
PHYSICAL REVIEW A 97, 042502 (2018)

Atomic physics constraints on the X boson
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Recently, a peak in the light fermion pair spectrum at invariant q2 ≈ (16.7 MeV)2 has been observed in the
bombardment of 7Li by protons. This peak has been interpreted in terms of a protophobic interaction of fermions
with a gauge boson (X boson) of invariant mass ≈16.7 MeV which couples mainly to neutrons. High-precision
atomic physics experiments aimed at observing the protophobic interaction need to separate the X boson effect
from the nuclear-size effect, which is a problem because of the short range of the interaction (11.8 fm), which
is commensurate with a “nuclear halo.” Here we analyze the X boson in terms of its consequences for both
electronic atoms as well as muonic hydrogen and deuterium. We find that the most promising atomic systems
where the X boson has an appreciable effect, distinguishable from a finite-nuclear-size effect, are muonic atoms
of low and intermediate nuclear charge numbers.
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I. INTRODUCTION

Recently, the reaction
7Li + p → 8Be∗ → 8Be + γ → 8Be + e+e− (1)

has been observed at the MTA ATOMKI (Institute for Nuclear
Research of the Hungarian Academy of Sciences) in Debrecen,
and deviations from standard model predictions have been
recorded [1–3]. While the primary aim of the study had been
the hunt for a massive (“dark”) photon, the experimental data
are described satisfactorily in terms of a new (“fifth-force”) X

boson (vector boson) which couples to fermions according to
[4,5]

L = −e
∑

f

εf ψf γμ Xμ ψf , (2)

where Xμ is the spin-1 X boson field, f sums over the fermions
(fermion flavors), and the εf coefficients describe the flavor-
dependent couplings to the X boson. A family dependence is
disfavored by the authors of Refs. [4,5]. Rather, the X boson
is advocated as a possible partial explanation for the observed
3.6σ discrepancy of the observed muon g factor [6], while
assuming a family independence (electron versus muon) of
the couplings εf (i.e., in particular, εe ≈ εμ for electron and
muon).

If, accidentally, the following combination of couplings to
the up and down quarks add to a value close to zero:

2 εu + εd ≈ 0, (3)

then the interaction with the X boson becomes protophobic,
i.e., protons are effectively decoupled. By contrast, a numerical
value of

|εn| = |εu + 2εd | ≈ ∣∣ 3
2 εd

∣∣ ≈ 1
100 (4)

explains the observed 6.1σ peak seen in the experiments [1–5]
[see Eq. (10) of Ref. [4]]. The proposed vector boson has a
mass of mX = 16.7 MeV/c2. Light particles similar to dark

photons in this mass range have been considered a possible
solution to problems related to the understanding of certain
isotope abundances in the Universe [7], and other experiments
have been designed to cover the conjectured parameter range of
the X boson [8] (for a more detailed discussion of the particle
physics aspects of the proposed boson, see the Appendix).

From below, the parameter εe for electrons is further
constrained by electron beam dump experiments, which search
for dark photons [4,5], while a high bound on εe is set by
electron g − 2 experiments. Numerically, one finds that [4,5]

2 × 10−4 < εe < 1.4 × 10−3. (5)

Traditionally, atomic high-precision experiments have been
used with good effect to constrain any conjectured additions
to the low-energy sector of the standard model (see, e.g.,
Refs. [9,10]). Moreover, it has been one of the goals of
high-precision atomic spectroscopy to explore the low-energy
sector of the Standard Model, and to possibly discover a
“hidden” sector of fundamental interactions at low energy
[11]. Several recent papers explore the consequences of the
proposed X boson for atomic spectroscopy, notably, isotope
shifts [12–14]. The purpose of the current paper is twofold.
First, we briefly discuss possible implications of the X boson
for the proton and deuteron radius puzzle, which still has not
been completely solved [12,15] (see Sec. III). Second, we
attempt to find a simple atomic system, in which the effect
of the X boson could be discerned, based on a straightforward
theoretical analysis, without resorting to numerical many-body
calculations of isotope shifts [12–14] (see the discussion in
Sec. V).

