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We study quasibound states and scattering with short-range potentials in three dimensions, subject to an axial
periodic driving. We find that poles of the scattering S matrix can cross the real energy axis as a function of the
drive amplitude, making the S matrix nonanalytic at a singular point. For the corresponding quasibound states that
can tunnel out of (or get captured within) a potential well, this results in a discontinuous jump in both the angular
momentum and energy of emitted (absorbed) waves. We also analyze elastic and inelastic scattering of slow
particles in the time-dependent potential. For a drive amplitude at the singular point, there is a total absorption
of incoming low-energy (s wave) particles and their conversion to high-energy outgoing (mostly p) waves. We
examine the relation of such Floquet singularities, lacking in an effective time-independent approximation, with
well-known “spectral singularities” (or “exceptional points”). These results are based on an analytic approach for
obtaining eigensolutions of time-dependent periodic Hamiltonians with mixed cylindrical and spherical symmetry,
and apply broadly to particles interacting via power-law forces and subject to periodic fields, e.g., co-trapped ions
and atoms.
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I. INTRODUCTION AND MAIN RESULTS

The main object of this paper is a time-dependent
Schrödinger equation in three dimensions, that can be brought
to the form

iφ̇(�r,t) = [− 1
2∇2 + Vin(�r,t) + Vout(�r,t)

]
φ(�r,t), (1)

where each potential term is dominant in a different spatial re-
gion, and both are π -periodic in time (in rescaled units in which
the fundamental angular frequency is 2, and h̄ = m = 1). We
present an approach for obtaining approximate quasiperiodic,
Floquet eigenfunctions of Eq. (1), starting with explicitly
known families of solutions for each separate Schrödinger
equation with Vin or Vout, one possibly being time-independent
as a particular case. This method allows us to explore a regime
of parameters inaccessible to perturbation methods.

In particular we study solutions to a problem that can be
formulated in two equivalent ways; one is given by the equation

iψ̇( �R,t) = {− 1
2∇2 + Vint[| �R − �Rπ (t)|]}ψ( �R,t), (2)

where Vint is a spherically symmetric interaction potential and
�Rπ (t) is a prescribed π -periodic trajectory of the center of

force. To obtain a form compatible with Eq. (1), we apply the
(unitary) change of coordinates

�r = �R − �Rπ (t), ∂t → − �̇Rπ (t) · �∇ + ∂t , (3)

and then a second unitary transformation

ψ = exp{i �̇Rπ (t) · �r}φ, (4)

*haggaila@gmail.com

reducing Eq. (2) to the sum of a time-independent central force
and an additional π -periodic linear force,

iφ̇(�r,t) = [− 1
2∇2 + Vint(r) − �̈F (t) · �r + VF (t)

]
φ(�r,t), (5)

where r ≡ |�r| and

�F (t) = − �Rπ (t), VF (t) = − 1
2

�̇Rπ (t)2. (6)

Here, the choice of what constitutes Vin and Vout depends on the
approximation that is required in order to obtain the solution.
The term VF (t) comes from the change of frame starting from
Eq. (2), and if the starting point is Eq. (5), it will be absent.
Both of these aspects will be further discussed in Sec. III, and
here we keep the discussion general.

If we consider − �̈F (t) to be a monochromatic electric field
amplitude, and Vint(r) the Coulomb potential for an electron
with coordinate �r , Eq. (5) with VF = 0 describes the well-
studied problem of an atom in an ac field (the ac Stark effect),
written in the length gauge within the dipole approximation.
Then the bound states of Vint are known to turn into resonances.
These are quasibound states with a finite lifetime determined
by the imaginary part of their complex energy. This happens
generally under the effect of a periodic perturbation, for any
Hamiltonian with a continuous spectrum of scattering states
[1–3]. The reason is that the periodic perturbation makes every
bound state with energy (−|ε|) resonant with unbound states
from the continuum, under absorption of at least N quanta from
the external drive (whose frequency is 2), where

(−|ε|) + 2N > 0, (7)

and 2N gives the exponent of the power-law dependence of
the resonance width on the perturbation amplitude.

Studies of nonperturbative violations of this picture go
back to Keldysh theory [4] and the extensive intense-laser
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literature [5]. The limit where the frequency and intensity of the
oscillating field are much higher than the atomic potential can
be studied by using an effective averaged potential, known as
the Kramers-Hanneberger (KH) approximation. This approach
has led to the prediction of the remarkable phenomenon of
stabilization of the atom against ionization [6–8], with renewed
interest in recent years following experimental results [9–11]
and theoretical investigations [12,13]. Other recent works have
also revisited the systematic expansion of an effective time-
independent Hamiltonian in the high-frequency limit in a gen-
eral setup [14,15], and effects related to the potential’s initial
phase [16]. For intermediate laser intensities and frequencies,
the problem is inherently difficult and most approaches are
based on numerical integration in some form, e.g., using
close-coupled equations [17–20], or Floquet R-matrix theory,
dividing space into two regions and connecting the numerically
integrated solutions at the boundary [21,22]. There is renewed
interest in the modeling and measuring of ac Stark shifts of
trapped atoms [23], in calculating and directly probing the
angular distribution of photoelectron spectra [24,25], and in the
momentum distribution of emitted electrons [26–31], where
cusps in the transverse momentum distribution curves were
attributed to the long-range nature of the Coulomb interaction.

In contrast, in this work we focus on the case of a short-range
potential Vint, for which Floquet resonances are much less
studied. At the same time, the singularities that result from
the periodic driving can be clearly identified, avoiding the
additional complexity related to the Coulomb force and the
accumulation of bound states near the threshold. Indeed some
detailed studies of resonances in periodically driven problems
were restricted to simpler one-dimensional (1D) models [32–
42], and include the appearance and annihilation of bound
states in the dressed potential, resonant coupling between
internal levels, and coherent destruction of tunneling.

In order to study a truly 3D geometry [43,44], in Sec. II we
present the main tool employed in this work, an expansion for
problems with mixed cylindrical and spherical symmetry, as
in Eq. (5). In Sec. III we apply this expansion to Vint that is
a spherically symmetric square-well potential [Eq. (54)], with
an additional axial force, directed along the z axis, harmonic
in time,

�F = F2 cos(2t)ẑ. (8)

The study of the time-independent square-well potential [45]
constitutes one of the few examples of a detailed enumeration
of the poles of the S matrix, and their evolution in complex
momentum space as a function of the universal parameter of
the problem. The S matrix is the operator that relates incoming
spherical waves to outgoing, regarded as a function of complex
energy or momentum [46], and whose poles give the bound or
quasibound states of the system, discussed more in Sec. II D.
A systematic study of the evolution of resonances subject to
a periodic drive would allow a deeper understanding of the
nonperturbative regime up to the high-frequency stabilization
limit, and we take here the first step in this direction.

Figure 1 depicts the scenario standing at the center of
this work [with the specific parameters given in Eq. (60) in
Sec. III C]. By the Bloch-Floquet theorem, solutions of Eq. (1)
can always be written as a superposition of quasiperiodic wave

FIG. 1. The complex quasienergy ω (in nondimensional units) of
two quasibound solutions to Eq. (2) with a spherically symmetric
square-well potential and an axial periodic drive (see text for details),
continued with small increments of the drive amplitude F2 from
a near-threshold s-wave bound state. The two complex-conjugate
(time-reversed) resonances are poles of the S matrix that correspond
for Imω < 0 (Imω > 0) to an escape (capture) process. Perturbatively
in F2, the escape pole is a superposition of bound components
(channels of energy ω + 2j with j � 0), and outgoing waves [j � 1,
predominantly a p wave with energy (2 + ω) � ω]. At the crossing of
Imω = 0 the two poles lie on different edges of the branch cut of the
energy plane, the scattering amplitude becomes nonanalytic at a real
energy, and the solution characteristics change abruptly. This is partly
similar to a “spectral singularity” (or an “exceptional point”); however
unitarity is obeyed and such a solution cannot be obtained from a
time-independent effective potential. After crossing, the pole coming
from above is now the emitting solution with Imω < 0, but radiates
only in j = 0 channels (mostly s wave of energy ω); i.e., the radiation
is emitted by tunneling without any quanta being absorbed from the
drive. In a scattering experiment, the singular point corresponds to
total absorption of s waves at the critical energy and their conversion
into (mostly) higher energy p waves.

functions of the Floquet form

φ(�r,t) = e−iωtφπ (�r,t), (9)

where φπ (�r,t) is π -periodic. Wave functions of the form of
Eq. (9) constitute the equivalent of the eigenfunctions of a
time-independent Hamiltonian, being characterized by a single
frequency ω, the (quasi)energy. Hence, in Fig. 1, two exact
quasiperiodic solutions are followed in the complex ω plane
by continuation asF2 is increased. These solutions give poles of
the S matrix, as defined by the boundary conditions. For F2 = 0
both coincide at an s-wave bound state of the time-independent
square well, and thus lie initially within the physical sheet of
complex energy. Since we consider a time-reversal-invariant
Hamiltonian, the two poles are related by complex conjugation
in the ω plane.

A quasibound state with a general complex ω is a coherent
superposition of components bound to the potential well, and
components which are asymptotically (for r → ∞) traveling
waves (going inwards or outwards). As we discuss in Sec. II C,
since Eq. (2) becomes in this limit the equation of a free
particle, the solutions (in that frame) tend to a superposition
of free spherical waves [in the frame of Eq. (5) the waves
remain periodically driven]. According to Eq. (9) each such
component must have an energy equal to ω + 2j with j ∈ Z.
The form of a wave function of a complex (quasi)energy
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can be understood in the limit of F2 	 1 using perturbation
theory as mentioned above. For the pole with Imω < 0 the
probability of measuring the state in one of the localized
components decreases with time and hence there must be a
corresponding escaping probability flux. The open channels
(all partial waves with energy Reω + 2j > 0) are therefore
outgoing waves, diverging at r → ∞. The corresponding
momentum k2j , defined by

1
2k2

2j = ω + 2j, (10)

must have Rek2j > 0 and Imk2j < 0 for j � 1 at F2 → 0.
For the time-reversed solution pole, ω goes into the upper half
plane as F2 is increased from 0, the probability increases with
time, and the open channels must correspond to (diverging)
incoming waves [with the root of Eq. (10) chosen to have
Rek2j < 0 and Imk2j < 0]; this is a capture process. The
closed (bound) channels are exponentially decaying in both
cases with Imk2j > 0. This choice of boundary conditions is
then held fixed and defines the solutions that are continuously
followed as F2 varies. Each channel is followed separately
and continuously; each k2j moves on its own Riemann surface
[47,48] as the parameter of the continuation is varied.

