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Intrinsic bounds of a two-qudit random evolution
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We investigate entangled qudits evolving under random local SU(d) operations and demonstrate that this
evolution is constrained by intrinsic bounds, showing robust features of two-qudit entangled states that can
be useful for fault tolerant implementations of phase gates. Our analytical results are supported by numerical
simulations and confirmed by experiments on nuclear magnetic resonance.
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I. INTRODUCTION

The development of quantum technologies is challenged by
the unavoidable action of the environment and uncontrollable
experimental imperfections. These effects cause errors in quan-
tum algorithms and limit the scalability of quantum devices.
Strategies are in course to isolate the physical systems used
for quantum information tasks and to identify features that
are immune to those undesired effects. The use of engineered
reservoirs [1–3], decoherence free subspaces [4], geomet-
rical phases [5–16], topologically protected systems [17],
and dynamical decoupling [18–21] has been considered as
potential means for robust quantum computation. The role of
entanglement in the geometric phase acquired by entangled
quantum systems has motivated a great deal of interesting
research works [22–24]. In particular, it has been theoretically
predicted [25,26] and experimentally demonstrated [27,28]
that the geometric phase acquired by maximally entangled
qubits is discrete, restricted to integer multiples of π . Later,
fractional phases were predicted for maximally entangled
systems with arbitrary dimension d (qudits) [29–32] and for
multiple qubits [33,34]. Quantum algorithms employing qudits
have also been considered in the literature [35–37].

In this paper we demonstrate an intriguing feature regarding
the evolution of entangled two-qudit states under arbitrary
local SU(d) transformations, namely, the overlap between
the transformed and the initial states is confined within a
nontrivial boundary in the complex plane. This boundary is de-
duced analytically, confirmed by numerical simulations, and,
furthermore, experimentally verified with nuclear magnetic
resonance.

II. MATRIX STRUCTURE OF TWO-QUDIT STATES

Let us consider a two-qudit quantum state evolution

|ψ(t)〉 =
d∑

i,j=1

Mij (t)|ij 〉, (1)

where M is the coefficient matrix of the quantum state
expansion in the computational basis {|ij 〉} . It will be useful
for our purposes, to write the coefficient matrix in its polar

decomposition [38]:

M(t) = eiθ(t) Q(t) S(t), (2)

where three sectors can be identified: (1) the U(1) sector
represented by the overall phase factor eiθ(t) , (2) the SU(d)
sector given by S(t) ∈ SU(d) , and (3) the Hermitian sec-
tor Q(t) = Q†(t) . Under local unitary transformations, each
sector follows an independent time evolution. Indeed, let
UA(t) = eiθA(t)ŪA(t) and UB(t) = eiθB (t)ŪB(t) be the local
unitary transformations applied to qudits A and B , with ŪA(t)
and ŪB(t) ∈ SU(d) . In this case the evolution in each sector
is given by

θ (t) = θ (0) + θA(t) + θB(t),

Q(t) = ŪA(t) Q(0) Ū
†
A,

S(t) = ŪA(t) S(0) Ū T
B . (3)

It will be convenient to adopt the basis leading to the Schmidt
decomposition of the initial state, so that Mij (0) = qj δij ,
where {qj } ∈ R are the eigenvalues of the Hermitian sector
in decreasing order q1 � q2 � · · · � qd . Of course, these
eigenvalues are stationary since this sector undergoes a uni-
tary transformation. The Schmidt decomposition also implies
θ (0) = 0 and S(0) = 1 . Moreover, we shall assume that the
two qudits are locally operated with SU(d) transformations
(θA = θB = 0), making the U(1) sector stationary. Note that
local SU(d) transformations are naturally realized in spin
systems interacting with an external magnetic field, since the
energies of the spin eigenstates are symmetrically shifted in
this case. This makes nuclear magnetic resonance (NMR) the
ideal platform for the experimental investigation.