Also, we shall attempt to develop an intuitive understanding
for the observation [14] that it is rather difficult to obtain
a signal from the X boson in electronic bound systems (as
discussed in Sec. II). A promising alternative appears to
involve muonic systems with medium and high nuclear charge
numbers, for reasons to be discussed in the following.
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II. ENERGY SCALES

In order to obtain a somewhat intuitive understanding of the
X boson in terms of atomic physics, it is instructive to explore
the energy scales involved in the problem. Indeed, the proposed
vector boson mass of mX = 16.7 MeV/c2 is much larger than
both the effective mass α me of bound electronic systems, as
well as the momentum scale 〈p〉 = Z α me c ≈ 0.343 MeV/c

of hydrogenlike uranium (Z = 92), and also larger than
the bound-state momentum 〈p〉 = α mμ c ≈ 0.772 MeV/c of
muonic hydrogen [16], but not necessarily larger than the
momentum scale 〈p〉 = Z αmμc of a one-muon ion with
medium charge number Z. For example, for muonic carbon,
one has a momentum scale 〈p〉 = 6 αmμ c ≈ 4.63 MeV/c

which is commensurate with the X boson mass. For muonic
magnesium, one has 〈p〉 = 12 αmμ c ≈ 9.25 MeV/c. These
considerations are relevant because the X boson mass deter-
mines the range of the interaction mediated by the new particle,
which is 〈r〉 = h̄/〈p〉.

For electronic systems, the energy scale of the X boson is
“detached” from both electronic bound systems as well as low-
Z muonic bound systems. The range of the X boson interaction
is equal to its reduced Compton wavelength,

λ̄X = h̄

mXc
= 11.8 fm, (6)

which has to be compared to the generalized Bohr radius for
muonic hydrogen,

λ̄μH = h̄

αmμc
= 256 fm, (7)

and the (ordinary) hydrogen atom,

λ̄H = h̄

αmec
= a0 = 52917.7 fm, (8)

where a0 is the (ordinary) Bohr radius. As already indicated,
the Bohr radius for a one-muon carbon ion,

λ̄μ12C = h̄

6 α mμ c
= 42.6 fm, (9)

is closer to the range of the X boson interaction. In the fol-
lowing, we refer to the bound system with a single, negatively
charged muon circling around a carbon nucleus, as “muonic
carbon.” For muonic magnesium, as defined analogously, we
have λ̄μ24Mg = 21.3 fm (with nuclear charge number Z = 12).

From now on, we shall use natural units with h̄ = c = ε0 =
1. By matching the scattering amplitude generated by the La-
grangian (2) to an effective Hamiltonian in the no-retardation
approximation (zero energy of the virtual boson), we obtain
the following interaction Hamiltonian HX for electronic bound
systems (in the low-energy limit):

H
(e)
X = εe εn (A − Z) (4πα)

δ(3)(�r)

m2
X

. (10a)

Here A is the mass number of the nucleus, while Z is the charge
number, so that A − Z counts the number of neutrons in the
nucleus. If the orbiting particle is a muon, then we need to

replace εe → εμ and obtain

H
(μ)
X = εμ εn (A − Z) (4πα)

δ(3)(�r)

m2
X

. (10b)

The finite-nuclear-size (FNS) Hamiltonian is [17]

HFNS = 2π

3
Zα r2

n δ(3)(�r), (11)

where rn = √〈r2
n〉 is the root-mean-square charge radius of

the nucleus. The two Hamiltonians (10) and (11) are both
proportional to a Dirac-δ function.

III. X BOSON AND DEUTERON RADIUS

Let us explore a possible role of the X boson in the proton
and deuteron radius puzzle [16,18,19], and take into account
a possible family dependence of the interaction, i.e., ask the
question of whether a coupling constant dependence εe �= εμ

