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We analyze optimal schemes and also propose some practical schemes for the nonlocal conversion from two
shared Bell pairs to four-qubit entangled states in optical quantum networks. In the analysis, we consider two-qubit
operations as nonlocal operations and minimize the number of access to ancillary qubits as possible. First, we
consider two-qubit unitary operations without using ancillary qubits and derive a necessary and sufficient condition
for convertible states. Second, we consider nonlocal optical systems composed of passive linear optics and
postselection. For the passive linear optical systems, we derive achievable upper bounds of success probabilities
of the conversion in the case without ancillary qubits. We also compare the optimal success probabilities with
those of previously proposed schemes. Finally, we discuss success probabilities of the conversion in the case with
ancillary qubits.

DOI: 10.1103/PhysRevA.97.042341

I. INTRODUCTION

Multipartite entanglement is an important resource of a
quantum network that enables several multiparty quantum
information processing tasks such as quantum key distribu-
tion (QKD) [1], quantum teleportation [2,3], and distributed
quantum computing [4–6]. For each of the multiparty quantum
information processing tasks, different entangled resource
states are required. Particularly, Bell pairs, graph states [7–9],
hypergraph states [10], W states [11–13], and Greenberger-
Horne-Zeilinger (GHZ) states [14] are used in a variety of
protocols as follows: Bell pairs can be used for QKD [1]; quan-
tum teleportation of a general one-qubit state [2]; and blind
quantum computing [15–17]. Graph states and hypergraph
states can be used for universal quantum computing [8,9,18].
W states can be used for leader election in anonymous quantum
networks [6] and asymmetric telecloning [19]. GHZ states
can be used for achieving consensus in distributed networks
without classical postprocessing [6] and secure delegated
classical computing [20]. Recently, in addition to these, Dicke
states [21] and χ states [3] have also been studied. For
example, Dicke states can be used for Grover’s quantum search
algorithm [22] and certain quantum versions of classical games
[23,24]. χ states can be used for achieving optimal violation of
a Bell inequality [25] and quantum teleportation of a general
two-qubit state [3].

So far, several generation methods of multipartite entangled
states have been proposed [26–30]. In quantum networks,
we normally consider the state generation of various mul-
tipartite entangled states by local operations and classical
communication (LOCC) because of the characteristics of
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quantum entanglement. This is fundamentally interesting. On
the other hand, it is well known that the conversion between
any multipartite entangled state cannot be achieved using
LOCC, because GHZ states, W states, graph states, Dicke
states, and χ states come from inequivalent entanglement
classes under LOCC in the four-qubit case [31,32]. Recently, in
order to circumvent such no-go result, the nonlocal conversion
required as the realistic networks has been actively studied.
For example, it has been shown that a four-qubit linear cluster
state can be probabilistically converted to a four-qubit GHZ
state, a four-qubit Dicke state, and two Bell pairs [33,34]
using a tunable polarization-dependent beam splitter (PDBS)
as a nonlocal operation. In another work, a universal optimal
gate for transforming Dicke states has been proposed in the
case where some qubits can be accessed from one node [35].
Furthermore, a scheme to fuse three W states, which requires
an ancillary qubit and access to one qubit of each of the W

states, has also been proposed [36]. However, the utility of
nonlocal operations for the quantum network has not yet been
fully understood. It is still challenging to achieve entanglement
generation efficiently in restricted situations, where the number
of access to qubits is minimized.

In this paper, we analyze the optimal state conversion from
two Bell pairs to four-qubit entangled states and also propose
some practical conversion schemes using restricted nonlocal
operations. Here, we focus on a situation where one node is
close to another one while far from the other two nodes for
shared two Bell pairs. We also assume that nonlocal operations
can be performed on only two nodes being close to each
other. First, in Sec. II, we consider general two-qubit unitary
operations as nonlocal operations. We then derive a necessary
and sufficient condition for convertible states in this case.
Second, in Sec. III, we consider optical systems composed of
passive linear optics and postselection as nonlocal operations.
In Sec. III A, we define nonlocal operations using only passive
linear optics and postselection for our conversion schemes.
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FIG. 1. An example of quantum networks. The image magnifica-
tion is a four-qubit state shared by four nodes that are enclosed by
dotted lines.

