′

j ) = (4,0), where the initial
and final helicities are indicated in the figure. The solid curves are
numerical calculations with the same parameters as in Fig. 1. The
dashed curves show the corresponding power law.

are insensitive to rc, i.e., the cross sections at low scattering
energy are universally determined by the dipole length D

and kSO. This universality also applies better for lower k and
higher angular momentum j due to the better application of
the first-order Born approximation. However, for the partial
cross sections in the subspace of j = 0, the universality implied
by the first-order Born approximation no longer exists due to
the absence of a centrifugal barrier. Indeed, we find that the
cross section in the subspace of j = 0 depends on rc and can
change by orders of magnitude in our numerical calculation,
as shown in Fig. 4. One can also see that the cross sections

10-2 10-1

102

103

104

10-2 10-1

10-1

100

101

102

103

FIG. 4. Cross sections in the subspace of (j,mj ) = (0,0). In the
left panel, the solid (dashed) curves shows the cross sections from
(−,−) [(+,+)] to (−,−) helicity states and in the right panel, the
solid (dashed) curves shows the cross sections from (+,+) [(−,−)]
to (+,+), respectively. These are numerical calculation results with
kSOD = 0.05 and different rc indicated in the figure. For the same set
of parameters, the solid and dashed curves are essentially on top of
each other in this scale.
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FIG. 5. Elastic cross sections for the helicity state (−,−) in the
subspace of (j,mj ) = (0,0) for different kSO as a function of non-SOC
singlet s-wave scattering length as . The curves from top to bottom
correspond to kSOD = 0.01, 0.05, 0.1, 0.2, and 0.5. The diamonds
(pentagrams) are numerical results calculated near the resonance at
rc ≈ 0.232D (0.103D). The solid curves are fitted using Eq. (22).
The dash-dotted curve guides the position of resonances.

in the j = 0 subspace share many similarities with the short-
range results presented in Ref. [51], such as the power-law
behaviors and the identical cross sections for the same final
helicity state regardless of the initial helicity state at very
small k.

In addition, the cross sections for final states (−,−) at low
scattering energy goes to a constant and can reach resonance by
tuning rc, similar to the non-SOC situation studied in Ref. [58].
In particular, near the broad potential resonances found in
Ref. [58] (or, more specifically, away from shape resonances
and closed-channel-dominated resonances), we have observed
another universality, i.e., the cross section can be universally
determined by the dipole length D, SOC kSO, and the non-SOC
singlet s-wave scattering length as . This universality implies
that all the short-range physics can be absorbed into one
single parameter as and the detailed form of the short-range
interaction is not important. The underlying physics is the
classical suppression of the WKB wave-function amplitude by
the large potential well at short distances [11], where a frame
transformation is allowed. Therefore, we do not expect that
this universality can be applied to shape resonances or closed-
channel-dominated resonances, where details of short-range
potential become important.

As shown in Fig. 5, for a fixed kSOD, the elastic cross sec-
tions σ

j=0
(−,−)→(−,−) are calculated near two different resonances

and can be fitted as a function of as/D,

σ
j=0
(−,−)→(−,−)/D

2 = σres/D
2

(D/as − D/ares)2/�2
res + 1

, (22)

where σres, ares, and �res are fitting parameters, which only
depend on kSOD. Figure 5 also shows the effect of kSO on
resonances: The resonance shifts further to the positive side and
becomes broader for larger SOC strength kSO. Interestingly, the
shift of resonance due to the presence of SOC can be explained

by the interplay between the short-range interaction and SOC
(see Appendix C for details).

Another interesting feature in ultracold scattering with
the presence of SOC is that the particles are preferentially
scattered into the lowest helicity states (where the particle’
s momentum is antiparallel to its spin direction), regardless of
their incidence channel [51,60]. This spontaneous handedness
is an analog of an antiferromagnetic phenomenon induced
by the momentum-dependent magnetic field. The presence of
dipole-dipole interaction would not change this spontaneous
handedness effect, as can be seen by comparing the ratios of the
different scattering cross sections στ ′τ /σττ ′ = k2

τ /k2
τ ′ . There-

fore, after some time, we expect all the particles in our system
to be in a negative helicity state and any rethermalization due
to a perturbation should be described by the total cross section
of σ tot