could contribute to an explanation of the puzzle. The current
status of this puzzle can be summarized as follows: For the
proton, a recent measurement [20] of the 2S-4P transition
has indicated a possible reconciliation, by analyzing a cross-
damping term (“nonresonant shift”) of the transition due to
neighboring fine-structure states [21]. The revised value of
the proton radius [20], derived from hydrogen spectroscopy, is
rp = 0.8335(95) fm and in better agreement with the muonic
hydrogen value rp = 0.84087(39) fm than the previous CO-
DATA value of rp = 0.8775(51) fm, which is primarily derived
from an analysis of the most accurately measured hydrogen
transitions (see Table XXXVIII of Ref. [22]). One notes that
the “larger” proton radius of rp ≈ 0.88 fm is mainly derived
in combining very accurate 1S-2S measurements [23] with
2S-nD measurements [24,25] and 1S-3S atomic hydrogen
measurements [15] of the Paris group. One might speculate
about an incomplete analysis of the systematic effects in the
measurements of the Paris group; however, a very recent work
[15] reaffirms the correctness of the analysis performed for the
2S-8D and 2S-12D transitions, and 1S-3S transitions [15].
One can thus, at present, not conclusively confirm that the
proton radius puzzle has been solved. In any case, for the
proton, it turns out that the X boson cannot contribute to an
explanation of the puzzle, because of the protophobic character
of the proposed interaction [see Eq. (3)].

For the deuteron, the CODATA value of rd = 2.1424(21) fm
is primarily derived from (ordinary) deuterium spectroscopy
[19]. It has to be compared to the value rd = 2.12562(78) fm
derived from muonic deuterium spectroscopy [19]. The relative
difference of these values is

δr2
d

r2
d

= 0.016(2). (12)

Let us assume, for the moment, that this difference is due to
a lepton family nonuniversality of the X boson interaction. To
this end, we evaluate the ratio of the energy shift due to the
X boson, to the finite-size energy shift. This ratio is equal to
the ratio of the change δr2

d in the root-mean-square radii to the
root-mean-square charge radius of the deuteron itself,

〈
H

(e)
X − H

(μ)
X

〉

〈HFNS〉 = 6 (εe − εμ) εn

m2
X r2

n

A − Z

Z
= δr2

d

r2
d

, (13)
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where A = 2, Z = 1, εn ≈ 1/100 [see Eq. (32) of Ref. [5]].
Plugging in values, one obtains

(εe − εμ) ≈ 0.012. (14)

The sign can be understood from the fact that the conceivable
existence of the X boson, for electronic systems, would
enhance the finite-size Dirac-δ potential, for εe > 0, and thus
lead to a larger value of the deuteron radius, if determined
from electronic bound systems. The result (14) is incompatible
with the bound (5) for the coupling parameter of the electron,
assuming an approximate family independence εe ≈ εμ of
the couplings. Furthermore, assuming εe ≈ 0, the value εμ =
−0.012 leads to a severe discrepancy with the muon g − 2
experiment, inducing a contribution to the muon anomaly
(g − 2)/2 of about 1.58 × 10−7 [see Eq. (4) of Ref. [6]]. The X

boson can thus be excluded as an explanation for the deuteron
radius puzzle.

However, the conceivable existence of the X boson would
(slightly) affect the determination of the deuteron radius from
experiments. Namely, one normally defines the deuteron radius
as the slope of the charge form factor GC of the deuteron at
zero momentum transfer, after all QED effects and effects of
“external” interactions (virtual gauge bosons, etc.) have been
subtracted [see Eq. (13) of Ref. [26]]. The slope of the charge
form factor GC leads to the deuteron radius (see [27] and Sec.
4.2 of Ref. [28])

r2
d = 6

dGC(q2)

dq2

∣∣∣∣
q2=0

= −6
dGC(Q2)

dQ2

∣∣∣∣
Q2=0

, (15)

where Q2 = −q2 is the squared four-momentum transfer.
Taking the X boson into account, the deuteron radius would
shift according to the replacements

r2
d → r2

d − 6 εμ εn

m2
X

(16)

for the determination from muonic deuterium, and according
to

r2
d → r2

d − 6 εe εn

m2
X

(17)

for determinations involving ordinary deuterium atoms. Taking
into account the bound (5) and assuming that εe ≈ εμ, the shifts
(16) and (17) are seen not to exceed 0.003 fm when expressed
in terms of the root-mean-square radius rd .