For maximally entangled states, the Schmidt coefficients
are all equal qj = 1/

√
d so that Q(t) = 1/

√
d and the Her-

mitian sector remains stationary. In this case, the coefficient
matrix structure will evolve solely in the SU(d) sector. For
partial entanglement, the eigenvalues {qj } are unequal and
the overlap evolution must be considered on both Hermitian
and SU(d) sectors. We now demonstrate that this overlap
remains restricted to a confined area of the complex plane
the contour of which is given by the polar plot R(�) with
R ≡ |〈ψ(0)|ψ(t)〉| and � ≡ arg 〈ψ(0)|ψ(t)〉 . This contour
depends on the dimension of the qudits and on the Schmidt
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coefficients. In terms of the matrix structure, the overlap reads

〈ψ(0)|ψ(t)〉 = Tr[Q(0)Q(t)S(t)]. (4)

III. OVERLAP BOUNDARY

In order to derive the analytical shape of the contour, we
must obtain the maximum value of R for fixed � to determine
the contour function Rmax(�) . The properties of the trace
involving unitary and Hermitian matrices have been studied
in a number of works [39–42]. However, little attention has
been given to the case when the unitary matrices are restricted
to SU(d) . Properties of SU(3) traces were investigated in
the context of the configuration space of lattice quantum
chromodynamics [43]. More recently, the properties of SU(d)
traces were studied in connection with quantum entropies as
invariants for the projective unitary group acting on a finite-
dimensional complex Hilbert space [44]. From these works, we
learn that this kind of trace is maximized by diagonal unitary
matrices that commute with Q(0) , leaving the Hermitian sector
stationary. In this case, Q(t) = Q(0) and the trace expression
reduces to

〈ψ(0)|ψ(t)〉 =
d∑

j=1

q2
j eiφj (t) = R ei�, (5)

where the phase factors eiφj (t) are the eigenvalues of S(t) .
Since det S(t) = 1 , these phase factors are constrained by the
condition

F ({φj }) =
d∑

j=1

φj = 0. (6)

For a given configuration {φj } , the overlap absolute value can
be deduced from the real part of Eq. (5) as

R({φj }) =
d∑

j=1

q2
j cos(φj − �). (7)

Additionally, a second constraint can be immediately derived
from the imaginary part:

G({φj }) =
d∑

j=1

q2
j sin(φj − �) = 0. (8)

We are now able to find Rmax(�) under constraints (6) and (8)
using Lagrange multipliers. For this end, we define

L({φj },λf ,λg) = R({φj }) + λf F ({φj }) + λg G({φj }),
(9)

where λf and λg are Lagrange multipliers. The constrained
extrema of R are obtained from the solutions of

∂L

∂φk

= q2
k [− sin(φk − �) + λg cos(φk − �)] + λf = 0,

(10)

from which we readily derive the condition

q2
k sin(� + θ − φk) = 
, (11)

where the Lagrange multipliers were replaced by the more
convenient variables θ = arctan λg and 
 = −λf cos θ . Equa-
tions (6) and (8), plus condition (11) for 1 � k � d , form a
set of d + 2 algebraic equations for the d individual phases φk

plus the auxiliary variables 
 and θ .

A. General case

For partial entanglement, Eq. (11) can be solved in
parametrized form as functions of γ ≡ � + θ − φd . From
condition (11) for k = d , we immediately get 
(γ ) =
q2

d sin γ . By inverting condition (11), adding it up for all k’s,
and using (6), we easily arrive at

φk(γ ) = �

d
− arcsin

(



q2
k

)
(1 � k � d − 1),

φd (γ ) = �

d
− γ, (12)

where �(γ ) ≡ γ + ∑d−1
j=1 arcsin (
/q2

j ) and the arcsin func-
tion is to be taken in the interval [0,π/2] for 1 � k � d − 1 .
We can build the correspondence Rmax(γ ) × �(γ ) by comput-
ing the parametric expressions

Rmax(γ ) =
∣∣∣∣∣∣

d∑
j=1

q2
j e

iφj (γ )

∣∣∣∣∣∣,

�(γ ) = arg

⎡
⎣ d∑

j=1

q2
j e

iφj (γ )

⎤
⎦. (13)

The Lagrange variables θ and 
 , and the auxiliary angle γ ,
have a clear geometric interpretation in the complex plane, as
shown in Figs. 1(a) and 1(b) for qutrits, for example. Consider
d phasors q2

k eiφk (1 � k � d) rotating in the complex plane.
Condition (11) imposes that the phasor arrow heads remain
lined up during the evolution, as indicated by the red (online)
line in Fig. 1(b). Due to condition (6), they cannot evolve all
in the same sense, so one of the phasors must turn opposite to
the others. The overlap acquires maximum absolute value for
each phase � when the smallest phasor q2

d eiφd is the counter-
rotating one and the remaining d − 1 phasors rotate in the
same sense, with all arrow heads lined up at all times. The
Lagrange variable θ corresponds to the angle between the line
connecting the arrow heads and the sum phasor Rmax, while 


is the minimum distance from the origin of the complex plane
to the connecting line.

