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The cross-resonance (CR) gate is an entangling gate for fixed-frequency superconducting qubits. While being
simple and extensible, it is comparatively slow, at 160 ns, and thus of limited fidelity due to on-going incoherent
processes. Using two different optimal control algorithms, we estimate the quantum speed limit for a controlled-
NOT CNOT gate in this system to be 10 ns, indicating a potential for great improvements. We show that the ability
to approach this limit depends strongly on the choice of ansatz used to describe optimized control pulses and
limitations placed on their complexity. Using a piecewise-constant ansatz, with a single carrier and bandwidth
constraints, we identify an experimentally feasible 70-ns pulse shape. Further, an ansatz based on the two dominant
frequencies involved in the optimal control problem allows for an optimal solution more than twice as fast again,
at under 30 ns, with smooth features and limited complexity. This is twice as fast as gate realizations using
tunable-frequency, resonantly coupled qubits. Compared to current CR-gate implementations, we project our
scheme will provide a sixfold speed-up and thus a sixfold reduction in fidelity loss due to incoherent effects.
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I. INTRODUCTION

Circuit QED is a promising technology for quantum com-
puting. An important requirement for scalability of the archi-
tecture is high-accuracy implementation of two-qubit gates. A
leading candidate for resonator-mediated interaction between a
pair of superconducting qubits is the so-called cross-resonance
(CR) gate [1–4] which has been implemented experimentally
with over 99% average gate fidelity [5]. The CR gate functions
by driving one qubit at the resonant frequency of the other
qubit, inducing dynamics in the latter across the connecting
resonator, i.e., “cross-resonantly.” The design avoids the com-
plexity and noise sources that are present in low-frequency
magnetic (flux) tuning of the qubit-qubit interaction [6,7]. It
also aims to improve on methods for high-speed addressing of
specific two-qubit transitions, by utilizing the spatial address-
ability that comes from per-qubit control circuitry.

The primary impediments to high-fidelity operation cur-
rently come from two sources: incoherent errors, such as T1 and
T2 processes, and coherent unitary errors, such as crosstalk [8]
and frequency crowding [9]. The main method to counteract
the former is to shorten gate times as much as possible, but the
increased spectral width can drastically increase unitary errors,
especially from higher-order corrections to the perturbative
model of the gate mechanism.

In this work we systematically optimize CR gate control
pulses for best fidelity, by shortening gate times as much
as possible to reduce incoherent errors, while avoiding the
adverse effects of increased coherent errors. We employ a full
Tavis-Cummings model [10,11] which eliminates many of the
analytic simplifications that set bounds on analysis of the gate
in the deeply nonadiabatic regime. Moreover, it is known that
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a careful analysis with regard to parametrization of the control
sequence is required to efficiently tailor the control pulses to the
constraints of the experimental apparatus [12,13] and to ensure
simple pulse shapes which permit experimental calibration
of the pulse. By lifting constraints on pulse complexity, we
numerically estimate the quantum speed limit (QSL) [14–16]
for the gate. However, the QSL is still dependent on other
constraints imposed in the optimization problem and thus
may also depend on the chosen parametrization of the control
pulse. Therefore, we probe the relationship between the
QSL and different physically meaningful parametrizations,
which leads to a greater understanding of the limitations of
the original cross-resonant control scheme and ultimately to
improved control strategies.

This manuscript is organized as follows. Section II presents
the theoretical model of the system. Section III introduces
numerical methods. In Sec. IV we show that the unconstrained
quantum speed limit is much shorter than the currently pre-
vailing strategy. Section V describes the first optimization
results and point outs the role of higher-frequency components.
Section VI studies the QSL with the Fourier parametrization
of the drive shape. Section VII explains the influence of
the bandwidth constraint and proposes two highly practical
solutions. Finally, in Sec. VIII we make concluding remarks.

II. SYSTEM

Let us consider two transmon qubits coupled by a bus
resonator. Each transmon is described as an anharmonic
oscillator and the coupling to the resonator is described by
an appropriately extended Jaynes-Cummings model [17–19].
The qubits consist in the first two levels of these two anhar-
monic oscillators. As in Ref. [5], we assume that σx and σy

type controls are available. We further assume that the qubit
frequencies can be calibrated by a quasistatic flux line. The aim
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TABLE I. Values of the parameters of the
Hamiltonian in Eq. (2), which has an RWA applied.
These correspond to typical parameters for the
dispersive regime of circuit QED.