Then in Sec. III B, we consider the nonlocal conversion from
two Bell pairs to well-known four-qubit entangled states such
as linear cluster states, GHZ states, W states, Dicke states,
different two Bell pairs, and χ states using the definition in
Sec. III A. In particular, we derive optimal success probabilities
of the nonlocal conversion and show how to achieve the
optimal success probabilities in passive linear optical systems.
In Sec. III C, we show improvements of success probabilities
of the conversion when we use ancillary qubits. In Sec. IV,
we compare our scheme with some previous protocols and
show advantages of our scheme. Section V is devoted to the
conclusion. In Appendix A, we provide details of derivation
of optimal success probabilities for our nonlocal conversion
methods. In Appendix B, we derive the success probability
and the fidelity of an output state of a nonlocal converter given
in Sec. III B when the transmittance of PDBSs is deviated from
an ideal value.

II. STATE CONVERSION BY NONLOCAL TWO-QUBIT
UNITARY OPERATIONS

We focus on a shared four-qubit state in quantum networks,
as shown in Fig. 1. This four-qubit state is represented as
two qubits close to each other (nodes 2 and 3) and other two
qubits far from the others (nodes 1 and 4). In this situation, we
consider the state conversion from two Bell pairs to four-qubit
entangled states using two-qubit unitary operations performed
on nodes 2 and 3. Two Bell pairs are given by |�+〉1,2|�+〉3,4,
where |�+〉i,j ≡ (|HH 〉i,j + |V V 〉i,j )/

√
2. Here, |H 〉i (|V 〉i)

represents a horizontally (vertically) polarized photon in node
i of the network. We define V2,3 as a two-qubit unitary operator
performed on nodes 2 and 3. We also define U1 and W4 as a
single-qubit unitary operator performed on each node 1 and
4, respectively. Using these definitions and the initial state
|�+〉1,2|�+〉3,4 with a relation given by

Uj |�+〉i,j = UT
i |�+〉i,j , (1)

a converted four-qubit state |f 〉 can be written as

|f 〉 ≡ U1V2,3W4|�+〉1,2|�+〉3,4

= V ′
2,3|�+〉1,2|�+〉3,4

= 1

2

∑
i,j∈{H,V }

|ij 〉1,4V
′

2,3|ij 〉2,3, (2)

where V ′
2,3 ≡ V2,3U

T
2 WT

3 . From Eq. (2), it is known that when
|f 〉 is divided into system A (the nodes 1 and 4) and system
B (the nodes 2 and 3), the Schmidt rank of |f 〉 is four, and all
of Schmidt coefficients are equal to each other, i.e., 1/2. It is a
necessary condition for |f 〉. Next, we show that this condition
is also a sufficient condition for |f 〉. Any four-qubit state that
satisfy this condition can be written as

1

2

1∑
i,j=0

|φi,j 〉1,4|ψi,j 〉2,3 = 1

2

∑
i,j∈{H,V }

Ṽ1,4|ij 〉1,4Ṽ ′
2,3|ij 〉2,3,

where {|φi,j 〉|0 � i,j � 1} and {|ψi,j 〉|0 � i,j � 1} are or-
thonormal bases of systems A and B, respectively. Ṽ1,4 and
Ṽ ′

2,3 are two-qubit unitary operators on systems A and B,
respectively. Moreover, any two-qubit unitary operator can be
decomposed as

(Ũ ⊗ W̃ )exp[i(θ1X ⊗ X+θ2Y ⊗ Y +θ3Z ⊗ Z)](Ũ ′ ⊗ W̃ ′),

(3)

where θi ∈ R (i = 1,2,3) [37]. Ũ , W̃ , Ũ ′, and W̃ ′ are single-
qubit unitary operators. X, Y , and Z are Pauli X, Y , and
Z operators, respectively. For simplicity, we define R ≡
exp[i(θ1X ⊗ X + θ2Y ⊗ Y + θ3Z ⊗ Z)]. From Eqs. (1) and
(3),

1

2

∑
i,j∈{H,V }

Ṽ1,4|ij 〉1,4Ṽ ′
2,3|ij 〉2,3

= Ũ1W̃4R1,4Ũ ′
1W̃ ′

4Ṽ ′
2,3|�+〉1,2|�+〉3,4 (4)

= Ṽ ′
2,3Ũ ′T

2 W̃ ′T
3 R2,3Ũ

T
2 W̃ T

3 |�+〉1,2|�+〉3,4 = |f 〉. (5)

This implies that the condition is also a sufficient condition for
|f 〉. As a result, the following theorem holds.