In contrast to free waves with real momentum, which can
be obtained as the limit of square-integrable eigenfunctions of
the free-particle Hamiltonian, the diverging (Gamow-Siegert
[49]) waves with complex momentum are eigenfunctions of
an (asymptotically) non-Hermitian free-particle Hamiltonian.
Non-Hermitian Hamiltonians [50] very generally are the result
of tracing out some degrees of freedom, and the resulting
nonunitarity is a consequence of probability flux going into
those degrees of freedom, which now lie outside the Hilbert
space. The diverging waves carry a well-defined probability
current density, and thus can be used to calculate a relative
probability flux. If a quasibound state is decaying, the relative
probability to detect an outgoing wave in one of the open
channels will be proportional to the square of its amplitude (see
Sec. II D and Fig. 6). In the time-reversed process, the bound
state can form if particles are sent in towards the center, with the
probability for this process again proportional to the overlap
of available free-particle states with the Floquet solution, and
(half) the rate of formation is given by Imω.

Alternatively, a standard scattering formulation (discussed
in Sec. II E) is obtained by setting φ(�r,t) to be asymptotically
the sum of a plane wave and scattered outgoing spherical
waves, and restricting ω to be the real, positive energy of
the plane wave. Resonances in the scattering cross section
can be typically related to quasibound (resonance) states [47],
and hence the nomenclature coincidence. The relation results
from the scattering amplitude (and the S matrix) being a
meromorphic function of the energy (or momentum) in some
region in the complex plane (that depends on the potential), and
hence its values on the real axis are significantly influenced by
nearby poles. We follow both aspects and their relation in our
analysis of singularities in the Floquet setup.

Indeed, as F2 is increased, the absolute value of Imω in
Fig. 1 initially increases and then decreases; this is an example
of a nonperturbative stabilization at higher field amplitudes.
As the pole in the lower half plane passes to Reω > 0, the
j = 0 channels open, but consist of asymptotically decaying

incoming waves (in momentum space, k0 just crosses the
bisector of its quarter plane), capturing back-reflected (mostly
s) waves. At a critical value of the drive strength the two poles
reach the real ω axis and at this singular point with a real
energy, the nature of the quasibound states changes abruptly.
We denote the parameters of this point by

F2 = F̄ c, ω = ω̄c. (11)

Just before crossing the real line, the solution with Imω < 0
radiates partial waves of energy ω + 2j with j � 1 after ab-
sorbing at least one quantum from the drive, with the dominant
partial wave being the p wave with j = 1. After crossing,
this solution becomes the capture solution (with Imω > 0)
and all previously open radiating channels are now decaying
(Imk2j > 0 for j � 1) and carry no current asymptotically.
This solution is capturing incoming (mostly s) waves in the j =
0 channels (which have crossed to Imk0 < 0, while remaining
with Rek0 < 0). The radiating solution now, for F2 > F̄ c, is
the solution that came from the upper (energy) half plane. All
channels with j � 1 (which were incoming, diverging waves)
are now asymptotically decaying; in the frame of Eq. (5) they
are back-reflected by the oscillating drive [in the frame of
Eq. (2) it is destructive interference of waves emitted during the
oscillations]. The only open, radiating channels are with j = 0
(mostly the s wave), which was previously asymptotically
decaying and are now diverging. Thus the bound state radiates
solely by tunneling, without absorbing quanta from the drive.

Exactly at Imω = 0 (for F̄ c) there is one pole on the upper
edge of the cut of the complex energy plane (this is the pole
that moved through the upper half of the plane), and one
pole directly below it, on the lower edge of the cut. Both
are about to leave the physical sheet. In momentum space,
the two corresponding k0 poles are crossing from the upper
to the lower half plane, on both sides of the imaginary axis.
The two solutions have a real (degenerate) energy and the
j � 0 channels are (driven) free-particle waves. The solutions
describe a balanced flux of incoming and outgoing waves in
the respective channels. This is a “self-sustaining” standing
wave that exists with open boundary conditions. The S matrix
becomes nonanalytic on the real energy axis for this critical
parameter, and an effective, time-averaged Hermitian approxi-
mation of the potential (as in the KH approximation discussed
above) cannot result in such a solution, as this would violate
unitarity of the resulting elastic scattering.

In the full time-dependent setup however, the scattering
is inelastic and unitarity is obviously not violated. In terms
of the S matrix, paired with each pole there is a zero of the
S matrix that in momentum space is located at −k2j , which
follows the same trajectory in the energy plane. In a scattering
experiment atF2 = F̄ c where the poles and zeros all coincide at
ω = ω̄c, an incoming (j = 0) s wave with this value of energy
is completely absorbed and removed from the scattered wave
function, which becomes predominantly p wave with j = 1.
This occurs as the scattering amplitude of the incoming s wave
in the j = 0 channel goes through 0 at the singular point, and in
a 2D parameter space composed of F2 and the real scattering
energy ω, a 2π phase is accumulated around this point (see
Fig. 7).

Hence the time-dependent solution at the critical point
of crossing the real ω axis shares some properties with
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singularities discussed mostly in the context of time-
independent complex potentials. These include in particular
“spectral singularities,” which occur with two scattering states
with a real energy in a complex potential [51]. However with
spectral singularities the manifestly complex potential violates
unitarity, which is not the case in the current setup. Similarly, an
“exceptional point” typically refers to the coalescence of two
discrete states of a complex Hamiltonian [52], a problem that
continues to be studied theoretically [53–55], with interesting
recent realizations and implications [56–58]. In contrast, in
the current problem, despite the coincidence of two poles at
the same (real) value of ω, there is no coalescence of the
eigenvectors. The coincidence of a pole and a zero in the
Floquet problem is also similar to singular points of laser-
absorber PT -symmetric systems [59–61], which are again
nonunitary. In such optical systems with gain and loss also
Floquet setups attract increasing interest [62,63]. Exceptional
points in a Floquet unitary scattering setup have been discussed
before [64,65], and we further discuss Floquet exceptional
points in Sec. IV. We note also that the solution at the critical
point is not a “bound state in the continuum” [47,66], since it
is not square-integrable.

Further relevant examples where the results presented here
are applicable include quantum wires and dots [67] that
have been modeled by similar finite-barrier potentials, and
the expansion presented here can be used to solve a mixed-
type system, periodically driven. Interacting cold atoms or
molecules [68] are often subject to oscillating fields [69,70].
The generalization to settings with a potential of spherical
symmetry in the exterior region is straightforward, and the
case of zero-range interaction has been recently treated in [71].
Overlapping a trap for neutral atoms with a periodically driven
Paul trap for ions [72] was suggested and realized [73,74],
followed by the demonstration of a trapped ion immersed in
a dilute atomic Bose-Einstein condensate [75,76], and many
other experiments. The effect of the periodic drive of the ion
has been analyzed for classical collisions with the atom [77]
or Rydberg atoms [78], for quantum scattering employing a
master equation description [79], and for an ion and atom in
separate traps [80]. Quantum defect theory (QDT) [81,82] is a
very important theoretical tool for modeling atomic scattering,
and continues to evolve [83–92], together with new models and
methods [93,94], applied to many-body states as well [95–97].
As we argue in Sec. IV, the results presented in this work hold
for short-range power-law potentials, and calculations using
QDT, which can naturally be used in the interior region, show
that they can potentially be observed with a co-trapped ion and
atom system [98].

This paper is organized as follows. Section II develops
the theory. In Sec. II A we introduce the expansion that is
used in Sec. II B to relate the solution matching conditions.
Some general properties of the solutions are discussed in
Sec. II C, and then Sec. II D discusses in more detail quasibound
(pole) solutions and their characterization, while Sec. II E
introduces scattering solutions and cross sections. We conclude
the formalism with a review of some analytic properties of
the wave functions used in the expansion, and of the partial
waves expansion, in Sec. II F. The results of applying the
theory to the problem of a driven square well are presented
in Sec. III, with a driven loosely bound s wave studied

in Sec. III A and a deeper bound p wave in Sec. III B. In
Sec. III C we discuss some aspects of the method and compare
approximations that can be achieved with it, concluding in
Sec. IV with a discussion of the applicability of this work
to more physical atomic potentials, and the relation to other
singularities of non-Hermitian Hamiltonians. The appendices
contain, in addition to some details of the derivation, a few
general expressions useful for the calculation of expectation
values using the solution wave functions.

II. FLOQUET WAVE FUNCTIONS

A. Floquet waves with cylindrical symmetry

Starting with the general time-dependent Schrödinger equa-
tion

iφ̇(�r,t) = [− 1
2∇2 − �̈F (t) · �r + V1(t)

]
φ(�r,t), (12)

a family of solutions can be written in the form

φ(�r,t) ∝ ei �q(t)·�r−ig(t), �q(t) = �̇F + �k, (13)

where �k is the (possibly complex) constant of integration, and

g(t) = 1

2
�k2t +

∫ t
[
�k · �̇F (t ′) + 1

2
�̇F (t ′)2 + V1(t ′)

]
dt ′. (14)

In the rest of this paper, we assume the drive to be π -periodic
and coaxial at any time, and choose a cylindrical coordinate
system, �r = (ρ,z,ϕ), in which

�F (t) = Fπ (t)ẑ. (15)

Furthermore, if Eq. (2) is the physical starting point we have
using Eq. (6)

V1(t) = VF (t) = − 1
2

�̇F (t)2, (16)

which also simplifies the current expressions by canceling the
�k-independent term in Eq. (14). We return to this point in
Sec. III C.