Parameter Value in GHz

�/(2π ) 0.4

g1/(2π ) 0.1

g2/(2π ) 0.1

α1,2/(2π ) −0.32

δ1/(2π ) 0.0

δ2/(2π ) −0.67

of the latter is not to provide another time-dependent control
function, but to statically shift the qubit frequencies to a value
more favorable to the optimization process. With the notations
of Ref. [18], the Hamiltonian in the limit of low nonlinearity
α [20] takes the form

H (t) =
2∑

k=1

[
ωkb

†
kbk + αkb

†
kb

†
kbkbk + gk(ab

†
k + a†bk)

+
L∑

l=1

�k,l(t) cos
(
ωd

k,l t + φk,l

)
(bk + b

†
k)

]
+ ωra

†a,

(1)

where a†, b†1, and b
†
2 are the creation operators for the cavity and

the two transmons respectively; gk are the couplings between
the resonator and the qubits; ωr , ω1, and ω2 are the respective
frequencies of the cavity and the two transmons; �k,l are the
low-frequency envelopes of the microwave drive, and ωd

k,l are
the carrier frequencies of the L control drives with phase offset
φk,l . After moving to the rotating frame close to the frequency
of the first qubit, and applying a rotating-wave approximation
(RWA), the Hamiltonian takes the form

HRWA(t) =
2∑

k=1

[
δkb

†
kbk + αb

†
kb

†
kbkbk + gk(ab

†
k + a†bk)

+�x
k (t)(bk + b

†
k) + i�

y

k (t)(b†k − bk) + fkb
†
kbk

]
+�a†a, (2)

where � is the detuning of the cavity from the principle (car-
rier) drive frequency of the controls, and δk are the detunings
of the transmons. fk are introduced in the optimization as a
mechanism for setting the transmon detunings and/or shifting
of the principle drive frequency. The numerical simulations and
optimizations presented below include the three first levels of
the resonator and the three first levels of each transmon. System
parameters are detailed in Table I.

III. NUMERICAL METHODS

The field of quantum optimal control (QOC) provides
methodologies by which a quantum system may be driven to
a desired state, or undergo a desired evolution, in a fast and
efficient manner. With the emergence of quantum technologies
[21] the significance and impact of these techniques has grown.

Specifically, the requirement of very-high-fidelity gates for
quantum computation and the complexity of the systems in-
volved imply that approximate analytical solutions will not suf-
fice, and numeric optimization theory must be applied to attain
the desired process fidelities. Extensive research has gone into
the problem of finding optimal driving of quantum systems.
The field emerged in the mid-to-late 1980s with the first appli-
cations of QOC to chemical reactions and magnetic resonance
imaging (MRI) [22–25], with experimental work continuing
to this day [26,27]. Since, the scope of QOC has widened
considerably, with applications to attosecond physics [28] and
high harmonic generation [29], energy flow in biomolecules
[30], and quantum computing [31,32], among others. QOC
can be applied to both coherent and Markovian dynamics for
state generation and other variants (see Refs. [33,34]).

QOC methods can be roughly divided into two categories,
gradient-free and gradient-based optimization, where the terms
refer to the availability of the gradient of the goal measure to
be minimized, with respect to the control parameters. With
gradient-free methods, one samples the goal function at one or
more points in the control-parameter space and deduces one or
more new points for sampling, where the expectation is of an
improved goal measure, and then repeats the process. This ap-
proach is simple and flexible and is the only possible procedure
for closed-loop calibration. However, such methods converge
very slowly compared to gradient-driven optimization, partic-
ularly when optimizing high-dimensional parameter spaces.
The most well-known member of this class of optimizers is the
Nelder-Mead algorithm [35], on which the quantum chopped
random basis (CRAB) and dressed CRAB (dCRAB) methods
[36,37] are based. Other gradient-free algorithms include the
covariance matrix adaptation evolution strategy (CMA-ES)
[38], the simultaneous perturbation stochastic approximation
(SPSA) [39], and genetic algorithms, among others. And while
approaches are often better at handling large parameter spaces
and the presence of noise, they are still slow to converge
compared to gradient-driven methods.