Theorem 1. A quantum state can be converted from two
Bell pairs |�+〉1,2|�+〉3,4 using two-qubit unitary operations
performed on nodes 2 and 3 if and only if when the quantum
state is divided into system A and system B, the Schmidt rank
of the quantum state is four, and all of Schmidt coefficients are
equal to 1/2.

Note that in general, any two-qubit unitary operation is
required for the conversion. Accordingly, this conversion
scheme requires some nonlinearities. For example, cross-Kerr
nonlinearity, an ancillary coherent state, and linear optics
are sufficient to perform any two-qubit unitary operation on
polarization-encoded qubits [38].

Using Theorem 1 and this situation, we examine the state
conversion from two Bell pairs to well-known four-qubit
entangled states. As well-known four-qubit entangled states,
we focus on the linear cluster state |C4〉, the GHZ state
|GHZ4〉, the W state |W4〉, the symmetric Dicke state |D(2)

4 〉,
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|�+〉1,3|�+〉2,4, |�+〉1,4|�+〉2,3, and the χ state |χ〉 defined as follows:

|C4〉 ≡ |HHHH 〉1,2,3,4 + |HHV V 〉1,2,3,4 + |V V HH 〉1,2,3,4 − |V V V V 〉1,2,3,4

2

= |HH 〉1,4|HH 〉2,3 + |HV 〉1,4|HV 〉2,3 + |V H 〉1,4|V H 〉2,3 − |V V 〉1,4|V V 〉2,3

2
(6)

|GHZ4〉 ≡ |HHHH 〉1,2,3,4 + |V V V V 〉1,2,3,4√
2

= |HH 〉1,4|HH 〉2,3 + |V V 〉1,4|V V 〉2,3√
2

(7)

|W4〉 ≡ |HHHV 〉1,2,3,4 + |HHV H 〉1,2,3,4 + |HV HH 〉1,2,3,4 + |V HHH 〉1,2,3,4

2

= 1√
2

(
|HH 〉1,4

|HV 〉2,3 + |V H 〉2,3√
2

+ |HV 〉1,4 + |V H 〉1,4√
2

|HH 〉2,3

)
(8)

∣∣D(2)
4

〉 ≡ 1√
6

(|HHV V 〉1,2,3,4 + |HV HV 〉1,2,3,4 + |V HHV 〉1,2,3,4 + |HV V H 〉1,2,3,4

+ |V HV H 〉1,2,3,4 + |V V HH 〉1,2,3,4)

=
√

2

3

|HV 〉1,4 + |V H 〉1,4√
2

|HV 〉2,3 + |V H 〉2,3√
2

+ 1√
6

(|HH 〉1,4|V V 〉2,3 + |V V 〉1,4|HH 〉2,3) (9)

|�+〉1,3|�+〉2,4 = |HH 〉1,4|HH 〉2,3 + |HV 〉1,4|V H 〉2,3 + |V H 〉1,4|HV 〉2,3 + |V V 〉1,4|V V 〉2,3

2
(10)

|�+〉1,4|�+〉2,3 = |HH 〉1,4 + |V V 〉1,4√
2

|HH 〉2,3 + |V V 〉2,3√
2

(11)

|χ〉 ≡ 1

2
√

2
(|HHHH 〉1,2,3,4 − |HHV V 〉1,2,3,4 − |HV HV 〉1,2,3,4 + |V HHV 〉1,2,3,4 + |HV V H 〉1,2,3,4

+|V HV H 〉1,2,3,4 + |V V HH 〉1,2,3,4 + |V V V V 〉1,2,3,4)

= 1√
2

( |HH 〉1,4 + |V V 〉1,4√
2

|HH 〉2,3 + |V V 〉2,3√
2

+ |V H 〉1,4 − |HV 〉1,4√
2

|V H 〉2,3 + |HV 〉2,3√
2

)
(12)

From Eqs. (6)–(12) and Theorem 1, the following corollary holds.