(−,−)→(−,−) = σ
j=0
(−,−)→(−,−) + σ

(Born)
(−,−)→(−,−), where

σ
(Born)
(−,−)→(−,−) =

∑
j,j ′,mj

σ
j,mj →j ′mj

(−,−)→(−,−). (23)

Summing the partial cross section from Eq. (19) in the limit of
k → 0 gives σ tot

(−,−)→(−,−) ≈ σ
j=0
(−,−)→(−,−) + 4.46D2. Noticing

that (32πD2/15 + 32πD2/45)/2 ≈ 4.46D2 implies that the
total cross section from the first-order Born approximation
equals the average of cross sections for identical fermions
(32πD2/15 ≈ 6.70D2) and identical bosons (32πD2/45 ≈
2.23D2) without the presence of SOC [61,65]. We believe this
reflects the fact that the total cross section sums over the singlet
and triplet cross sections, which corresponds to the nonspin
identical bosons and fermions, respectively. In addition, when
the particles are in (−,−) helicity, they have equal probability
to be projected into singlet and triplet states.

V. CONCLUSION

In summary, this paper extends previous theoretical studies
of ultracold scattering in the presence of 3D isotropic SOC to
a dipolar system. Our formalism is general in the sense that it
can be applied to either bosons or fermions with arbitrary spin
and the inclusion of any angular momentum partial waves.
Similar to the non-SOC cases, the cross sections involving
high angular momentum partial waves can be well described
by the first-order Born approximation and can be determined
universally by the dipole length D and spin-orbit coupling
strength kSO. However, the cross sections that can couple to an
s-wave channel depend on the short-range physics and can have
resonances. Nevertheless, all the short-range physics can be
described by one additional parameter as near a broad potential
resonance. We have tested our theory in the example system of
spin-1/2 dipolar fermions and found excellent agreement with
our numerical calculations.

While this work focuses on the ultracold regime E → 0+,
our formalism can be easily extended to the negative scatter-
ing energy E = −h̄2κ2/2μ following the same approach in
Ref. [53]. In this energy regime, however, the canonical mo-
mentum should be understood as given by kξζ =

√
κ2

ξζ − κ2 −
κξζ (which has the same definition of k̄ in Ref. [53]). This topic,
however, is beyond the scope of the present work.
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APPENDIX A: PROPAGATION METHOD

Based on the R-matrix propagation method using a discrete
variable representation (DVR) basis, we develop a numerically
stable method for propagating the logarithmic derivative matrix
L = F ′F−1, where F is the solution of Eq. (7). Numerically,
we separate the whole regime into many sectors. For each sec-
tor r ∈ [a1,a2] the propagation method allows us to calculate
the logarithmic derivative matrix at one end L(a2) for a given
L(a1) on the other end. One key ingredient in this method is
the construction of the DVR basis. Our DVR basis functions
πj (r) are in the form of a Lagrange polynomial

πi(r) =
√

1

w̃i

N∏
j =i

r − rj

ri − rj

, (A1)

where ri = s̃xi + ā and w̃i = s̃wi are defined by the N Gauss-
Lobatto quadrature points xi and weights wi correspondingly,
with s̃ = (a2 − a1)/2 and ā = (a2 + a1)/2 [66]. One can
easily verify that a DVR basis satisfies πi(rj ) = δij /

√
w̃i ,

which leads to the DVR approximation, i.e.,∫ a2

a1
πi(r)v(r)πj (r)dr ≈ v(ri)δij with a smooth function

v(r). In addition, the derivative of the DVR basis π ′
i (r) can be

derived analytically.
Under the DVR approximation, Eq. (7) can be written as

H �c (μ) ≡ (T + M + V − k2I )�c (μ) = ��c (μ), (A2)

after integrating by parts, where c
(μ)
νj (in vector notation �c (μ))

are the expansion coefficients for the matrix elements of F ,

Fνμ(r) =
∑

j

c
(μ)
νj πj (r). (A3)

The matrix elements of other terms in Eq. (A2) are given by

Tμi,νj = δμν

∑
m

w̃mπ ′
i (rm)π ′

j (rm), (A4)

Mμi,νj = Aμν

1

2

∑
m

w̃m[πi(rm)π ′
j (rm) − π ′

i (rm)πj (rm)],

(A5)

Vμi,νj = Bμν(ri)δij , (A6)

which are all symmetric. The surface term is given by

�μi,νj = {
πi(r)