When the gradient of the goal measure with respect to the
control variables can be computed quickly (when compared
to finite differences), gradient-based methods are preferred.
These include the Krotov family of algorithms [40–42] and
the gradient ascent pulse engineering (GRAPE) [43] method.
Both are derived from the variational formulation of the QOC
task [44], where the Schrödinger equation is imposed via a
Lagrange multiplier, which turns out to be a conjugate state
evolving back in time. The method by which the control fields
are updated in both the Krotov and GRAPE methods are
defined using time-local expressions, implying a piecewise-
constant (PWC) control ansatz, which may be detrimental in
cases of bounded bandwidth. Combining Floque theory with
the variational approach also offers some advantages [45].
The QOC method gradient optimization of analytic controls
(GOAT) (see Ref. [13] and detailed below) utilizes modified
Schrödinger equations to compute the gradient and does not
resort to variational calculous. We make use of GOAT below
due to its simplicity and its flexibility of enforcing control
constraints, such as bandwidth or power. For a comprehensive
review of QOC, see Refs. [21,46].

Given a system whose dynamics is described by the drift
Hamiltonian H0 and is subject to a set of control Hamiltonians
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Hk , the time-dependent Hamiltonian is

H (ᾱ,t) = H0 +
C∑

k=1

ck(ᾱ,t)Hk, (3)

where ck are the control functions (ansatz), with details
prescribed by the set of parameters ᾱ. One is free to chose
any control parametrization, e.g., the Fourier basis,

ck(ᾱ,t) =
m∑

j=1

Ak,j cos(ωk,j t + φk,j ), (4)

with

ᾱ = {Ak,j ,ωk,j ,φk,j }k=1...C,j=1...m. (5)

In the systems investigated in this work we have found the
Fourier and Erf parametrizations to produce pulse shapes with
low parameter counts. The goal function to minimize is defined
as the infidelity (projective SU distance) between the desired
gate, Ugoal, and the implemented gate, U (T ),

g(ᾱ) := 1 − 1

dim(U )
|Tr(U †

goalU (T ))|, (6)

where U (t) is the time-ordered (T) evolution operator

U (ᾱ,T ) = T exp

(∫ T

0
− i

h̄
H (ᾱ,t)dt

)
. (7)

QOC methods can be roughly divided into two categories:
gradient-free and gradient-driven methods. The latter require
the gradient of the goal function with respect to the con-
trol parameters, ∂ᾱg(ᾱ), and are much faster provided this
gradient can be computed efficiently. Gradient-free methods
are appropriate for closed-loop calibration and when the
gradient cannot be determined with ease. Gradient-driven QOC
methods require a gradient-driven search method over the
parameter space ᾱ. Both GRAPE and GOAT (discussed below)
utilize a standard algorithm for that purpose, limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [47].

GRAPE. When H (ᾱ,t) is taken to be a PWC function,
the method of choice for QOC is GRAPE [33,43]. We
note that when PWC is used as an approximation of a
smooth control field, it introduces non-negligible inaccu-
racies, which are discussed in Ref. [13]. Let us enumer-
ate the time slices j ∈ {1, . . . ,M}, each of duration �tj ,
Uj = exp (− i

h̄
�tjHj )Uj−1, where Hj := H0 + ∑C

k=1 cj,kHk

and U0 := I, U (T ) := UM . Here ᾱ = {cj,k}. The gradient
of the goal function [Eq. (6)], ∂ᾱg(ᾱ), can be computed
using the chain rule and ∂ᾱU (ᾱ). Noting the j,k component
of ᾱ appears only in Uj , the gradient of U (T ) is com-
puted by ∂ᾱj,k