By varying γ in the interval [0,2dπ ] , we can draw the
polar plot of the overlap boundary in the complex plane.
This boundary defines a closed curve with exactly d branches
covered by the intervals γ ∈ [2nπ,2(n + 1)π ] (0 � n � d −
1). When γ = 2nπ , a closed evolution (|ψ(0)〉 → ei�|ψ(0)〉)
is completed, so that the maximum overlap modulus reaches
unity and its phase assumes the discrete values � = 2nπ/d

that correspond to the topological phases allowed for two-qudit
closed evolutions. The minimum value of Rmax is 1 − 2q2

d

when γ = (2n + 1)π so that � = (2n + 1)π/d . The sharp
edges between the boundary branches exhibited by maximally
entangled states are smoothened as qd diminishes until the
boundary degenerates to the unit circle when qd = 0 , as
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FIG. 1. (a) Graphic representation in the complex plane of the
summation terms in Eq. (13) for qutrits. (b) Geometric interpretation
of the Lagrange variables and condition (11). The smallest phasor
(q2

3 ) rotates opposite to the remaining ones, with all arrow heads lined
up (red line) at all times. The Lagrange variable θ corresponds to
the angle between the line connecting the arrow heads and the sum
phasor Rmax, while 
 is the minimum distance from the origin to the
connecting line. Condition (11) identifies 
 as the projection of all
phasors on the direction perpendicular to the connecting line.

clearly shown in Figs. 2(b) and 2(c). The numerical simulations
with random SU(3) × SU(3) matrices also demonstrate clear
confinement. However, the diagonal evolutions defining the
boundary are statistically untypical, so that points approaching
the boundary are rare. Of course, the confinement region is
completely covered when the random unitaries are sampled
among the diagonal ones, as we have numerically verified.
This kind of statistical gap does not show up for maximally
entangled states, because the overlap is reduced to the trace of
the SU(d) matrix S(t) [in this case Q(t) ∝ 1], which is solely
determined by its eigenvalues independently of being diagonal
or not.

B. Maximally entangled qudits

A simple analytical expression can be obtained for max-
imally entangled qudits (qk = 1/

√
d). In this case, all φk’s

for 1 � k � d − 1 are equal, φk = φ , and φd = −(d − 1)φ .
Then, the parametric expressions (13) for the maximum over-

FIG. 2. Evolution of the two-qutrit overlap under random local
SU(3) operations for (a) maximally entangled qutrits q2

1 = q2
2 = q2

3 =
1/3 , (b) partially entangled qutrits with q2

1 = 1/2 , q2
2 = 1/3 , q2

3 =
1/6 , and (c) partially entangled qutrits with q2

1 = 2/3 , q2
2 = 1/3 ,

q2
3 = 0 . The analytical boundary is displayed in red (online) and the

results of numerical simulations are displayed in blue (online) dots.
The unit circle is indicated in green (online) line for reference. In (c)
the analytical boundary coincides with the unit circle.

lap modulus and phase reduce to

Rmax(φ) = 1

d

∣∣(d − 1)eiφ + e−i(d−1)φ
∣∣

=
√

1 − 4

(
d − 1

d2

)
sin2

(
d φ

2

)
,

�(φ) = arg[(d − 1)eiφ + e−i(d−1)φ]

= φ + arg (d − 1 + e−idφ). (14)
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FIG. 3. Evolution of the two-qudit overlap under random local
SU(d) operations for (a) d = 2 , (b) d = 3, and (c) d = 4 . The
analytical boundary is displayed in red (online) and the results of
numerical simulations are displayed in blue (online) dots. The unit
circle is indicated in green (online) for reference.

In order to illustrate the overlap boundaries for different
dimensions, we present in Figs. 3(a) and 3(b) the analytical
contours given by Eqs. (14) (red line curves) and the numeri-
cal simulations with random SU(d) × SU(d) transformations
(blue line dots) for d = 2 and 3 . The minimum value of
Rmax is 1 − 2/d , so that for qubits the overlap boundary
collapses to a line segment defined by the interval [−1,1]
on the real axis, as clearly shown in Fig. 3(a). The limiting
contour for d = 3 is displayed in Fig. 3(b). The numerical
results show strict confinement within the analytical boundary
in both cases. Moreover, note that Rmax reaches unity when
the overlap phase assumes the allowed topological phases for
qudits: � = 2nπ/d.