Finally, let us note that the X boson does not affect the
determination of the Rydberg constant from hydrogen and deu-
terium spectroscopy [29]. We recall that the Rydberg constant
is one of the most accurately known physical constants, with
a relative accuracy on the level of 10−12 [20,22]. However,
one notes that the inclusion of the X boson Hamiltonian (10)
in the theoretical model for the determination of the Rydberg
constant from hydrogen and deuterium spectroscopy would not
affect the Rydberg constant, because the additional term is of
the same functional form as the finite-size Hamiltonian (11)
and thus reabsorbed in the nuclear radius.

IV. X BOSON AND MUONIC IONS

In principle, one might hope to determine the coupling
parameter εe from isotope shifts of atomic transitions. The

essential idea is to write the isotope shift as a linear combination
of the mass shift of a transition (due to the change in the reduced
mass of the system), of the field shift (due to the isotopic change
in the nuclear radius), and due to the X boson [see Eq. (2.1)
of Ref. [14]]. We note that, in principle, the mass shift could
be obtained by very accurate Penning trap measurements and
thus subtracted. However, the observation of a single isotope
shift does not determine the X boson coupling because of the
unknown field shift, i.e., the unknown radius difference. One
might think that the radius could be determined independently
by scattering experiments and subtracted. However, in scatter-
ing experiments, the X boson term (10) modifies the scattering
cross section just like the finite-nuclear-size term (11) and thus
could not be subtracted separately.

Measurements of isotope shifts between the same isotopes
but more and different atomic transitions also do not help
because in the leading-order approximation, both the X boson
Hamiltonian (10) as well as the finite-size Hamiltonian (11)
are proportional to a Dirac δ. One might observe isotope
shifts involving more than two isotopes, considering that the
prefactor of the X boson term depends on the isotope (via
the change in the neutron number, which enters the nuclear
mass number A). Even so, within the Dirac-δ approximation,
one still cannot accurately determine the X boson coupling
because each addition of an isotope also implies the addition
of a field shift term, i.e., an additional radius difference which
cannot be determined independently.

For electronic bound systems, the reduced Compton wave-
length λ̄H /(1 + ne) [see Eq. (8)], where ne is the charge number
of the ion, is much larger than the reduced Compton wavelength
λ̄X of the X boson, as given in Eq. (6). Thus, for electronic
bound systems, the X boson potential remains a Dirac δ to
good approximation. If at all, then the X boson coupling could
be determined based on higher-order terms beyond the Dirac-δ
approximation used in Eqs. (10) and (11) (see Refs. [13,14] for
a comprehensive discussion, especially in the context of “King
linearity violation” as envisaged originally in Ref. [30]). In the
end, even under the optimistic assumption of an increase in the
precision of isotope spectroscopy to better than 1 Hz, the range
of coupling parameters and masses for the conjectured X boson
[4,5] remains out of the observable range of high-precision
isotope shift measurements (specifically, see the black bar
in the right panel Fig. 3.2 of Ref. [14]). A more optimistic
point is taken by Ref. [13], where in Fig. 3 it is claimed
that a measurement of isotope shifts in Yb+, involving nuclei
with A = 168,170,172,174,176, could potentially resolve the
X boson if an experimental accuracy of 1 Hz is reached.
This would correspond to an increase in the current level of
experimental accuracy by four to five orders of magnitude.
Additionally, the drastic difference between the resolving
power of Sr+ and Yb+ reported in Fig. 3 of Ref. [13] might
be considered as a little surprising because both ions have
ne = 1, and so the reduced Compton wavelength (effective
length scale of the atomic binding, effective nuclear charge
number) is the same for the outer electrons in both systems. It
would be somewhat awkward if the electron density in Yb+,
which has a nuclear charge radius of about 5.3 fm [31] for
the isotopes in question, remains essentially constant over the
nuclear volume, while displaying a drastic deviation from the
value inside the nucleus on a distance scale of 11.8 fm, which
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is the range of the X boson interaction. Such a behavior would
be required in order to substantially invalidate the Dirac-δ
approximation used in Eqs. (10) and (11), thus explaining
the resolving power of isotope shifts in Yb+ as compared to
Sr+, reported in Fig. 3 of Ref. [13]. In any case, the precise
understanding of the expansion coefficients used in Ref. [13]
may depend on the details of the many-body atomic structure
code used in Ref. [13].