U (T ) = (�j+1
b=MUb)(∂ᾱj,k

Uj )(�1
a=j−1Ua). The

expression to compute ∂ᾱj,k
Uj = ∂cj,k

exp (− i
h̄
�tjHj ) =

∂cj,k
exp [− i

h̄
�tj (H0 + ∑C

k=1 cj,kHk)] is rather cumbersome
and requires a full eigendecomposition of Hj (see Ref. [33] for
details). While computationally expensive, the eigendecompo-
sition can be leveraged to perform exponentiation, propagation,
and propagator gradients with little additional numerical effort.
Therefore, GRAPE satisfies one of the conditions for a good
gradient-based QOC method—the gradient of the propagator
can be computed efficiently. The gradient of the propagator is

then used to compute the gradient of the goal function, feeding
into the L-BFGS search algorithm, which seeks to minimize
the goal function over the ᾱ parameter space.

GOAT. Consider the gradient of the goal function (6) with
respect to ᾱ,

∂ᾱg(ᾱ) = −Re

[
g∗

|g|
1

dim(U )
Tr(U †

goal∂ᾱU (ᾱ,T ))

]
. (8)

Generally, U (ᾱ,T ) does not have a closed form [see Eq. (7)],
and therefore ∂ᾱU (ᾱ,T ) cannot be computed directly. As
U evolves by the equation of motion (EOM) ∂tU (ᾱ,t) =
− i

h̄
H (ᾱ,t)U (ᾱ,t), we may take the derivative of the U EOM

with respect to ᾱ, swapping derivation order, resulting in a
system of coupled EOMs:

∂t

(
U

∂ᾱU

)
= − i

h̄

(
H 0

∂ᾱH H

)(
U

∂ᾱU

)
. (9)

∂ᾱH is computed using the chain rule and Eqs. (3) and
(4). The coupled time evolution of the propagator (a single
equation of motion) and its gradients (C × m equations—as
per the dimension of �α) may be performed by any mechanism
for ordinary differential equation (ODE) integration that is
accurate and efficient for time-dependent Hamiltonians, such
as adaptive Runge-Kutta. A gradient-driven search over the
parameter space is performed using L-BFGS.

IV. UNCONSTRAINED QUANTUM SPEED LIMIT

We first look for the QSL for the system described by Eq. (2)
and Table I, by using the least-constrained parametrization,
i.e., PWC, with no amplitude bounds and high resolution—500
time slices for each gate duration tg. Assuming the parametriza-
tion is sufficiently flexible, the QSL observed results from the
physics of the system. One standard method to probe the QSL
numerically is to plot a measure of the gate fidelity as a function
of the gate duration [19,48]. For different gate durations we
perform multiple GRAPE optimizations, starting each with a
different random initial guess pulse. The average final gate er-
rors, defined as g = 1 − �goal, are shown in Fig. 1. We observe
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FIG. 1. We observe a 5- to 10-ns quantum speed limit (QSL)
for the system described by Eq. (2) and Table I, using arbitrary
amplitude piecewise-constant controls with a high sampling rate
(�0.1 ns) and no filter. The unitary error (infidelity; 1 − �goal) of
the optimized controlled-NOT (CNOT) gates is plotted as a function
of gate duration, with each point representing the average error for
multiple optimizations starting at random initial pulses. See Sec. IV
for a complete discussion.
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a clear jump between 5- and 10-ns gate times, which indicates
the presence of a QSL. Interestingly, the speed limit is more
than an order of magnitude shorter than the gate time presented
in Ref. [2], suggesting a potential for reduction of incoherent
errors by an order of magnitude. As no constraints are imposed
at this stage, these optimal control shapes are beyond the capa-
bilities of most existing experimental setups. However, this is
likely to change in the near future, with adoption of AWGs with
bandwidths above 10 GHz, such as those demonstrated in the
circuit QED setup of Ref. [49], and FPGA control logic. Even
without such hardware, by taking into account the constraints
of the experiment implementation allows us to implement gates
in times which, while higher than the unconstrained QSL, are
significantly shorter than the original cross-resonance gate, as
discussed in the following sections.