The cylindrical waves are eigenfunctions of the free-particle
Hamiltonian, H = − 1

2∇2, given by

χ (1,2,J )
m (�r; k,α) = eimϕH (1,2,J )

m (kρ sin α)eikz cos α, (17)

where m is the magnetic quantum number, k is the (possibly
complex) wave number, and α is a complex parameter. H (1,2,J )

m

is a Hankel function of the first or second kind (corresponding
to outgoing and incoming traveling waves, respectively), or a
Bessel function (which we denote with a superscript J ). Thus
outgoing and incoming traveling-wave solutions to Eq. (12),
subject to Eqs. (15) and (16), can be written using Eq. (17) in
the form

φ(1,2)
m (�r,t ; k,α) = e−i 1

2 k2t eiḞ π (t)zχ (1,2)
m (�r; k,α)e−iF π (t)k cos α.

(18)

Equation (18) is a particular quasiperiodic solution of Eq. (12),
taking the Floquet form of Eq. (9). With k2j defined in Eq. (10),
the most general quasiperiodic solution to Eq. (12) is

φm

(�r,t) =
∑
j∈Z

a=1,2

∫
C(a)

dα sin αb
(a)
2j (α)φ(a)

m (�r,t ; k2j ,α), (19)
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which consists at each value of k2j of a superposition of
outgoing and incoming cylindrical waves, parametrized by
integrals in the complex α plane along the contours C(a) with
weight functions b

(a)
2j (α).

To transform the solution of Eq. (19) to spherical coordi-
nates �r = (r,θ,ϕ), we take the arbitrary weight functions for
cylindrical Floquet waves in Eq. (19) to be

b
(a)
2j (α) =

∑
l1

b2j,l1N
m
2j,l1

S
(a)
2j,l1

Pl1 (cos α), (20)

with Nm
2j,l1

a normalization constant to be defined in Eq. (37),

S
(a)
2j,l1

will depend on the boundary conditions at r → ∞, and
b2j,l1 will be matching coefficients for quasibound states, as
elaborated in the following subsections. In Appendix A we
show that by plugging Eq. (20) into Eq. (19), each term of the
series within the latter equation can be rewritten as∫

C(a)
dα sin αb

(a)
2j (α)φ(a)

m (�r,t ; k2j ,α)

= e−i 1
2 k2

2j t
∑
l1,l

b2j,l1N
m
2j,l1

S
(a)
2j,l1

R
(a)
2j,l,l1

(r,t)Ym
l (θ,ϕ), (21)

where Ym
l are normalized spherical harmonics [Eq. (A7)] and

the radial functions are

R
(a)
2j,l1,l

(r,t) =
∑

l2,l3,l4

cl1,l2,l3,l4,ljl2 [Fπ (t)k2j ]

× jl4 [Ḟ π (t)r]h(a)
l3

(k2j r), (22)

with the coefficients cl1,l2,l3,l4,l being defined in Eq. (A6),
and the spherical Hankel functions of the first (second) kind,
h

(1)
l (h(2)

l ), correspond to outgoing (incoming) spherical waves

(for Rek > 0). This expansion forms the essential tool that
allows one, in conjunction with the matching described in the
following subsection, to obtain the results in this work.

B. Floquet wave functions with mixed cylindrical
and spherical symmetry

Adding a spherically symmetric interaction potential to
Eq. (12) [with V1 of Eq. (16)], we regain Eq. (5),

iφ̇(�r,t) = [− 1
2∇2 + Vint(r) − �̈F (t) · �r + VF (t)

]
φ(�r,t).

(23)

Depending on Vint , this equation may be solvable either exactly
or only approximately. The solution proceeds by assuming that
Eq. (23) can be replaced by an equation having the form of
Eq. (1),

iφ̇(�r,t) = [− 1
2∇2 + V

(1)
in (�r,t) + V

(1)
out (�r,t)

]
φ(�r,t), (24)

and dividing space into two regions, interior and exterior to
sphere |�r| = d, where the Schrödinger equation can be solved
exactly with either one of the potentials above. In this section
we will focus on the case when an approximation is required,
taking the form

V
(1)

in (�r,t) = Vint(r)(d − r),

V
(1)

out (�r,t) = [− �̈F (t) · �r + VF (t)](r − d), (25)
where (·) is the Heaviside function. Thus in Eq. (23) we have
truncated Vint at a finite radius and removed the external drive
from the interior region, leaving it to modulate the free-particle
exterior region. A further discussion of this approximation (and
a comparison to the exact solution for a square well) will follow
in Sec. III C. For finding quasiperiodic solutions in the Floquet
form of Eq. (9), we can employ the ansatz

φm(�r,t) =
{∑

n,l a2n,le
−i(ω+2n)tφin,ω+2n,l(r)Ym

l (θ,ϕ), r < d,∑
j,l1

b2j,l1e
−i(ω+2j )t ∑

l φ
π
out,2j,l1,l

(r,t)Ym
l (θ,ϕ), r > d,

(26)

with

φπ
out,2j,l1,l

(r,t) = Nm
2j,l1

[
S

(2)
2j,l1

R
(2)
2j,l1,l

(r,t) + S
(1)
2j,l1

R
(1)
2j,l1,l

(r,t)
]
.

(27)

This wave function is the most general Floquet superpo-
sition of solutions in both the interior and exterior region
and is an exact solution of the original problem [Eq. (23)]
in both limits r → 0 and r → ∞. In the interior region
each wave function φin,ω+2n,l(r) is (locally) a solution with
energy ω + 2n of the Schrödinger equation with the potential
V

(1)
in (�r). The Fourier expansion (that is tractable if it can be

truncated of course) takes all integers n ∈ Z (and similarly
for j ), without any a priori restriction to positive (real part)
energies. The required boundary conditions at r → 0 are
assumed to have been imposed, which determine a unique
linear combination of the two linearly independent solutions at
each value of ω + 2n. This can be the condition of regularity
at the origin, or a quantum defect theory parametrization. The
boundary conditions at r → ∞ are discussed in the following

subsections. Finally, Eq. (27) does not indicate explicitly a
summation over any degeneracy of the wave functions, which
might require independent matching coefficients.

Requiring the continuity of the wave function across the
surface of the sphere |�r| = d gives the equation (trivially
independent of θ,ϕ due to the identical expansion in spherical
harmonics on both sides)

∑
n,l

e−i(ω+2n)t a2n,lφin,ω+2n,l(d)

=
∑
j,l1

e−i(ω+2j )t b2j,l1

∑
l

φπ
out,2j,l1,l

(d,t)

=
∑
j,l1

e−i(ω+2j )t b2j,l1

∑
l,p

d2p,l,2j,l1e
−i2pt

=
∑
n,l

e−i(ω+2n)t
∑
j,l1

b2j,l1d2(n−j ),l,2j,l1 , (28)
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where d2p,l,2j,l1 are the expansion coefficients of the Fourier
series of φπ

out,2j,l1,l
(d,t), which in general must be obtained

numerically. Then the first matching condition is

c2n,la2n,l ≡ φin,ω+2n,l(d)a2n,l =
∑
j,l1

d2(n−j ),l,2j,l1b2j,l1 . (29)

Similarly, the second matching condition comes from the
continuity of the radial derivative (∂r ), which gives

f2n,la2n,l ≡ ∂rφin,ω+2n,l(d)a2n,l =
∑
j,l1

g2(n−j ),l,2j,l1b2j,l1 , (30)

with g2p,l,2j,l1 the expansion coefficients of the Fourier series
of ∂rφ

π
out,2j,l1,l

(d,t). The latter can be written as

∂rR
(a)
2j,l1,l

(r,t) =
∑

l2,l3,l4

cl1,l2,l3,l4,ljl2 [Fπ (t)k2j ]

×
{
−Ḟ π (t)jl4+1[Ḟ π (t)r]h(a)

l3
(k2j r) + jl4 [Ḟ π (t)r]

[
1

r
(l3 + l4)h(a)

l3
(k2j r) − k2jh

(a)
l3+1(k2j r)

]}
. (31)

In the following subsections we elaborate on the properties
of the wave function, and we will arrange these recursion
formulas in a matrix form, to facilitate their solution.

C. General properties of the solutions

Some general properties of the Schrödinger equation and
its solutions will be used in the following. First, we assume
that �F (t) [or �Rπ (t)] is time-reversal invariant (including the
possibility that this requires a trivial shift of t). Then the
Schrödinger equation is invariant under a simultaneous change
t → −t and complex conjugation, and hence if φ(t) is a
solution, so is φ∗(−t), which may be the same wave function
or an independent one. In addition, the equation conserves
probability locally in time and space, such that the continuity
equation holds,

∂tn(�r,t) + �∇ · �j (�r,t) = 0, (32)

with the density and probability current density defined by

n(�r,t) = |φ|2, �j (�r,t) = 1

2i
[φ∗∇φ − φ∇φ∗]. (33)

The continuity equation holds irrespective of the Hermiticity
of the boundary conditions (or whether ω is real or complex),
as long as the Hamiltonian is real. Then, if the wave function
is square-integrable in configuration space, its norm remains
constant (and finite) in time. However, even if the wave function
is not normalizable, a meaning can be attributed to the relative
probability amplitude of each asymptotic channel, as detailed
in the following subsection.