Here we pursue a different route and attempt to find a simple
atomic system where the X boson contribution could naturally
be extracted based on a straightforward analytic model. We
need to find an atomic system where the Dirac-δ approximation
to the X boson term (10) is insufficient, and the X boson
Hamiltonian changes into

H
(e,Y )
X = εe εn (A − Z) α

e−mX r

r
, (18)

H
(μ,Y )
X = εμ εn (A − Z) α

e−mX r

r
. (19)

Here the superscript Y reminds us of the Yukawa character of
the potential. If the functional form of the X boson term (10)
and the finite-size term (11) are different for a particular atomic
system, then we can distinguish the two effects. For muonic
carbon, according to Eq. (9), we have λ̄μ 12C = 42.6 fm, which
is commensurate with the reduced Compton wavelength of the
X boson given in Eq. (6), but much larger than the 12C radius
of about 2.4 fm. Hence, we have

r12C 	 λ̄μ 12C, λ̄X � λ̄μ 12C. (20)

This implies that in 12C, the finite-nuclear-size Hamiltonian
can still be approximated by a Dirac-δ potential, while the X

boson Hamiltonian changes into the form given in Eq. (19).
We note that at nuclear charge number Z = 6, one can

still use nonrelativistic (Schrödinger) wave functions to good
approximation. In the relevant spectroscopic experiments on
muonic carbon [32,33] (for scattering data, see Ref. [34]), one
observes the 1S-2P transition, where the main nuclear-size
effect is generated by the expectation value of the finite-
nuclear-size potential (11) in the ground state. The ratio of
the expectation values of the exact X boson potential to the
Dirac-δ approximation in the ground state is

ξnS = 〈nS|H (μ,Y )
X |nS〉

〈nS|H (μ)
X |nS〉

, (21a)

ξ1S = χ2

(χ + 2)2
, (21b)

ξ2S = χ2 (1 + 2 χ2)

2 (1 + χ )2
, (21c)

ξ3S = 3 χ2 [16 + 27 χ2 (8 + 9χ2)]

(2 + 3 χ )6
, (21d)

where χ is the ratio of the generalized Bohr radius to the
reduced Compton wavelength of the X boson,

χ = λ̄μ 12C

λ̄X

= mX

6α mμ

≈ 3.610, (22)

and so we have ξ1S = 0.4140, ξ2S = 0.3904, and ξ3S =
0.3865. Of course we have ξnS → 1 for χ → ∞ (mX →
∞). In momentum space, the suppression of the correc-
tion for muonic carbon can be traced to the importance
of spatial exchange momenta in excess of mX, which are
important in the Coulomb exchange in the discussed atomic
system.

In the 1970s, there was some discussion regarding a possible
discrepancy in the determination of the charge radius of the
12C nucleus, with values from electron scattering (without
dispersion corrections) converging to a root-mean-square value
of r12C = 2.471(6) fm [34,35], while muonic spectroscopy
led to a value of r12C = 2.4829(19) fm [33,34]. Under the
assumption that this discrepancy is due to X boson, an analysis
similar to the one carried out in Eqs. (13) and (14) leads to a
value of

(εμ − εe) = 0.0070(46), (23)

which deviates from zero by more than one standard deviation.
However, the large absolute magnitude of the required coupling
coefficients excludes the X boson as a viable explanation for
the carbon charge radius discrepancy. After the (somewhat ad
hoc) application of dispersion corrections to the scattering data,
the value as determined from scattering has been shifted to
r12C = 2.478(9) fm [34], corresponding to

(εμ − εe) = 0.0029(64), (24)

which is fully compatible with zero.
Obviously, in order to access physically sensible values of

the coupling constant [see Eq. (5)],

2 × 10−4 < εe ≈ εμ < 1.4 × 10−3, (25)

one needs to increase the experimental precision. In view
of the inequality (20), muonic carbon appears to be well
suited for an extraction of the X boson contribution, based
on spectroscopic data alone. The idea is to use the state
dependence of the ξ parameter, in order to be able to write
a nonsingular system of the equations which can be solved for
the nuclear radius and the coupling parameters of the X boson.
Let us denote by ν1S 2P and ν2S 2P the remainder frequencies
obtained after subtracting all known relativistic and quantum
electrodynamic (QED) contributions to the transition frequen-
cies. Because the finite-size effect and the X boson Hamil-
tonian primarily shift S states, one may write for the nS-2P

transition,

νnS 2P = ξ1S 〈1S|H (μ)
X |1S〉 + 〈1S|HNFS|1S〉

= r2
12C

2

3

(Zα)4 m3
μ

n3

+ εμ ξnS

4(A − Z) (Zα)3 α εn

m2
X n3

. (26)