V. SMOOTH CONTROL IN THE TIME DOMAIN

To reduce the complexity of the generated pulse sequence,
allowing effective calibration, we optimize control pulses in the
PWC time domain, smoothed by a Gaussian filter. Based on
the analytical methods presented in Ref. [1], and further refined
and experimentally verified in Ref. [2], a cross-resonance gate
is generated in a two-transmon system by applying driving on
one qubit at the frequency which is resonant with the second
qubit. Let us consider the effective coupling Jeff between the
two qubits that quantifies the effective interaction mediated
by the resonator. In the case where Jeff is small compared to
the detuning between the qubits, δ2, a drive at frequency ω̃2 =
ω2 − (Jeff)2/δ2 generates dynamics that can be described by
an effective Hamiltonian of the form

Heff = ueff
1 σ z

1 ⊗ σx
2 + ueff

2 σx
1 ⊗ 1, (10)

where σi are the Pauli operators and ueff
i denote the relative

scaling of the effective interaction. The ZX interaction present
in this effective Hamiltonian can generate a CNOT gate directly,
up to local rotations [50].

The performance of the initial guess is further improved
by limiting the effect of the second term in Eq. (10). Here we
assume this spectral constraint (i.e., suppressing the spectral
weight of the second term) can be satisfied by using a second
off-phase quadrature �y of the control envelope set propor-
tional to the derivative of �x and inversely proportional to the
qubit frequency separation δ2, as in the derivative removal by
adiabatic gate method [8,51].

These analytical techniques would not be sufficient to obtain
high-fidelity gates at very short times for the model at hand
due to the complexity of the level structure. However, the
initial guess is found to be relevant enough to be located in the
basin of attraction of a higher-fidelity solution, which allows
the GRAPE algorithm to converge on a solution with suitably
smooth features.

Thus, we choose the following initial control functions:

�x
1(t) = 0, �

y

1(t) = 0,

�x
2(t) = 0.4 exp

(
− (t − μ)2

2σ 2

)
, μ = tg

2
, σ = tg

4
,

�
y

2(t) = 1

δ2
�̇x

1(t), f1 = 0, f2 = 0.1, (11)
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FIG. 2. High-fidelity CR control pulse sequence found with a
sampling rate of 5 Gs/s. (a) Initial control guess pulse conforming
to the analytical ansatz (11). (b) Optimized controls giving �goal =
0.9999. The pulses are relatively smooth and short (27 ns) but contain
a large degree of complexity. See Sec. V for full details.

where the amplitudes are given in gigahertz, and f1 and f2 are
constant, but tunable, frequency offsets relative to the drive
frequency of qubits 1 and 2, respectively. Control amplitudes
are bounded, and the sampling rate is lowered to 0.2 ns. When
the optimization is run with the parameters in Table I, and a
slightly increased gate time of tg = 27 ns is set, we achieve
a gate infidelity of 10−4, assuming no incoherent processes.
The pre- and postoptimization drive shapes are shown in
Fig. 2. We observe that the strong cross-resonant drive remains
after the optimization, which indicates that the CR scheme is
still the main physical mechanism in play. The pulse induces
complicated dynamics to obtain high-fidelity in a very short
time, suggesting it may be possible to reduce gate times further,
achieving an order of magnitude acceleration compared to
Ref. [5], thus reducing the decoherence by a similar frac-
tion and outperforming gates with tunable qubit frequency
architectures [52]. The pulse is simplified compared to those
used to identify the gate QSL, and the sampling rate is well
within the current technological capacities of next generation
microwave generators [49]. In Sec. VI we further simplify the
parametrization of the pulse, which allows for experimental
implementation with a minimal amount of overhead.

VI. QUANTUM SPEED LIMIT WITH THE
FOURIER ANSATZ

It is extremely beneficial to arrive at quantum control se-
quences that are parametrized by a small number of parameters.
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FIG. 3. Determination of the QSL using 167 Fourier components
per control. The errors (1 − �goal) averaged over optimized pulses
found for different random initial conditions are plotted for different
gate durations. Errors are larger and decay more slowly when
compared to a time-domain parametrization containing roughly 800
(piecewise-constant) control points, depicted in Fig. 1.