C. Qubits

Simple analytical expressions for Rmax × � can also be
derived for qubits with arbitrary entanglement. This will be
particularly convenient for our experimental investigation.
For a pair of qubits initially prepared in a pure state with
Schmidt decomposition |ψ(0)〉 = q |00〉 +

√
1 − q2 |11〉 , the

concurrence is C = 2q
√

1 − q2 , and Eqs. (13) reduce to

Rmax = |q2eiφ + (1 − q2)e−iφ|
=

√
1 − C2 sin2 φ,

� = arg[q2eiφ + (1 − q2)e−iφ]

= arctan(
√

1 − C2 tan φ). (15)

For product states (C = 0), one trivially obtains Rmax = 1 and
� = φ , which corresponds to the unit circle boundary. For
maximally entangled states (C = 1), we have Rmax = | cos φ|
and � becomes discrete, assuming only zero or π . Note that
the minimum value of Rmax is equal to

√
1 − C2 , so that the

concurrence can be inferred from the contour of the boundary
region.

IV. TWO-QUBIT TOPOLOGICAL PHASE STABILITY

There is a remarkable difference between qubits and qudits
(d > 2) in what regards the phase stability of entangled states
under random local SU(d) operations. Since the overlap bound-
ary for maximally entangled qubits collapses to a segment
on the real axis, the two-qubit state can only acquire discrete
phase values of zero or π in either open or closed evolutions.
Moreover, the π phase shift requires a drastic change in the
initial quantum state, that cannot be caused by sources of small
unitary noise. In this way, the phase of a two-qubit quantum
state becomes more stable as entanglement is increased. We
will demonstrate this interesting feature first with numerical
simulations and then with a NMR experiment.

The situation is completely different for higher dimensions,
since the quantum state overlap can be randomly driven inside
a finite area of the complex plane. In an open evolution, even
maximally entangled two-qudit states can acquire any random
phase in the full interval [0,2π ] , although closed evolutions are
restricted to the discrete topological phases 2nπ/d (n ∈ Z) .

In order to investigate the phase stability, we will simulate
the quantum state evolution of qubits (d = 2) and qutrits
(d = 3) under random sequences of infinitesimal unitary trans-
formations of the form dUA ⊗ dUB given by

dUA = 1 + i dt

d2−1∑
n=1

anTn,

dUB = 1 + i dt

d2−1∑
n=1

bnTn, (16)

where Tn are the d2 − 1 generators of SU(d) (Pauli matrices
for qubits and Gelmann matrices for qutrits), an and bn are
Gaussian-distributed random numbers, and dt is the dimen-
sionless time step. The two-qudit quantum state is evolved
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FIG. 4. Time evolution of the two-qudit overlap under random
local SU(d) operations for (a) qubits with C = 0 , (b) qubits with C =√

3/2 , (c) maximally entangled qubits (C = 1), and (d) maximally
entangled qutrits (C = √

4/3 ).

according to

|ψ(t + dt)〉 = dUA ⊗ dUB |ψ(t)〉 (17)

and the overlap phase arg [〈ψ(0)|ψ(t)〉] is computed as a
function of time.

In Fig. 4 we display typical time series of the overlap phase.
The increased stability of maximally entangled qubits is clear
from Figs. 4(a)–4(c). The phase fluctuations are reduced as
the concurrence C is increased and becomes flat in a time

(a) (b)

FIG. 5. (a) Quantum circuit for measurement of the two-qubit
overlap. (b) The three-qubit iodotrifluoroethylene molecule.

scale when C = 1 . In this case, the overlap phase remains
stable until the random sequence of unitary kicks drives the
two-qubit state towards the subspace orthogonal to |ψ(0)〉 ,
when the overlap becomes small and fluctuates around zero.
This fluctuation between small positive and negative real
numbers causes a sequence of sudden jumps of the overlap
phase between zero and π , as can be seen in Fig. 4(c). These
sudden jumps cease when the quantum state moves away from
the orthogonal subspace. In this sense, the two-qubit phase is
piecewise stable for maximally entangled states. However, the
same kind of phase stability cannot be seen in the time series
shown in Fig. 4(d) for maximally entangled qutrits. In this case,
the quantum state overlap can acquire any phase value inside
[0,2π ] , as explained above.