In order to gain more insight into the physical meaning of
the wave function of Eq. (26), we can use its connection to
the Schrödinger equation in the “lab” frame, Eq. (2), which is
reproduced here again,

iψ̇( �R,t) = {− 1
2∇2 + Vint[| �R − �Rπ (t)|]}ψ( �R,t). (34)

In the asymptotic �R → ∞ region, Vint decays and the solutions
of Eq. (34) reduce to free-particle solutions. By starting with a
free spherical wave of momentum k2j (dropping e−i(ω+2j )t for
simplicity),

ψ
(a)
k2j l1m

( �R) = Nm
2j,l1

h
(a)
l1

(k2jR)P m
l1

(cos θ )eimϕ, (35)

effecting the unitary transformation of Eqs. (3) and (4), and
then using the representation of Eq. (A1), it is seen that in fact

the transformation carries

ψ
(a)
k2j l1m

( �R) → Nm
2j,l1

∑
l

R
(a)
2j,l1,l

(r,t)Ym
l (θ,ϕ), (36)

so that b2j,l1S
(a)
2j,l1

in the solution Eq. (26) is the coefficient of the

asymptotically free spherical wave in the “lab” frame (with �R),
with energy 2j + ω and angular momentum quantum number
l1. A similar conclusion can also be obtained in the frame of
Eq. (23). In this frame, in any physical realization, the periodic
drive �F (t) · �r cannot continue to infinity. Then if beyond
some large enough distance r outside the range of Vint the
amplitude of periodic drive �F (t) is adiabatically diminishing
(in space), then the solutions will become asymptotically free
spherical waves again. However, in this frame, Eq. (16) has
to be modified (V1 = 0), and the asymptotic momenta will be
different. We do not include this calculation explicitly although
we return to this point in Sec. III C.

The wave of Eq. (35), in the nondecaying channels, carries a
momentum current density proportional to Rek2j . Thus for the
solutions of Eq. (2) [Eq. (34)] we can set for the normalization
constant of Eq. (20) and Eq. (27),

Nm
2j,l1

= (Rev2j )−1/2(Rek2j )Nm
l1

= (Rek2j )1/2Nm
l1

, (37)

with Nm
l defined in Eq. (A7) and the velocity of a particle is

related to its wave number in nondimensional units simply by
Rev2j = Rek2j . This makes the probability current density �j of
Eq. (33) in one outgoing, nondecaying channel wave function
[Eq. (35)], asymptotically normalized to unit flux on the sphere,

�j ∼ ∣∣Ym
l1

(θ,ϕ)
∣∣2

r̂ . (38)

This normalization will be used in the following two subsec-
tions.

D. Quasibound wave functions

Quasibound states are defined by fixing the boundary
conditions in all channels, by setting each of the constants S

(a)
2j,l1

in Eq. (27), to either 0 or a modulus 1 value, |S(a)
2j,l1

|2 = {0,1}.
The two matching relations can be written in matrix form (once
a finite truncation has been applied),

C�a = D�b, F �a = G�b, (39)

where �a and �b denote the expansion coefficients a2n,l and b2j,l1

whose indexes are “flattened” in vector notation; C, D are
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matrices whose elements [using Eq. (29)] are

(C)(2n,l),(2j,l1) = c2n,lδn,j δl,l1 ,

(D)(2n,l),(2j,l1) = d(2(n−j ),l),(2j,l1), (40)

and similarly for F and G using Eq. (30). By writing the two
equations in block form

K(ω)

(�a
�b
)

≡
(

C −D

F −G

)(�a
�b
)

= 0, (41)

the compatibility of the two matching conditions implies the
vanishing of (at least) one eigenvalue (or, more generally,
singular value in the singular value decomposition) of K(ω). A
(complex in general) value of ω compatible with the imposed
boundary condition has to be searched, and the corresponding
kernel vector then gives the expansion coefficients. In practice
it is possible to work with the smaller matrix (C and F would
in general be invertible)

FC−1D�b = G�b ⇒ (G − FC−1D)�b = 0, (42)

whose kernel vectors give the exterior region coefficients �b,
from which �a immediately follows. The normalization of the
wave function is discussed in Appendix C, and in Appendix
B we lay down for completeness the expansion of integrals
which are required in order to calculate expectation values of
some general operators (we restrict the expressions to axially
symmetric wave functions with m = 0).

The constants S
(a)
2j,l1

determine the boundary conditions in
the asymptotic region. For the partial waves with Reω + 2j <

0, setting S
(2)
2j,l1

= 0 and S
(1)
2j,l1

= 1 gives waves exponentially
decaying in space (Imk > 0) that carry no flux asymptotically.
These are the bound, square-integrable components of the wave
function, which represents the probability density localized to
the well. The boundary conditions for Reω + 2j > 0 depend
on whether the problem is to be Hermitian or non-Hermitian.

In order to impose Hermitian boundary conditions with a
real quasienergy ω, the terms with ω + 2j > 0 must include
both outgoing and incoming waves. Then we can let S

(1)
2j,l1

= 1

and set S
(2)
2j,l1

to the relative phase of waves reflected inwards
from the boundary at infinity (assuming that it depends only
on the energy and the angular momentum quantum number l1
in the asymptotic, drive-free region). This phase can be used
for expansion of the wave functions of any Hamiltonian in
the region that is far from the scattering center (such as an
external particle trap). The solution describes a steady state
with a superposition of bound components and traveling waves,
incoming and outgoing.

When solving for a complex ω, the boundary condition
make the problem non-Hermitian. Resonances with Imω > 0
describe a capture process by the oscillating well, with the
probability exponentially increasing in time. For the compo-
nents with Reω + 2j > 0 both the imaginary and real parts
of k2j can be chosen to be positive. Setting S

(2)
2j,l1

= 1 gives
incoming waves whose amplitude exponentially diverges at
infinity; the incoming flux of these waves is being captured
by the state within the well. Setting S

(1)
2j,l1

= 1 gives outgoing
waves whose amplitude exponentially decays at infinity. Al-
ternatively, resonances with Imω < 0, describing an escape
out of the well (exponential decay with time), would have

the real part of k2j (for the components with Reω + 2j > 0)
necessarily negative (for the root with positive imaginary part
chosen to have the asymptotic decay or divergence as above),
which inverts the roles of incoming and outgoing waves; S

(2)
2j,l1

are outgoing waves diverging at infinity and S
(1)
2j,l1

are incoming
waves decaying at infinity.

The probability density of measuring in the asymptotic
region an emitted particle with (real) momentum �k is given by
the squared absolute value of the probability amplitude of the
corresponding free-particle wave function. Taking into account
the interference of the angular harmonics with different values
of l1 at each value of k2j , we can define the joint probability
density in spherical momentum coordinates

f (k,θ,ϕ) = 1

N
∑

j

′
∣∣∣∣∣
∑
l1

b2j,l1Y
m
l1

(θ,ϕ)

∣∣∣∣∣
2
δ(k − Rek2j )

k2
(43)

with the summation index j extending over all outgoing chan-
nels that do not decay asymptotically. The normalization of
Eq. (38) guarantees that each channel is weighted correctly, and
N sets the overall normalization. The probability to measure a
particle with momentum in the volume element of momentum
space between (k,θ,ϕ) and (k + dk,θ + dθ,ϕ + dϕ) is then

p(k,θ,ϕ) = f (k,θ,ϕ)k2 sin θdkdθdϕ, (44)

with the normalization
∫

p = 1 determining the value of N .
We can also define the axially symmetric marginal probability
density

f (k,θ ) =
∫

dϕf (k,θ,ϕ), (45)

which will be used in the following. From f (k,θ ) it is a simple
change of coordinates tof (kρ,kz) which is the joint distribution
in terms of axial and transverse momentum, from which the
marginal distributions can also be obtained.

E. Scattering wave functions

In a scattering problem the imposed boundary conditions are
composed of a given form of free-particle waves in the “input”
channel, with a well-defined energy value ω > 0, in the asymp-
totic region. The given wave is interacting with the potential
within its range of effect, resulting in superimposed scattered
outgoing spherical waves in the asymptotic region. We will
pose the boundary conditions in terms of ingoing spherical
waves, which facilitates the calculation of the unitary S matrix.

Specifying the values of S
(2)
2j,l1

in Eq. (27) and treating

S
(1)
2j,l1

as free parameters, the matching condition becomes the
inhomogeneous linear equation

[G(1) − FC−1D(1)]�S(1) = −[G(2) − FC−1D(2)]�S(2). (46)

Setting S
(2)
2j,l1

= δj,j ′δl1,l
′
1

describes an incoming spherical wave
with asymptotic unit flux in the channel (j ′,l′1), as the normal-
ization of Eq. (37) makes | �j | = |S(a)

2j,l1
|2 in each channel. The

resulting S
(1)
2j,l1

gives the [(j,l1),(j ′,l′1)] matrix-element of the
unitary scattering S matrix that transforms an incoming wave
to an outgoing. To simplify the expressions in the following,
we further assume that the incoming wave is purely s wave in
a single energy channel, i.e., (j ′,l′1) = (0,0). This corresponds
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to the limit of scattering of slow particles, if the energy is also
low enough [46]. Then the elastic cross section is

σe,0/(2π ) = |1 − S0,0|2/(4ω), (47)

the inelastic cross section is given by

σr,0/(2π ) = (1 − |S0,0|2)/(4ω), (48)

and the total cross section is

σt,0/(2π ) = 2(1 − Re S0,0)/(4ω), (49)

where we have removed the superscript from S
(1)
0,0 to simplify

the notation. We note that for scattering solutions, time reversal
(with complex conjugation) interchanges the initial and final
states and reverses the direction of wave propagation, and for a
Hamiltonian which is invariant, the scattering amplitude must
remain the same; this is the reciprocity theorem.

F. Analytic properties of the solutions

The asymptotic form ofVint determines important properties
of the scattering solutions, bound states, and poles of the
S matrix in complex energy and momentum planes. In this
subsection we review a few of these properties [46,47,99],
which will be used in the following sections. We will restrict
the discussion to two forms for the interaction potential: either
Vint that vanishes identically beyond a certain distance (a finite-
range potential) or is asymptotically an (attractive) power-law
potential Vint ∼ −C/rα with C > 0 and α > 3 which is a
restricted form of what is typically referred to as a short-range
(or “shorter-ranged”) potential [100].