This simplicity can greatly aid in analytical, numerical, and
experimental reproducibility of the solution, by allowing easy
closed-up in situ calibration (or tune-up) of the control se-
quences. To gauge how the complexity of the pulses increases
as we get close to the QSL, we use a parametrization based
on the number of Fourier components of the pulse, though
any other set of parameters more appropriate for the given
control task could be substituted. Each control is parametrized
by a truncated Fourier series that is fed to a product of
two sigmoids to enforce the global bound and a smooth
start and finish. The amplitude coefficients, frequencies, and
phases are optimized using the GOAT algorithm [13], a recent
gradient base algorithm that is capable of handling any ana-
lytic ansatz and can easily accommodate multiple and varied
constraints.

We begin with a large number of Fourier components and
probe the QSL. The number of components is chosen to offer
roughly the same number of parameters to describe the drive
shape as we had in the piecewise-constant case of Fig. 1.
We observe in Fig. 3 that the QSL is less sharp than what
was observed with the piecewise-constant description, which
illustrates the clear influence of the choice of the control
representation on the control landscape. Then, we iteratively
remove the Fourier component with the smallest amplitude and
reoptimize. The process terminates when simpler controls are
unable to reach the minimum gradient threshold. In this case,
component count was lowered down to only nine components.
However, this reduction is at the cost of an increased gate time
of 70 ns and the appearance of some very high frequencies.
This offers a hint to explain why the unconstrained piecewise
optimization manages to converge to a gate error of 10−10,
whereas the spectral optimization with a smaller frequency
range converges only to 10−3. It seems that high-frequency
components are necessary for the fine-tuning needed to achieve
a high accuracy. Moreover, this could also be a sign that the
Fourier ansatz is not the most efficient for this system, and
one may wish to try a few other analytic ansatzes. The GOAT

package would be well suited for such study.
Nonetheless, limiting the number of Fourier components

to 167 we find that the minimum time is around 15 ns to
obtain 10−3 infidelity, which is consistent with the PWC

case and thus indicates this is likely the QSL for such a
regime of control parameters, regardless of the chosen control
parametrization. The dependence of QSL on the number of
control parameters (15 ns for 167 components vs 70 ns for 9
components) demonstrates that the quantum speed limit is not
only a function of time but also a function of pulse complexity.
Thus, the Fourier basis is a good choice to minimize pulse
complexity, as might be suited to in situ tuning of pulse
parameters. This representation is also natural for enforcing
bandwidth constraints. Lastly, it lends itself to the generation
of highly simplified pulses by an iterative process of reducing
the number of Fourier components. We do have to keep in
mind, however, that microwave-pulse-shaping technology is
typically in the time domain.

VII. BANDWIDTH-CONSTRAINED PULSES

The piecewise-constant parametrization, with high-
resolution controls, provides a theoretic lower bound to gate
times. In practice, time-resolved optimizations are limited
by the AWG’s bandwidth, as well as other filtering induced
by system components. We therefore optimize the pulses for
an AWG with a finite time resolution of 1 ns, fine steps of
0.2 ns, buffers of 4 ns in duration at the beginning and the end,
and filtering of the signal, consistent with earlier work [12].
Filtering is applied via a Gaussian window function with the
standard deviation σ = 0.4 ns, i.e., a bandwidth of 331 MHz.
We consider two control ansatzes: one in which the controls
utilize a single carrier frequency (the standard CR scheme),
and one in which two carrier frequencies are employed.

When a single carrier frequency is used, a minimum gate
time of 70 ns is achieved, with a fidelity of 0.999. GRAPE
optimization generated the controls and spectra shown in
Fig. 4. Clearly visible is the reduced bandwidth, effected by
the control filtering. As a result, the pulse requires significantly
more time than the QSL. However, it is still less than half the
time required by current implementations of the CR gate [5],
implying only half as much fidelity will be lost to incoherent
processes.