V. NMR EXPERIMENT

In optical experiments, geometrical phases are only achiev-
able using interferometric approaches. In NMR, the analog of
interferometry can be implemented using the quantum circuit
shown in Fig. 5(a), where the eigenstates of an auxiliary
spin − 1/2 emulate two photon paths [28,45–47]. In the
beginning of the operation, the system we want to probe
is prepared in a given two-qubit state |ψ(0)〉, whereas the
auxiliary spin is prepared in the superposition state (|0〉 +
|1〉)/√2, by applying a Hadamard gate on the state |0〉. The
application of the controlled unitary operator U provides the
state (|0〉|ψ(0)〉 + |1〉|ψ(t)〉)/√2, where |ψ(t)〉 = U |ψ(0)〉 .
When a measurement is performed on the auxiliary spin, its
normalized magnetization components on the x-y plane, which
are proportional to the average value of the corresponding Pauli
matrices, are directly related to the overlap between the states.

We used an ensemble of identical and noninteracting
molecules in liquid state at room temperature, where nuclear
spins are employed as qubits. The quantum state of the
ensemble is prepared, from the thermal equilibrium, in the
so-called pseudo-pure state (PPS) [51]:

ρ = (1 − ε)
1

d
+ ε|ψ〉〈ψ |. (18)

Since the maximally mixed part 1/d does not produce an
observable signal, the overall NMR signal arises only from the
pure state part |ψ〉〈ψ | where the factor ε ≈ 10−5 is the thermal
polarization and d is the dimension of the Hilbert space. Under
a suitable normalization, the state (18) is equivalent to that from
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FIG. 6. Experimental overlap under random unitary evolutions for three different states: (a) the separable state |00〉 (C = 0), (b) the partially
entangled state cos(7π/36) |00〉 + sin(7π/36) |11〉 (C = 0.94), and (c) the maximally entangled state (|00〉 + |11〉)/√2 (C = 1). The top panel
shows the overlap 〈ψ(0)|ψ(t)〉 in the complex plane and the bottom panel shows the phase distributions in polar histograms. The phase
concentration around the discrete values zero and π is clear for maximally entangled states.

a system in a pure state |ψ〉 and, therefore, can be used to test
different features of pure entangled states [52–54].

The experiment was performed at room temperature, using
a 500-MHz Varian NMR spectrometer and an ensemble of
iodotrifluoroethylene (C2F3I) molecules dissolved in deuter-
ated acetone. This molecule [see Fig. 5(b)] contains three
spin-1/2 19F nuclei where two fluorine nuclei are used to
encode the state |ψ〉 and one fluorine nucleus is used as
the auxiliary spin. The PPS was created using the control
transfer gates technique [55]; the actual pulse sequence used
can be found in [47]. To implement gate operations we exploit
standard Isech shaped pulses interleaved with periods of free
evolutions. For combining all operations into a single pulse
sequence we have used the techniques described in [48–50].

Figure 6 shows the overlap 〈ψ(0)|ψ(t)〉 in the complex
plane under 800 random unitaries for three states with different
degrees of entanglement. The unitaries were applied only on
a single qubit of the entangled pair and have the form of
combined rotations U = Rx(θ )Rz(β) around the x and z axes,
where θ and β were randomly chosen from zero to 4π . The
results clearly show the confinement by the bounds predicted
by Eq. (15), indicated in red (online) in Fig. 6(b). As the degree
of entanglement is increased, the confinement effect becomes
more pronounced and the acquired geometrical phase becomes
more robust, being almost strictly restricted to only zero or π

when the state is maximally entangled. The phase distribution

histograms are shown in the bottom panel of Fig. 6. They
confirm the statistical concentration of the phase distribution
around the discrete phases when entanglement is increased.
The small deviations from the theory are due to decoher-
ence processes and experimental imperfections on the control
gates.

VI. CONCLUSION

In conclusion, we have investigated pairs of entangled
qudits evolving under random local SU(d) operations. We have
analytically demonstrated that the overlap between the SU(d)
transformed and the initial state is confined within boundaries
that only depend on the degree of entanglement. This feature
was confirmed by numerical simulations with random local
unitaries and, moreover, experimentally verified with an NMR
setup. Our results provide a step further in the direction of
robust quantum computation by demonstrating a noise resistant
phase acquired by entangled qubits.
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