If we consider the time-independent Schrödinger equation
(with potential Vint), we can write its solutions in the form

φεlm(�r) = 1

r
uεl(r)Ym

l (θ,ϕ), (50)

where uεl(r) are solutions of the reduced equation[
−1

2

d2

dr2
+ l(l + 1)

2r2
+ Vint(r) − ε

]
uεl(r) = 0. (51)

At each (complex) value of ε, Eq. (51) has two linearly
independent solutions,u(1,2)

εl . If the potential at r → ∞behaves
like −C/rα with α > 2 then the two linearly independent
solutions u

(1,2)
εl can be chosen to have an ε-independent limit at

r → 0 for all energies. In addition, the potential cannot have
an infinity of bound states accumulating near the threshold
ε = 0. For α > 3, u(1,2)

εl are entire functions [83] of the complex
momentum k or of the energy (on its two-sheeted Riemann
surface, with the cut extending on the positive real axis), at any
fixed r . This property, which holds also for the solutions of a
finite-range potential, will be alluded to in Sec. IV. When this
property fails, u

(1,2)
εl will not be analytic in the entire k plane,

only in parts of it, and there may exist cuts on the imaginary k

axis (at negative energy).
At the same time, a potential with a tail with α > 2 cannot

keep the same power-law behavior down to the origin, because
then the energy spectrum will not be bounded from below
(due to an infinity of bound states at decreasing energies).
Hence physically relevant short-range atomic potentials will
rise near the origin, supporting a finite number of bound
states, which is again true for finite-range potentials as well.

The physical solution to Eq. (51) is defined to be the unique
linear combination that is regular at the origin, normalized by
a definite condition, e.g., r−l−1uεl → 1. Since this boundary
condition is ε- (and k-) independent, the physical solution
is an entire function of ε (k) for any fixed r . When both of
the functions u

(1,2)
εl are entire, this immediately implies that

the scattering matrix is meromorphic in complex energy (or
momentum space) with isolated poles. Poles on the imaginary
k axis correspond to bound states, and there are no other poles
in the upper momentum half plane (i.e., poles in the physical
energy sheet can only be bound states with negative energy).
If the S matrix has a pole at k, then it also has a pole in −k∗,
and zeros at −k and k∗. Hence a bound state actually hides two
coinciding poles. In Fig. 1 and in Fig. 15 of Sec. IV it can be
clearly seen how these two poles separate at the presence of
the periodic perturbation.

Finally, the partial wave series of the scattering solution is
convergent and the scattering amplitude (and cross sections)
finite at all angles for a potential Vint that decreases asymp-
totically faster than 1/r3. In that case, the scattering in the
limit of low velocity (ω → 0) is isotropic and independent of
the energy. This can be expressed using the s-wave scattering
length a (that is well defined), and the fact that σe → 4π |a|2.
At the presence of inelastic interactions, the scattering length
is not necessarily real but can have a (negative) imaginary part
that gives the inelastic cross section, σr → 4π |Ima|/k, that is
inversely proportional to the velocity in the low-velocity limit
(the 1/v law). These limiting behaviors of the cross sections
will be shown to hold in Fig. 8 and Fig. 11.

III. POLES AND SINGULARITIES
WITH PERIODIC DRIVING

In this section we employ the methods presented in the
previous sections to study a model system consisting of a spher-
ically symmetric square-well potential and a time-dependent
periodic linear drive which acts outside of the well. Using the
fundamental frequency of the periodic drive, �, we can define
the length and energy scales

do =
√

2h̄/m�, Eo = h̄�/2, (52)

and originally dimensional variables become nondimensional
by rescaling according to

�r → �r/do, �k → �kdo, t → t�/2, (53)

after which we have explicitly h̄ = m = 1 and the drive’s
frequency in these units is � = 2. With a spherical square-well
potential,

Vint
(|�r|) =

{−V0, |�r| < d,

0, |�r| > d
(54)

[where d and V0 are nondimensional, measured in the units of
Eq. (52)], and the regular solution inside the well is a spherical
Bessel function,

φ{k,l,m}
(�r,t) ∝ e−i( 1

2 k2−V0)t jl(kr)Ym
l . (55)

In those units, we take the periodic force of Eq. (15) to be a
simple harmonic drive with amplitude F2,

Fπ (t) = F2 cos 2t, (56)

regaining Eq. (8).
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FIG. 2. The spectrum of the square-well potential [Eq. (54)] as a
function of the universal parameter A [Eq. (57)]. As −A/π crosses
an integer (half-integer) value, a new bound p wave (s wave) appears
in the well. Higher order l states appear progressively within these
intervals. The nondimensional energy scale is fixed by setting the well
size to d = 2.

We define the well parameter

A = −
√

2V0d2, (57)

which is the single parameter that characterizes the square well
[45]. In Fig. 2 we show the spectrum of bound states of the
time-independent square well over a small range as a function
of the universal parameter A/π . The energy scale is obtained
using Eq. (52), fixing d = 2. It can be immediately seen from
Eq. (57) that varying � is equivalent to leaving A invariant
while scaling both V0 and d, as the energy and distance units
are rescaled.

A. Driving a loosely bound s wave

In this subsection we set −A/π ≈ 0.504; i.e., the well is
shallow with a single bound s-wave state close to threshold.
We solve the problem by plugging the potential [Eq. (54)]
into Eq. (25); i.e., the drive is restricted to act outside the
well. This is in contrast to the results presented in Fig. 1,
where the drive was solved for in all space. Choosing this
form is motivated by the fact that for a general interaction
potential, the problem cannot be solved exactly together with
the periodic drive, and some sort of approximation is required.
A possible choice [introduced in Eq. (1)] is to divide space
into two regions where either the interaction or the periodic
drive act. A further discussion and comparison of the two
models will be presented in Sec. III C.

Figure 3 shows the values of ω for the (initially) escape
(radiating) pole followed by continuation from the s-wave
bound state at F2 = 0, at 4 different values of V0 (with A

fixed). It can be seen that the crossing of the real ω axis
is generic and can be realized at different values of the
parameters. For low drive amplitude, the quasibound state’s
decay rate grows quadratically (as can be inferred from a
log-log plot, not shown), which is the expected perturbative
result [Eq. (7)]. In the nonperturbative regime the decay rate is
clearly nonmonotonic; for a strong enough drive it decreases
and reaches 0, as the poles reach the real ω axis.

Figure 4 shows the momentum space values of k0 for the
same solutions, lying on nearly straight lines. The slope of the

FIG. 3. Complex ω space showing 4 resonances of the square-
well potential [Eq. (54)] followed as a function of F2 [Eq. (56)] by
solving Eqs. (24) and (25); i.e., the drive is restricted to act outside
the well (in contrast to Fig. 1). The well parameter of Eq. (57) is
fixed at −A/π ≈ 0.504, with V0 taking 4 different values shown in
the legend, d being adjusted accordingly. Starting from the (single)
loosely bound s-wave state (see Fig. 2), the poles of the S matrix
correspond initially (while Imω < 0) to the escape process (emission
out of the well). The pole for V0 = 0.557 crosses the real ω axis
outside of the figure boundaries, at the critical parameters [Eq. (11)]
F̄ c ≈ 0.260, ω̄c ≈ 3.35 × 10−3 (see Fig. 6 to Fig. 8).

lines varies continuously with the parameters. The properties
of the solutions were described at length in Sec. I, and we
further discuss the parametric dependence in Sec. IV. Since
in momentum space, the poles that start on the imaginary
k axis must cross the bisector of their quarter plane before
reaching the Imk = 0 line, in the ω plane the poles follow
a curved trajectory around the origin, crossing to Reω > 0.
This guarantees that after the critical point, the solutions that
have switched roles (between capture and emission) remain
valid—with Imω �= 0 and one channel (j = 0) that does not
decay asymptotically, as required by the continuity equation.

The superposition of different bound and diverging compo-
nents can be seen in the solution coefficients of the expansion in
Eq. (26), which are depicted in Fig. 5 for a particular state. The

FIG. 4. Complex k space showing the value of k0 at the poles
of Fig. 3. The pole trajectories can be seen to lie almost along
straight lines in this case (see however Fig. 14). The poles of the
corresponding capture process (related by time-reversal invariance
of the Hamiltonian) have mirror-imaged trajectories at the right half
plane (not shown). For each (capture or emission) pole of the S matrix,
there is also a zero at −k.
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FIG. 5. Absolute value of the matching coefficients of the solution
[Eq. (26)], in the interior region (a2n,l) and in the exterior region
(b2j,l1 ), for the lowest pole Fig. 3 with V0 = 0.557, at F2 = 0.03. The
superposition of (a small number of) components can be seen, both
inside and outside the well, of decaying (j � 0) as well as traveling
waves (j � 1).

quasibound s-wave state which for F2 = 0 would have its entire
amplitude at (n = 0,l = 0) and (j = 0,l1 = 0) has developed a
superposition of partial waves (here mostly outside of the well).
The “checkerboard” pattern is the result of the dipolar nature
of the coupling, which conserves (−1)n+l [or (−1)j+l1 ], and
can be used in practice to speed up the numerical calculations.
Figure 6 shows the radiation pattern in the leading nondecaying
channel for the lowest radiating pole of Fig. 3 with V0 = 0.557.
The joint probability density of the radiated waves given by
f (k,θ ) of Eq. (44) multiplied by Imω is plotted at discrete
steps of F2 which determines the value of Rek. On the left,
for F2 lower than the critical value F̄ c ≈ 0.260, the radiation
is an odd Legendre polynomial of cos θ (mostly p wave) in
j = 1 channels, with the flux initially increasing and then
decreasing. On the right-hand side, immediately after the pole
crosses the real ω axis (at ω̄c ≈ 3.35 × 10−3), the radiation

FIG. 6. The leading order contribution to the the probability
density f (k,θ ) in spherical coordinates of momentum flux [see
Eq. (44)], multiplied by (half) the rate of emission out of the well,
plotted for increasing values of F2, for the lowest pole in Fig. 3 with
V0 = 0.557. The curve colors (from dark blue to bright yellow) encode
the value of F2. (a) For F2 up to the critical value F̄ c ≈ 0.260 the
radiation is mostly p wave in the j = 1 channel. (b) At the critical
value the distribution switches abruptly to the j = 0 channel (mostly
s wave). The multiplication by the emission rate that goes through 0
makes the physical process smoothly decaying and then rising, despite
the fact that the distribution f (k,θ ) changes abruptly.