We here ignore reduced-mass corrections. The system of
equations

ν1S 2P = ξ1S 〈1S|H (μ)
X |1S〉 + 〈1S|HNFS|1S〉, (27a)

ν2S 2P = ξ2S 〈2S|H (μ)
X |2S〉 + 〈2S|HNFS|2S〉, (27b)
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can be solved for εμ and r12C, because of ξ1S �= ξ2S �= 1. The
solution is

εμ = (ν1S 2P − 8 ν2S 2P ) m2
X

2(A − Z)(Zαmμ)3 αεn

f (χ ), (28a)

f (χ ) = (1 + χ )4 (2 + χ )2

χ2 [χ (4 + 3χ ) − 2]
, (28b)

r2
12C = 3 ν1S 2P

2(Zα)4 m3
μ

+ 3 (ν1S 2P − 8 ν2S 2P )

(Zα)4 m3
μ

g(χ ), (28c)

g(χ ) = (1 + χ )4

2 − χ (4 + 3χ )
, (28d)

where χ has been defined in Eq. (22). Plugging in the param-
eters for 12C (see Ref. [31]), one obtains for the sensitivity

δεμ ≈ 31.234
δ(ν1S 2P − 8 ν2S 2P )

ν1S 2P

≈ 31.234
δr2

12C

r2
12C

, (29)

where δ(ν1S 2P − 8 ν2S 2P ) is the uncertainty with which
ν1S 2P − 8 ν2S 2P could be determined experimentally. Also, we
should clarify that δr2

12C
is the difference in the nuclear radii,

determined from the two transitions separately, assuming that
one ignores the possible presence of the X boson. A compari-
son to recent determinations of nuclear radii for simple atomic
systems [16,18,19] reveals that an increase in the current
experimental accuracy by about two orders of magnitude will
be sufficient to discern the X boson from atomic spectroscopy.
For muonic magnesium, the sensitivity coefficient in Eq. (29)
changes according to the replacement 31.234 → 58.515.

Various generalizations of the system of Eqs. (27) are possi-
ble. One obvious generalization would concern additional car-
bon isotopes such as 13C, for which the expansion coefficients
are a little different. In this case, if one obtains a consistent
result for εμ from two different isotopes, this will serve as an
independent confirmation of the result. Other generalizations
would include combinations of transitions in muonic systems
(ξnS �= 1) with electronic bound systems, where ξnS is nearly
equal to unity, in view of the relation λ̄X 	 λ̄H [see Eqs. (6)
and (8)]. Also, generalizations to transitions involving the 3S

state are straightforward [see Eq. (21d)].

V. CONCLUSIONS

In this article, we have studied the X boson [4,5] from the
point of view of atomic physics, both in terms of possible
connections to the proton and deuteron charge puzzles
[16,18,19] (see Sec. III) as well as muonic bound systems (see
Sec. IV). As outlined in Sec. II, the parameter range of the X

boson is energetically somewhat outside of the range of atomic
physics and therefore, the particle is hard to detect by pure
atomic physics techniques. This fact, in particular, explains
why it has not been seen in atomic experiments, despite
heroic efforts of experimentalists to increase the precision of
measurements in simple atomic systems (see, e.g., Ref. [23]).
In fact, the range of the X boson interaction somewhat
overlaps with the atomic nucleus; it can be characterized as
an interaction present in some extended “nuclear halo” with a
range of about 11.8 fm [see Eq. (6)].