Moving to two carrier frequencies and retaining the band-
width limitations on the AWGs, we see a drastic reduction
in the gate time. The intuition to this scheme stems from
Sec. V, where one can identify two principle components in
the frequency spectrum of the controls appearing in Fig. 2. As
can be expected, the two principle frequencies are proximate
to the resonance frequencies of the two qubits. More precisely,
the qubit frequency at 0.67 GHz is shifted by f2 to 0.57 GHz,
which is then bifurcated by the Rabi splitting 2g to 0.47 and
0.67 GHz. Our control pulses take the following forms:

�x
1(t) = �x ′

1 (t) + cos[(δ + g)t]�x ′′
1 (t),

�
y

1(t) = �
y ′
1 (t) + cos[(δ + g)t]�y ′′

1 (t),

�x
2(t) = �x ′

2 (t) + cos[(δ − g)t]�x ′′
2 (t),

�
y

2(t) = �
y ′
2 (t) + cos[(δ − g)t]�y ′′

2 (t), (12)

where the quotes symbols ( ′′) denote the new (AWG) control
functions, and δ = δ2 + f2 is the qubit separation. This doubles
the number of functions to optimize. A Gaussian filter with a
bandwidth of 331 MHz is added to account for the distortion
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FIG. 4. Pulse shapes and spectra of the optimal drive shape for
filtered PWC ansatz with a gate time of 70 ns and a single carrier
frequency. A fidelity of 0.999 is achieved using a 331-MHz-bandwidth
Gaussian filter.

of the piecewise-constant control functions by wave-form
generators [12]. The smooth controls, in addition to being a
constraint of the system, improve optimization convergence
speed and may help with experimental imperfections and
unforeseen low-pass filters in the system. The pulse complexity
is reduced not only by decreasing the sampling rate and the
bandwidth of the pulses but also by the very short gate time of
27 ns, which indicates that the total number of control points
needed is reasonably small, on the order of 100.

The optimization is carried out with coarse pixels of 1 ns
and a fine time step of 0.05 ns and reaches a final fidelity
of 0.9999. The control functions optimized �i ′

j , �i ′′
j , and fj

are shown in Fig. 5. The constant value of the frequency
detuning is also optimized but its value appears to be stuck
in a local minimum and does not evolve significantly during
the optimizations, suggesting additional improvement may be
achieved by fine-tuning the choice of drive frequencies near
the qubit transitions.

In Fig. 6, fidelity dependence on f1 ± ε1 and f2 ± ε2 is
plotted. We notice qubit-driven detuning errors εi on the order
of up to about 2 MHz lead to a drop of fidelity by 2 orders of
magnitude. Experimentally, miscalibrations are expected to be
much smaller than this amount.
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FIG. 5. Optimization results for control pulses using two carrier
frequencies and a bandwidth filter, achieving 0.9999 fidelity when
incoherent processes are ignored. (a) Controls at qubit 1 frequency.
(b) Controls at qubit 2 frequency (δ ± g).

In Fig. 7, we examine the fidelity’s dependence on dephas-
ing time, with dephasing and relaxation T1 = T2 and the cavity
decay rate set to TP = 100 μs. The full evolution is then given
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FIG. 6. Infidelity of the CR gate as a function of the miscalibration
of qubit 1 and qubit 2 frequencies, with other model parameters
specified by Table I. The control pulses are as depicted in Fig. 5.
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FIG. 7. Infidelity of the CR gate as a function of equal dephasing
and decoherence rates. Model parameters follow Table I, and control
pulses follow Fig. 5.

by the master equation

ρ̇ = −i[H,ρ] + γj

∑
j

AjρA
†
j − 1

2
A

†
jAjρ − 1

2
ρA

†
jAj .

(13)

The Lindblad operators are bi for relaxation,
√

b
†
i bi for pure

dephasing, and a for the cavity decay. We see that for typical
values of experimental dissipation losses (>100 μs), the error
is limited only by the precision of our unitary optimization and
not by additional nonunitary losses, validating our estimates for
the CR quantum speed limit.

Finally, we test the validity of the truncation of the Hilbert
space. The optimized control functions were applied to a
larger Hilbert space utilizing six levels for the resonator and
each transmon. The maximum population reached during the
dynamics is noted in Fig. 8. For the transmons, we take the max-
imum over both qubits Mr = maxt [pr (t)] and MTransmons =
maxt ;i∈1,2[pri

(t)]. The population of the resonator’s third level,
as well as the qubits’ fifth level, remain below 10−3. Unsurpris-
ingly, the transmon is leakier than the resonator by just about
an order of magnitude: Leakage to level three is approximately
10−3 for the resonator and 10−2 for the qubits.
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FIG. 8. Maximum transient population leakage to the higher
levels of the resonator (a) and the transmons (b) during the dynamics
driven by the optimal controls described in Fig. 5 and the model
parameters detailed in Table I. Note the logarithmic scaling.