FIG. 7. (a) The squared absolute value of the S-matrix element of
the incoming s wave (|S0,0|2), color coded on a logarithmic scale as
function of F2 and the real incoming wave energy ω. S0,0 vanishes at
the value of F2 and energy for which the pole lies on the real energy
axis (F̄ c ≈ 0.260, ω̄c ≈ 3.35 × 10−3, for the same pole as Fig. 6),
with the finite grid size of the figure giving a small nonzero value. This
corresponds to total absorption in this channel; all incoming waves
are scattered into the other output channels. (b) The argument of the
S-matrix element, arg S0,0, showing that a 2π phase is accumulated
around the critical point in this parameter space. (c) The amplitude
of outgoing p waves in the j = 1 channel, given by |S2,1|2 that
approaches unity near the critical point (in a logarithmic scale). (d)
The argument arg S2,1, which shows no feature like that of panel (b).

abruptly collapses into the j = 0 channels, composed mostly
of s waves (and other even harmonics), with the flux increasing
as F2 further increases.

Figure 7 shows some quantities of the S matrix of a
scattering formulation as a function ofF2 and the energyω 	 1
of an incoming s wave (which determines the limit of scattering
of slow particles; see Sec. II E). The parameters are the same
as for the pole followed in Fig. 6. The critical point [defined in
Eq. (11)] where the two complex conjugate poles (and zeros) of
the S matrix coincide on the real energy axis can be identified
as at this point the S-matrix element S0,0 vanishes (making
the argument undefined), and a 2π phase is accumulated if
going around this point in (F2,ω) parameter space. arg S0,0 is
defined by continuity from ω → 0 for each fixed value of F2.
Along such a line for which F2 < F̄ c there is a sharp decrease
of the argument as function of ω, while for F2 > F̄ c there is a
sharp rise. The S-matrix element S2,1 of scattered p waves in the
j = 1 channel approaches unit modulus (in a large region of the
parameter plane). At the critical point there is total absorption
of the incoming s wave, and it is being radiated out as a (mostly)
p wave, with energy higher by at least a drive quantum.

In Fig. 8 the total scattering cross section is plotted for s
waves with ω 	 1. The features of scattering of slow particles
discussed in Sec. II F (the energy-independent elastic scattering
length and the 1/v law for inelastic scattering) hold, as can be
deduced from an examination of the elastic and inelastic cross
section curves (not shown). The total cross section changes its
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FIG. 8. The base-10 logarithm of the total scattering cross sec-
tions divided by 2π [Eq. (49)], as a function of the real incoming wave
energy ω, for the input s-wave channel (which gives the scattering in
the limit of slow particles). The parameters are identical to Fig. 7.
The curves at several F2 values, plotted on a log-log scale, show
how for F2 → 0 the scattering is predominantly elastic (with the
ω → 0 dependence being that of σe,0, i.e., is energy-independent),
and becoming increasingly dominated by the inelastic scattering (∝
ω−1/2). The cross section does not show any nonmonotonic features
however; compare with Fig. 10 and Fig. 11.

behavior as a function of the drive amplitude; for F2 → 0 the
scattering is elastic, and it becomes increasingly inelastic as
F2 is increased. The cross section however is monotonic as a
function of the energy (as is typical for an s-wave resonance)
throughout the large variation of F2. This is very different from
the results of driving a bound p-wave state to be discussed in
the next subsection.

B. Driving a deeper bound p wave

In this subsection we set −A/π ≈ 2.565 and focus on a p
wave (with magnetic quantum number m = 0) whose binding

FIG. 9. Complex ω space (as in Fig. 3) showing 4 resonances of
the square-well potential for the well parameter fixed at −A/π ≈
2.565. Each being initially a p-wave bound state with energy ω(F2 =
0) � −2, at least N � 2 quanta of the external drive (of frequency 2)
must be absorbed in each radiating channel (Reω + 2j > 0, j � 2).
Even as the three S-matrix poles which are pushed towards a larger
quasienergy cross to Reω � −2, the same channels (j � 2) are the
only radiating ones, since the j = 1 channel remains incoming and
decaying. At the crossing of the real ω axis the solutions are singular
in a similar manner to the near-threshold s waves.

energy (for F2 = 0) is a little larger than 2; absorption of
two quanta is necessary (for F2 	 1) to emit outgoing waves.
The same equations are solved as in the previous subsection.
Figure 9 shows the values of ω for four poles followed by
continuation. Three of those poles cross towards Reω > −2
while there is one pole that is pushed towards negative energies.
An exceptional point, discussed further in Sec. IV, separates
the poles going left and right. As in the previous subsection, as
the poles in the lower half plane cross the line Reω = −2, the
channels whose energy becomes positive (and for that could be
termed “open”) remain in fact asymptotically decaying (and
in fact incoming) so the radiation pattern does not show a
qualitative change.

As the poles cross to the upper half ω-plane, the solutions
change their nature abruptly and they are singular on the real
energy line. The pole trajectories in momentum space will
be shown in Sec. IV and present a nontrivial behavior. The
radiation pattern (not shown) presents similar features to that
of Fig. 6 (with the required modifications of the momentum
values and the distribution shape).

Figures 10 and 11 show the characteristics of a scattering
setup with slow particles. The limiting low-energy behaviors
of the cross sections, discussed in Sec. II F, are clearly visible:
an energy-independent elastic cross section and the 1/v law
for the inelastic scattering cross section. Sharp features and
nonmonotonicity of the scattering as function of F2 and
in particular of ω are present, resembling shape and Fano
resonances (we return to this point briefly in Sec. IV). The
presence of the pole at ω̄c ≈ −1.9995 suggests that at the
critical point, an incoming s wave with low energy ω = ω̄c + 2
emits one quantum of energy into the drive and is completely
captured into the (long-lived) bound state, only to be radiated
as a (mostly) p wave after absorbing two quanta from the drive.

C. Approximations

We now discuss the truncation of the potential introduced
in Eq. (25) that we repeat here,

V
(1)

in (�r,t) = [Vint(r)](d − r),

V
(1)

out (�r,t) = [− �̈F (t) · �r + VF (t)](r − d), (58)

which corresponds to truncating the axial drive inside the
well. The solutions presented in Secs. III A and III B were
all obtained using this form of the potential. The solutions
presented in Fig. 1 do not employ this truncation, but rather
solve the full problem with

V
(2)

in (�r,t) = [Vint(r) − �̈F (t) · �r + VF (t)](d − r),

V
(2)

out (�r,t) = [− �̈F (t) · �r + VF (t)](r − d), (59)

with the parameters for Fig. 1 being

−A/π ≈ 0.504, V0 = 1.977. (60)

For V
(2)

in of Eq. (59), the wave functions in the interior region
become time-dependent and have to be Fourier-expanded as in
the exterior region [making the matrices C and F of Eq. (39)
nondiagonal]. As noted above, VF (t) is the result of taking
Eq. (2) as the physical starting point (an oscillating center of
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FIG. 10. (a) As in Fig. 7, |S0,0|2 color coded on a logarithmic scale
as function of F2 and ω, corresponding to the pole with V0 = 6.75 in
Fig. 9 (with F̄ c ≈ 0.0898, ω̄c ≈ −1.9995). (b) The argument of the
S-matrix element, arg S0,0, showing a 2π phase jump, around F̄ c and
ω ≈ 5 × 10−4, which plausibly corresponds to an incoming s wave
completely transferred into the quasibound p-wave state by emitting
a quantum of energy into the drive, and then being radiated as a p
wave, 2 quanta higher in energy. We note the different range of the
argument as compared with Fig. 7, determined by the ω → 0 limit.
(c) The base-10 logarithm of the elastic [Eq. (47)] and (d) the inelastic
[Eq. (48)] cross sections divided by 2π , for the input s-wave channel
(in the limit of scattering of slow particles). Sharp features exist in the
cross sections (more details are discernible in Fig. 11) in a relatively
small range of F2 and a large range of energy, to be contrasted with
Fig. 8.

the potential). VF then cancels the prefactor in Eq. (14),

e−i
∫ t 1

2 Ḟ 2(t ′)dt ′ , (61)

that would otherwise multiply the wave function. If Eq. (5)
is the physical potential (a static potential with an external,
periodically modulated linear force), we can define V

(3,4)
in and

V
(3,4)

out to be equal to V
(1,2)

in and V
(1,2)

out with VF (t) set to 0.
Then the solutions have to be matched including the term
of Eq. (61) that shifts the quasienergy and modifies also the
Fourier expansion.