For interactions involving bound muons, one has to use the
Yukawa potential (18) instead of the Dirac-δ approximation
(10b). This, however, does not imply an electron-muon nonuni-
versality; it simply means that the X boson effect has to be
evaluated differently for bound electrons as opposed to muons.
The same phenomenon is observed (for electronic systems)
with vacuum polarization, where a good approximation is
formed by a Dirac-δ potential for ordinary hydrogen, but one
has to carry out a detailed integration for muonic systems (see
Ref. [36]), because the length scale of the bound muonic system
is commensurate with the electron Compton wavelength,
which in turn defines the extent of the vacuum-polarization
mediated modification of the Coulomb interaction.

This latter observation leads to a possible pathway toward
the observation of the X boson in atomic systems, as described
in Sec. IV. A model calculation involving muonic carbon
illustrates that a nontrivial dependence of the X boson effect
on the principal quantum number is introduced for S states in
muonic systems, which leads to a separation of the effect from
the nuclear-size contribution, rendering the X boson effect
observable [see Eq. (28)].
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APPENDIX: COUPLINGS IN THE NEUTRINO SECTOR

This brief Appendix is devoted to the discussion of the X

boson model in a particle physics context, with a particular
emphasis on the neutrino sector. We recall that in Eq. (2), the
couplings to the fermion fields are left as free parameters in
the X boson coupling Lagrangian. In Sec. I, we have discussed
constraints on these parameters for electrons, protons, and
neutrons, the latter being determined according to their quark
content [4,5].

Important constraints on the coupling parameters for neu-
trinos have been discussed in Sec. VI C of Ref. [5]. Namely,
according to Sec. VI C 1 of Ref. [5], some of the most
stringent constraints come from the TEXONO experiment,
where electron (anti-)neutrinos scatter off electrons. Because
of a relatively small length of the interaction region (of about
28 m), the electrons (of energy 1–2 MeV) remain in pure
electronic flavor eigenstates.

Depending on the sign of the coupling parameters of
electrons and neutrinos, the interference of the X boson term
can lead to constructive or destructive interference with the
standard model prediction. According to Sec. VI C 1 of Ref. [5],
for the electron coupling parameter range given in Eq. (5),
one finds bounds for |εν | in the range from 10−6 to 10−4 for
constructive and destructive interference alike. Here εν is the
electron (anti-)neutrino coupling parameter.

Neutrino-nucleus scattering has not yet been observed,
but it is the target of a number of upcoming experiments
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that use reactors as sources. According to Sec. VI C 2 of
Ref. [5], from SuperCDMS, CDMSlite, and LUX, one obtains
bounds for |εν | in the range from 10−5 to 10−4 for the electron
neutrino coupling parameter εν , assuming that |εn| = 1/100.
These constraints are not in disagreement with any other
experimental observations.

Interesting connections to the neutrino sector have also been
pointed out in Ref. [37], where a dark matter particle D with
mass 8.4 MeV is being proposed, which would give rise to the
reaction D + D → X, where the X particle has a predicted
mass of 16.8 MeV, just twice the D mass, almost perfectly
matching the proposed X boson mass [4,5]. The D particle is
required for the interpretation of the Mont Blanc neutrino burst
[38], as proposed in Ref. [37].

In Ref. [39] (see also Ref. [40]), the authors identify the X

boson as the massive vector boson of a new U (1) gauge group,
which, by virtue of the interaction Lagrangian [see Eq. (2) of

Ref. [39]], is called a baryon minus lepton (B − L) symmetry.
In addition to explaining the ATOMKI anomaly [1–3], the
U (1)B−L also provides a possible explanation for the lightness
of the neutrinos, by proposing a radiative seesaw model in
which neutrinos acquire their tiny masses only by a one-loop
diagram whose value is proportional to the vacuum expectation
value vs of a scalar field S which takes the role of an added
Higgs-like particle [see Eq. (5) of Ref. [39]]. Likewise, the
mass of the X boson is proportional to vs (see Eq. (12 b) of
Ref. [39]). In the context of the U (1)B−L models, the authors
of Ref. [41] point out that it could be quite natural to assume
a protophobic interaction (εp � εe 	 1), but then, it would be
more natural to assume that the couplings to neutrinos are not
as suppressed as indicated in Sec. VI C of Ref. [5], but rather,
that εn � −εν . Finally, according to Ref. [42], the new X boson
could also help in resolving a 2–3 σ discrepancy between the-
ory [43] and experiment [44] for the rare decay π0 → e+ e−.
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