[
δμνπ

′
j (r) − 1

2Aμνπj (r)
]}∣∣a2

a1
. (A7)

From the form of the surface term, we define a matrix L =
L − A/2, so we have

F ′(r) = [
L(r) + 1

2A
]
F (r), (A8)

which gives∑
jν

�iτ,jνc
(μ)
jν =

∑
ν

[
δiNδjN

w̃N

Lμν(a2)c(μ)
νN

− δi1δj1

w̃1
Lμν(a1)c(μ)

ν1

]
. (A9)

We define the matrix hcc′
with the elements

hcc′
iτ,jν = Hiτ,jν + δi1δj1

w̃1
Lμν(a1), (A10)

where c and c′ are a collective index for selected DVR basis
indices, i.e., i ∈ c and j ∈ c′. The radial equation can therefore
be written in a matrix form(

hSS hSN

hNS hNN

)(�c (μ)
S

�c (μ)
N

)
=

(
0 0
0 L(a2)/w̃N

)(�c (μ)
S

�c (μ)
N

)
, (A11)

which leads to

1

w̃N

L(a2) = hNN − hNS 1

hSS
hSN, (A12)

with S = 1,2, . . . ,N − 1. For the first sector, if we impose a
hard-wall boundary condition from the left, i.e., F (a1) = 0, a
special treatment has to be implemented for this sector. Notice
that only the first DVR basis π1(r) has nonzero value at a1; the
boundary condition can be easily satisfied by choosing S =
2, . . . ,N − 1 for the first sector. An additional feature from this
formalism is that one can easily see that L(a2) is automatically
real and symmetric if L(a1) is real and symmetric, implying
that L is real and symmetric everywhere if we impose the
hard-wall boundary condition.

APPENDIX B: SYMMETRY OF THE K MATRIX

As we will show later, the K matrixK is real and symmetric
(correspondingly, the S matrix S is a unitary matrix) as long
as L is real and symmetric. We have already shown that L is
real and symmetric in the DVR formulation. Below we give
a more general proof without the help of any specific radial
basis. From the definition of L we have

F ′ − 1
2AF = LF. (B1)

From here on in this section we neglect the underline for matrix
variables to simplify the notation. From the radial equation (7)
we have

F ′′ = AF + B − k2I. (B2)

After some algebra, the derivative of L is given by

L′ = B − k2I + (
1
2A − L

)
F ′F−1. (B3)

The definition of L can also be rewritten as

F ′F−1 = 1
2A + L. (B4)

Finally, we have

L′ = B − k2I + (
1
2A − L

)(
1
2A + L

)
. (B5)

Notice that B is real and symmetric and A is real and
antisymmetric. Therefore, if L is real and symmetric, L′ must
also be real and symmetric, which implies that L is real and
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symmetric at all points as long as it is real and symmetric at
one point, which is usually satisfied at the origin.

In order to show that K is also real and symmetric, we need
to apply the properties of the Wronskian of the regular and
irregular solutions given by [52]

f ′T f − f T f ′ + f T Af = 0, (B6)

g′T g − gT g′ + gT Ag = 0, (B7)

and

f ′T g − f T g′ + f T Ag = 1

π
I. (B8)

The radial wave function can be expressed in terms of these
regular and irregular solutions as F = f − gK. Since f and g

are both real, K is automatically guaranteed to be real. Substi-
tuting the regular and irregular solution into the definition of
L gives

(f ′ − g′K) − 1
2A(f − gK) = L(f − gK), (B9)

which can be rewritten as

L−1
[
(f ′ − g′K) − 1

2A(f − gK)
] = (f − gK) (B10)

and

(f T − KT gT )L = (f ′T − KT g′T ) + 1
2 (f T − KT gT )A.

(B11)

Multiplying both the left and right-hand sides of these two
equations gives

(f T − KT gT )
[
(f ′ − g′K) − 1

2A(f − gK)
]

= [
(f ′T − KT g′T ) + 1

2 (f T − KT gT )A
]
(f − gK). (B12)

With the help of the Wronskian, the above equation gives K =
KT , proving that K is symmetric.

Since K is real and symmetric, there exists a unitary
transformation U that can diagonalizeK: U †KU = κ , where κ

is a diagonalized and real matrix. This unitary transformation
U can also diagonalize I + iK and I − iK, which implies that

S ≡ (I + iK)(I − iK)−1 = (I − iK)−1(I + iK) (B13)

is a unitary matrix.