VIII. DISCUSSION

In this work we have demonstrated the very significant
benefits which can be derived from applying quantum optimal
control to the problem of quantum gate generation and more
specifically to superconducting gates. We have chosen to
focus on CR gates as one of the leading architectures for
superconducting gates, which benefit from not requiring the
overhead or noise sources present in tunable-frequency qubits.

The current state of the art for the CR CNOT gate is an
infidelity of 0.009 ± 0.002 [5]. One of the primary reasons
for the imperfect fidelity is the 160-ns duration of the gate,
allowing incoherent processes to induce an infidelity of 0.004
(T1 � 40 μs and T2 � 5 μs). Therefore, to improve fidelity
significantly, one must shorten the gates (in parallel with efforts
to increase coherence times and reduce coherent errors).

We note that the model used for the CR circuit is not
perfect, as with any experiment: some aspects of the model are
unknown (e.g., random defects in the substrate coupling to the
circuit), and some characterization gaps and parameter drifts
are unavoidable. Therefore, every proposed pulse sequence
will have to be calibrated in a closed-loop tune-up process—a
gradient-free search over the space of pulse parameters
with the goal of minimizing infidelity. Such calibrations
are practical only when the pulses are described by a small
number of parameters. Therefore, practical pulses must have
a simple description.

It is critical to determine the limits of achievable perfor-
mance with any given circuit design, CR gates included, as
this affects the decision of whether new circuits need to be
developed to achieve fidelity goals. We have therefore em-
ployed several quantum optimal control techniques (GRAPE
and GOAT) to determine the quantum speed limit and to design
simple bandwidth-constrained control pulses which implement
significantly faster CR gates.

Specifically, we have shown that the speed limit of the
system is between 5 and 10 ns, implying an incoherence limit
of below 5 × 10−4. Unfortunately, the pulse shapes required
to reach such speeds are too complex to reliably implement in
the experiment and far too complex to calibrate.

We therefore explored alternate routes: the first follows
the standard control scheme, where only the control qubit is
driven, and the second requires contemporaneous driving with
two carrier frequencies. Both approaches yielded significant
improvement over the state of the art.

With a single carrier, we have achieved a CNOT gate in
only 70 ns. A further dramatic acceleration can be achieved
when a second carrier is introduced: We have identified a
pulse sequence which implements a CNOT gate in only 27 ns.
For such short durations, incoherent effects induce less than
10−3 infidelity. We note that the control fields used are low-
pass-filtered to the current circuit’s control bandwidth and
are therefore directly implementable. Moreover, both pulses
are described by less than 100 parameters and are therefore
calibratable. To reduce parameter count further, one may
employ the GOAT optimal control method, to allow additional
control ansatzes to be explored.

Our exploration of the quantum speed limit further shows
that, unlike the case where there are no direct qubit drives and
the natural (perfect) entangler to use is the iSWAP [53,54],
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a CNOT gate is instead a good fit for architectures where such
drive lines do in fact exist. Moreover, in comparison to the
exhaustive parameter search for a global QSL without a direct
line, [54], in our limited local search with a direct line we
are able to cut in half the global QSL with our bandwidth-
constrained pulses. Nonetheless, one may still be able to use the
insights from the former to find an even faster operating regime
for the transmons in the latter case, notably by moving the
transmon frequencies towards the quasidispersive straddling
qutrits (QuaDiSQ) regime [54].

This work also motivates further use of this already promi-
nent gate, being in fact even faster than the entangling gates
used in the tunable-frequency implementations, which suffer
from extra noises originating at the additional flux-tuning
circuitry.

To conclude, we have shown that the application of quantum
optimal control to the cross-resonance superconducting CNOT

gate can reduce pulse duration from 160 to 27 ns, using control
sequences which are well within experimental capabilities,
are described by a small number of parameters, and are
therefore calibratable. Thus, we demonstrate the potential of
reducing incoherent effects fivefold, significantly improving
gate fidelity.
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