Figures 12 and 13 show the pole trajectories for a near-
threshold s-wave bound state of a well with −A/π ≈ 2.5037,
solved for three increasing different well depths V0, and for
each value, comparing the four potentials V

(p)
in + V

(p)
out with

p = 1,2,3,4.
The most notable result is that the singularities studied in

this work exist with all of the studied forms of the potential.
They are the result of tunneling and interference, and since
they exist with p = 3, they are not hindered by the possibility
to directly couple to the continuum by absorbing energy within
the well. The solution with p = 1 approximates the potential
with p = 2, which can be considered as the “true” potential
in a realization that starts from Eq. (2), although there are
noticeable differences in the slopes in momentum space, which
lead to some deviations in ω space as well. This approximation
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FIG. 11. (a) The elastic, (b) inelastic, and (c) total scattering cross
sections divided by 2π [Eqs. (47)–(49)], vs the energy of the incoming
wave (on a log-log plot), taken at a few values of F2 around the
critical value F̄ c ≈ 0.0898, for the same parameters as in Fig. 10. The
nonmonotonic features of the cross sections as function of energy and
the strong alteration of the curves as function of F2 are evident, as
well as the ω → 0 dependence of σe,0 (energy-independent) and of
σr,0 (∝ ω−1/2), as required by the slow-particle scattering limits.

depends on the norm of the wave function in the exterior region
(which is subject to drive). The poles with p = 3 and p = 4
are closer to each other (for deeper well depths) in energy
space because of the importance of VF , although in momentum
space they do not coincide; in fact the poles for p = 2 and
p = 4 coincide exactly in momentum space, because when
VF appears both within and outside the well, its value does not
enter the momentum matching.

We note the difference between the expansion presented
in the previous sections and the well-known Floquet formal-
ism for treating periodic Hamiltonians [101–103], or time-
dependent perturbation theory [104]. The periodicity of the
Hamiltonian allows defining an extended Hilbert space in
position and time, which can be spanned by a set of spatially
orthogonal wave functions and a Fourier basis for time-
periodic functions. The current expansion however, employs
exact wave functions (at least asymptotically) that vary with
ω and are not separable in time and space, in contrast to an
expansion using a fixed separable basis that would typically
require significantly more basis functions. The connection to
the physical solutions is transparent and the explicit use of
analytic wave functions in each region gives access to details
of the spectrum which may be hard to locate otherwise, and in
particular quantum defect theory (QDT), discussed in Sec. I,
can be used for the expansion of wave functions in the interior
region. Our approach is nonperturbative in both potentials, but
neglects the effect of either potential in some region of space
and the obtained solutions can be considered, if necessary,
as a starting point for an expansion that will correct for the
neglected contributions.

Finally we note that the presented expansion and numerical
results have been verified by using two different numerical
routines in two different programming languages (MATLAB

and MATHEMATICA), and then directly by plugging the explicit
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FIG. 12. Complex k space comparing poles solved using different
potentials defined in Sec. III C, studying the approximation involved
in truncating the drive inside the well, and also the effect of VF of
Eq. (6). See the text for the analysis.

wave function into the time-dependent Schrödinger equation
and verifying the vanishing of both sides of the equation, to the
numerical precision possible in the calculation and according
to the truncated components.

IV. OUTLOOK

The momentum space values of k2 for the poles followed in
Sec. III B (Fig. 9) are shown in Fig. 14. In contrast to Fig. 4 of
Sec. III A, here the pole trajectories in momentum space deviate
significantly from straight lines. This may correspond to the
proximity of other poles (“resonance interaction”) and to the
existence of the exceptional point nearby [52,105], discussed
below.

Figure 15 compares two scenarios for the pole trajectories
in complex momentum and energy planes when varying V0

continuously. In panels (a) and (b), a smooth rotation of the
pole trajectories can be seen as their slope changes continu-
ously with V0, going through a point which plausibly shows
an interchange of the poles which become the capture and
emission poles (which are indistinguishable here at F2 = 0,
but possibly could be distinguished with a Floquet invariant
like the Krein signature [106]). In panels (c) and (d), A is

FIG. 13. Complex ω space for the poles of Fig. 12 solved using
different potentials (see text for details).

FIG. 14. Complex k space showing the value of k2 at the poles of
Fig. 9. The pole trajectories can be seen to deviate significantly from
the almost straight lines seen (for different parameters) in Fig. 4. A
further study is required in order to explain this and possibly relate
it to “resonance interaction” and to the nearby exceptional point (see
the text and Fig. 15).

fixed as in Fig. 14, and V0 is varied in small range around
the point at which the pole trajectories of Fig. 14 seem to
“branch.” The existence of an exceptional point is clearly
seen, where two bound states for F2 = 0 coincide in energy
(mod 2), around which the parametric dependence appears
to be nonanalytic. An initial study indicates an entire line of
exceptional points that emanates from this point in (V0,F2)
parameter space. Further study is required in order to check
whether an exceptional point can be followed up to the

FIG. 15. (a) Complex ω space and (b) complex k plane for a series
of poles with a fixed value ofA, as in Fig. 3, andV0 varied between 1.15
and 1.3 (the 9 nearly straight lines starting at adjacent values of ω or
Imk, respectively). The axis markings and the scale of F2 	 1 (given
by the color code) have been removed for clarity. A smooth rotation
of the two pole curves (in both energy and momentum planes) can
be seen as function of V0. This is to be contrasted with the seemingly
nonanalytic point visible in (c) complex ω space and (d) complex
k plane for a series of p-wave poles with A fixed as in Fig. 9 and
Fig. 14, and V0 ∈ [7.078,7.091]. Here it is a Floquet-induced (time-
independent) exceptional point, where the p-wave bound state with
energy ω ≈ −2.125 coincides in energy (mod 2) with the s wave of
ω ≈ −0.125, for V0 ≈ 7.09. A further study is required to confirm a
possible line of exceptional points passing through this point.
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real ω axis as the Floquet poles studied above, whence it
may share further similarities with a spectral singularity of
scattering with a real energy. As discussed in Sec. I, the role
of exceptional points in non-Hermitian (open) systems is at-
tracting increasing attention, and new effects are being actively
explored.

The cross sections in Fig. 11 show features resembling
shape and Fano resonances, which are important in atomic
and also nanoscale structures [107–109] (with the distinction
that here the scattering is inelastic, and the potential is time-
dependent and noncentral, both of those aspects playing an
important role). As discussed in Sec. II F, the two linearly
independent solutions of a power-law potential −C/rα with
α > 3 are analytic in complex energy and momentum planes.
Hence, when applying the expansion of the current work
to match such wave functions in the interior region with
the driven particle wave functions in the exterior region, no
nonanalyticity is introduced in the entire k plane (at any fixed
r �= d). Therefore, following the poles of the driven problem
in the k plane for such a potential should be possible (a
priori) as shown here for a finite-range potential. A further
study of the possibility to tailor scattering and resonances
using Floquet driving, in particular of atomic systems [71],
is a promising direction to apply the techniques developed
in this work. Indeed, the singular points analyzed in the
current work can be found in an explicit calculation employing
QDT with the polarization interaction (α = 4) of a cotrapped
ion-atom system [98]. More broadly, Floquet driven systems
are often analyzed in terms of a time-independent, effective
approximation. Our results show a scenario where accounting
for the time-dependent nature of the drive is essential, and the
implications to many-body Floquet systems [110–113] present
an intriguing future direction to explore.
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APPENDIX A: EXPANSION OF LINEARLY DRIVEN
CYLINDRICAL WAVES IN SPHERICAL WAVES

In the following we will use a representation of the spherical
Hankel function of the first kind as an integral over cylindrical
waves [114,115] in the form

h
(1)
l (kr)P m

l (cos θ )eimϕ =
∫

C(1)
dα sin α

1

2
(−i)l−mP m

l

× (cos α)χ (1)
m (�r; k,α), (A1)

where P m
l are the associated Legendre polynomials and the

directed contour of integration C(1) lies in complex α plane.
For k with a positive imaginary part we must takeC(1) = π/2 +
i(∞,−∞), on which cos α ∈ i(∞,−∞), and sin α ∈ (0,∞).
Then h

(1)
l (kr) decays asymptotically as e−(Imk)r/r [the integral

which gives h
(1)
l (kr) is well defined for any ρ > 0, and decays

for r → ∞, which is just what is required for the validity of the
solution]. For k real and positive the contour of integration is
given by C(1) = i(∞,0) + [0,π ] + {π + i(0,−∞)}, on which
cos α ∈ (∞,−∞), and Im sin α � 0. For any value of k, we
have similarly to Eq. (A1)

jl(kr)P m
l (cos θ )eimϕ =

∫
[0,π]

dα sin α
1

2
(−i)l−mP m

l

× (cos α)χ (J )
m (�r; k,α), (A2)

where jl is a spherical Bessel function. Writing h
(2)
l = 2jl −

h
(1)
l , and using Eq. (A2) and the fact that the l,m-dependent

coefficients in Eqs. (A1) and (A2) are identical, we get an
expression identical in form to Eq. (A1), with the outgoing
waves replaced by incoming waves h

(2)
l , and a contour C(2).

A similar derivation can be repeated in the lower half of
the complex k plane, making the expansion valid for every
complex k (which also follows by analytic continuation).