APPENDIX C: FRAME TRANSFORMATION

One elegant discovery in Ref. [54] is that a frame trans-
formation can be found if the atom-atom interaction is short
ranged. Here we apply the approach therein to the case of
identical particle with arbitrary spin and define a rotational
transformation operator as R = exp(−ikSO �� · �r/2h̄), where
�� = �s1 − �s2. (Note that our definition of kSO is a factor of 2
different from the one defined in Ref. [54].)

Under such a transformation, the free-space Hamiltonian

H FS = �p 2

2μ
+ V (�r )

and the short-range Hamiltonian H SR ≡ R−1H FSR are ana-
lytically related by

H SR = H FS + Er

2h̄2 [ �� · �r, �� · �∇] + O(r), (C1)

0.05 0.1 0.2 0.4
10-3

10-2

10-1

FIG. 6. Comparison of D/a∗
s (shown by green pentagrams) and

D/ares [shown by red circles (blue crosses) for resonance near rc ≈
0.232D (rc ≈ 0.103D)] as a function of SOC strength kSOD.

where Er = h̄2k2
SO/2m. For identical particles, the second term

on the right-hand side of Eq. (C1) can be simplified as

ε = − Er

2h̄2 (�l · �s + ��2), (C2)

where �s = �s1 + �s2 is the total spin operator. Using tensor
spherical harmonics to expand this operator gives a diagonal
matrix with matrix elements as

εν = −Er

4
[j (j + 1) − 	(	 + 1) − 3s(s + 1)

+ 4s1(s1 + 1) + 4s2(s2 + 1)], (C3)

where ν = {j,mj ,	,s} are the quantum numbers for the tensor
spherical harmonics. For isotropic short-range interaction [54],
different partial waves are decoupled after the frame transfor-
mation and the short-range parameter (scattering phase shift)
δν(k) is effectively replaced by δν(kν), where h̄2k2

ν/2μ = E −
εν = h̄2k2/2μ − εν . In particular, near an s-wave resonance,
the corresponding diagonal K-matrix element reaches reso-
nance if 1/as(ks) → 0, where h̄2k2

s /2μ = h̄2k2/2μ + 3Er/2.

TABLE I. Potential parameter rR
c whose free-space energy-

dependent scattering length satisfies 1/as(ks) → 0, where ks is de-
termined by the SOC strength kSO given in the first column, and
the corresponding zero-energy scattering length a∗

s . The potential
parameter rN

c for resonance near rc ≈ 0.232D in the numerical
calculation with the presence of SOC is given in the fourth column
for comparison, as well as ares in Eq. (22) for the resonance near
rc ≈ 0.232D.

kSOD rR
c /D D/a∗

s rN
c /D D/ares

0.05 0.231584 0.001196 0.231514 0.001225
0.10 0.231397 0.004646 0.231313 0.004888
0.20 0.230693 0.017550 0.230567 0.018510
0.50 0.226607 0.092852 0.227027 0.084090
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In the presence of long-range and anisotropic dipole-dipole
interaction, different partial waves are in general still coupled
even after the frame transformation, implying that a more
general multichannel quantum defect theory approach has to be
adopted. While this is a very interesting approach, it is beyond
the scope of this work. Nevertheless, we find this approach very
promising by verifying that the resonance shift near an s-wave
resonance described in Fig. 5 can still be understood via this
approach, showing that the interplay between the short-range
interaction and SOC plays an important role in the J = 0
channel.

Near the resonance of rc ≈ 0.232D without the presence
of SOC, we calculate the value of the s-wave scattering

length a∗
s = as(0) if the corresponding potential parameters

rR
c gives 1/as(ks) → 0. [Here we define the energy-dependent

scattering length as(k) by following Ref. [58].] Interestingly,
as illustrated in Fig. 6, the value of a∗

s agrees well with
ares in Eq. (22), which is calculated by fitting the reso-
nance of a numerical calculation with the presence of SOC,
clearly showing that the shift of the resonance position is
a result of the interplay between a short-range interaction
and SOC. The potential parameter rN

c giving the resonances
seen in numerical calculations and the potential parameters
rR
c predicting the resonance positions based on the rotation

approach are summarized in Table I for the convenience of
readers.
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