The proof of Eq. (21) proceeds by using Eq. (18) to write

eiḞ π (t)z
∫

C(a)
dα sin αχ (a)

m (�r; k2j ,α)b(a)
2j (α)e−iF π (t)k2j cos α

= eiḞ π (t)z
∫

C(a)
dα sin αχ (a)

m (�r; k2j ,α)
∑
l1

b2j,l1Pl1 (cos α)
∑
l2

(−i)l2 (2l2 + 1)jl2 [Fπ (t)k2j ]Pl2 (cos α)

= eiḞ π (t)z
∑
l1,l2

b2j,l1 (−i)l2 (2l2 + 1)jl2 [Fπ (t)k2j ]
∑
l3

W (Pl1 ,Pl2 ,P
m
l3

)
∫

C(a)
dα sin αχ (a)

m (�r; k2j ,α)P m
l3

(cos α)

= eiḞ π (t)z
∑
l1,l2

b2j,l1jl2 [Fπ (t)k2j ]
∑
l3

cl1,l2,l3h
(a)
l3

(k2j r)P m
l3

(cos θ )eimϕ

=
∑
l4

il4 (2l4 + 1)jl4 [Ḟ π (t)r]Pl4 (cos θ )
∑
l1,l2

b2j,l1jl2 [Fπ (t)k2j ]
∑
l3

cl1,l2,l3h
(a)
l3

(k2j r)P m
l3

(cos θ )eimϕ

=
∑

l1,l2,l3,l4

b2j,l1jl2 [Fπ (t)k2j ]jl4 [Ḟ π (t)r]h(a)
l3

(k2j r)
∑

l

cl1,l2,l3,l4,lY
m
l (θ,ϕ), (A3)
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where the multiplicative factors e−i 1
2 k2

2j t , Nm
2j,l1

, and S
(a)
2j,l1

have
been omitted for simplicity, and by using the definition of
R

(a)
2j,l1,l

(r,t) given in Eq. (22), Eq. (A3) results in Eq. (21).
In the derivation of Eq. (A3), the plane-wave expansion in
terms of spherical Bessel functions has been used (twice),
the coefficients of expansion of a product of two (associated)
Legendre polynomials (which can be written using Wigner 3-j
symbols) are defined by

W
(
P

m1
l1

,P
m2
l2

,P
m3
l3

) = {2(l3 + m3)!/[(2l3 + 1)(l3 − m3)!]}−1

×
∫ 1

−1
P

m1
l1

(w)P m2
l2

(w)P m3
l3

(w)dw,

(A4)

the coefficients cl1,l2,l3 are obtained using Eq. (A1) and Eq. (A4)
and given by

cl1,l2,l3 = 2(2l2 + 1)(−i)l2 il3−mW
(
Pl1 ,Pl2 ,P

m
l3

)
, (A5)

and the coefficients cl1,l2,l3,l4,l are similarly

cl1,l2,l3,l4,l = cl1,l2,l3 (2l4 + 1)il4W
(
P m

l3
,Pl4 ,P

m
l

)
/Nm

l , (A6)

with the definitions

Ym
l (θ,ϕ) = Nm

l P m
l (cos θ )eimϕ,

Nm
l = (−1)m

√
(2l + 1)/4π

√
(l − m)!/(l + m)!. (A7)

APPENDIX B: THE EXPECTATION VALUE OF TENSOR
OPERATORS

In this appendix we give explicitly the expansion of integrals
which are required in order to calculate expectation values
of general tensor operators, in the Floquet eigensolutions of
Sec. II B. For simplicity we treat here only the most useful
case of axially symmetric wave functions, with m = 0 (no ϕ

dependence). Using the notation of Eq. (50), we start by writing
the π -periodic part of the wave function in the form

φπ (�r) =
∑
n,l

a2n,le
−i2nt 1

r
u2n,l(r)Y 0

l , (B1)

which corresponds to the expansion in Eq. (26) of wave
functions in the interior region. For such wave functions, we
define the (unnormalized) expectation value in the interior
region of a purely radial operator O(r),

I0[O(r)] ≡
∫

d3�r|φπ (�r,t)|2O(r)

=
∑

(n,l),(n′,l′)

δl,l′e
2i(n−n′)t a∗

2n,la2n′,l′

×
∫

dr[u2n,l]
∗O(r)u2n′,l′ . (B2)

The above expression can be rewritten as

I0[O(r)] =
∑

l

Il,l[O(r)], (B3)

where we have defined for convenience the functional [sym-
metric under the exchange (n,l) ↔ (n′,l′)]

Il,l′ [O(r)] =
∑
n�n′

(2 − δn,n′ ) Re

{
e2i(n−n′)t a∗

2n,la2n′,l′

×
∫

dr[u2n,l]
∗O(r)u2n′,l′

}
, (B4)

with the summation taken over pairs of states enumerated by
{(n,l),(n′,l′)} with fixed l and l′ obeying n � n′.

For example, the normalization integral calculated for any
time (see Appendix C) can be written as

I0[1̂] =
∑

l

Il,l[1̂], (B5)

with 1̂ the identity operator. Any other expectation value
must then be divided by the value of this normalization
integral. Similarly, the expectation value of the squared angular
momentum operator �L2 is given by

I0[ �L2] =
∑

l

l(l + 1)Il,l[1̂]. (B6)

For an operator of a general radial part multiplied by
the position vector, O(r)�r , only the Cartesian z component
survives the integral (for axially symmetric wave functions),
and we can write using z/r = cos θ

I1[O(r)�r ] =
∫

d3�r|φπ (�r,t)|2O(r)�r

= ẑ
∑

(n,l),(n′,l′)

pl,l′e
2i(n−n′)t a∗

2n,la2n′,l′

×
∫

dr[u2n,l]
∗O(r)r u2n′,l′ (B7)

with the coefficients being

pl,l′ = 2πN0
l N0

l′

∫
dθ sin θ cos θPl(cos θ )Pl′(cos θ ). (B8)

Using the fact that pl,l′ = pl′,l and since nonzero terms will
have |l − l′| = 1, we find

I1[O(r)�r ] = ẑ
∑

l

pl,l+1{Il,l+1[O(r)r] + Il+1,l[O(r)r]}.

(B9)

For an operator with a general radial part multiplied by
a bilinear combination of �r components, O(r)�rα�rβ , where
α,β ∈ {x,y,z}, only the diagonal terms with α = β survive
the integration (for m = 0), with the result

I2[O(r)�rα�rβ] = δα,β

∑
l,l′

qα,l,l′Il,l′ [O(r)r2], (B10)

where

qα,l,l′ = 2πN0
l N0

l′

∫
dθ sin θ

[
cos2 θδα,z + 1

2
sin2 θ (δα,x

+ δα,y)

]
Pl(cos θ )Pl′ (cos θ ). (B11)

In all of the above expressions, Il,l′ [O(r)] as defined in
Eq. (B4) is valid in the interior region. To get the complete
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result for expectation values in whole space, the integration
over the exterior region must be added, where the wave
functions are expanded differently in Eq. (26). In this case,
Eq. (B1) is to be replaced by

φπ (�r,t) =
∑
j,l1

b2j,l1e
−i2j t

∑
l

1

r
uπ

2j,l1,l
(r,t)Y 0

l , (B12)

and accordingly, Eq. (B4) becomes in the exterior region

Il,l′ [O(r)] =
∑

(j,l1),(j ′,l′1)

e2i(j−j ′)t b∗
2j,l1

b2j ′,l′1

×
∫

dr[uπ
2j,l1,l

]∗O(r)uπ
2j ′,l′1,l′

, (B13)

with the summation taken over pairs of states enumerated by
{(j,l1,l),(j ′,l′1,l

′)} with fixed l and l′. Finally, we note that in
the above expressions, the imaginary part of the energy has
been omitted; it gives an exponential envelope of the decay or
formation rate of the quasibound state. Moreover, all integrals
can be performed only on the square-integrable part of the wave
function, with the nonnormalizable traveling waves omitted
from the sums above, in accordance with the interpretation
that these belong to the inaccessible part of the Hilbert space.

APPENDIX C: NORMALIZATION OF THE WAVE
FUNCTION

The expectation value of any time-independent (or π -
periodic) operator is π -periodic for the Floquet eigenstates,
possibly with an exponential envelope for complex ω. The
normalization integral is not constant in time but rather π -
periodic because the relative weight of the nonnormalizable
components oscillates in time (as they are emitted and reflected
back during a period of the drive). In order to calculate an
expectation value of an operator (determined by the bound
components), its integral must be divided by the squared norm,
both of which being π -periodic functions that can be calculated
using Appendix B (after which averaging is possible). The
normalization in the interior region can be obtained without
explicitly performing the integration, directly from the wave
functions and their gradients at the matching point. This can
be useful especially when the interior wave functions are not
explicitly known close to the origin, but rather are determined
within a QDT formulation [82,83,88,89,92]. The projection of
two eigenfunctions φ1 and φ2 of the interior Hamiltonian with

energies ε1 and ε2 correspondingly is shown in Appendix D
to be

2 Re
∫ d

0
φ∗

1φ2r
2dr = (ε1 − ε2)−1Re{u∗

1u2
′ − u∗

2u1
′}|d, (C1)

where u1
′ ≡ ∂ru1, and ε1, ε2 are assumed to have equal

imaginary parts. The left-hand side of Eq. (C1) gives the
integrals required for the normalization, with the factor of 2
relevant for the off-diagonal projections (when φ1 �= φ2). In
the limit of φ1 → φ2 we have for the diagonal normalization
terms∫ d

0
|φ1|2r2dr = 1

2
lim

ε1→ε2

(ε1 − ε2)−1[u∗
1u2

′ − u∗
2u1

′]|d . (C2)

APPENDIX D: THE PROJECTION OF TWO
EIGENFUNCTIONS OF THE INTERNAL HAMILTONIAN

In order to derive Eq. (C1), let ε1,ε2 be the (possibly
complex) energies of two complex eigenfunctions φ1,φ2 of the
interior Hamiltonian Hin = − 1

2∇2 + Vin. For the projection of
the two within the interior region, we can write

0 = 〈φ2|(Hin − ε1)|φ1〉 − 〈φ1|(Hin − ε2)|φ2〉. (D1)

By canceling the potential energy terms, we get after rear-
ranging the kinetic terms and terminating the integration at an
arbitrary point d (which is allowed since the equality above
holds identically in space)∫ d

0
(ε1φ

∗
2φ1 − ε2φ

∗
1φ2)r2dr = −1

2

∫ d

0
(u∗

2∂
2
r u1 −u∗

1∂
2
r u2)dr

= −1

2
[(u∗

2∂ru1 − u∗
1∂ru2)|d −

∫ d

0
(∂ru

∗
2∂ru1 − ∂ru

∗
1∂ru2)dr],

(D2)

where the factor of 1/2 is the prefactor in the kinetic energy
term − 1

2∇2, as in Eq. (51). In the second line of the above
equation, the integrated term is purely imaginary being the
difference of two complex conjugates. Taking the complex
conjugate of the entire equation and adding, this term drops
and we get∫ d

0
2 Re{(ε1 − ε2)φ2φ

∗
1 }r2dr = −1

2
2 Re{u2∂ru

∗
1 − u1∂ru

∗
2}|d,
(D3)

which gives immediately Eq. (C1).
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