Corollary 1. Two Bell pairs |�+〉1,2|�+〉3,4 cannot be
converted to |GHZ4〉, |W4〉, |D(2)

4 〉, |�+〉1,4|�+〉2,3, and |χ〉
using two-qubit unitary operations performed on nodes 2 and
3. On the other hand, |�+〉1,2|�+〉3,4 can be converted to |C4〉
and |�+〉1,3|�+〉2,4 using the same operations.

Note that even if we perform above nonlocal operations and
two-qubit unitary operations on nodes 1 and 4, Theorem 1 and
Corollary 1 hold. It is clear from Eqs. (4) and (5).

III. NONLOCAL CONVERSION USING PASSIVE LINEAR
OPTICS AND POSTSELECTION

Corollary 1 means that |�+〉1,2|�+〉3,4 cannot be converted
to any four-qubit state using only two-qubit unitary operations
performed on nodes 2 and 3. In order to convert to more various
classes of the entanglement composed of four-qubit states in
optical quantum networks, we consider optical systems based
on a postselection as nonlocal operations. The optical systems
considered in this section are composed of passive linear optics,
i.e., PDBSs, polarization-independent beam splitters, phase
shifters (PSs), and wave plates. We also assume the same
situation as considered in Sec. II. In this situation, we show that
the passive linear optical systems enable us to convert from two

Bell pairs to entangled states that cannot be converted in Sec. II.
To this end, in Sec. III A, we define nonlocal operations using
only passive linear optics and postselection. In Sec. III B, using
the definition of the nonlocal operation given in Sec. III A,
we derive achievable upper bounds of success probabilities
of the conversion from shared two Bell pairs to well-known
four-qubit entangled states. We then show that existing optical
systems can achieve the upper bounds. In Sec. III C, we give
improvements of the conversion when we use ancillary qubits.

A. Nonlocal operation for our conversion method

A general passive linear optical system can be represented
as shown in the left-hand side of Fig. 2, because we consider the
situation where nonlocal operations can be performed on only
nodes 2 and 3, which are close to each other. Note that positions
of detectors and input photons can be fixed because swap
operations between different spatial modes can be realized
using only passive linear optics. In order to simplify the form
of the optical system without loss of generality and define our
nonlocal operations, we prove the equivalence shown in Fig. 2.
In other words, we show that an output state is the same in
both optical systems in Fig. 2 when a postselection succeeds.
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FIG. 2. The equivalence of two optical systems with two Bell pairs as an input. Two red circles connected by a black dashed line represents
the Bell pair |�+〉. Each of black symbols at output side represents a threshold detector. Each of passive linear optical systems is represented
by a corresponding unitary operator U , V , W , UT , or WT . Here, V ′ ≡ V (UT ⊗ WT ).

Here, we assume that the postselection succeeds when all of
threshold detectors detect a photon.

Let c†is and d
†
is be the s(∈ {H,V })-polarized photon creation

operators for input spacial mode i in node 1 and for output
spacial mode i in node 1, respectively. When a photon in node
1 is input into the first spacial mode of the optical system shown
in the left-hand side of Fig. 2, c

†
1s is transformed as follows:

Uc
†
1H U † =

L′∑
j=1

(ujH d
†
jH + ujV d

†
jV )

Uc
†
1V U † =

L′∑
j=1

(ũjH d
†
jH + ũjV d

†
jV ),

where L′ is the number of input (output) special modes.
Here, complex numbers ujs and ũjs satisfy

∑L′
j=1(|ujH |2 +

|ujV |2) = ∑L′
j=1(|ũjH |2 + |ũjV |2) = 1 due to the unitarity of

U . Accordingly, when the postselection in node 1 succeeds,
i.e., a photon is detected by a threshold detector in node 1, the
Bell pair |�+〉1,2 is converted to

(u1H |H 〉1 + u1V |V 〉1)|H 〉2 + (ũ1H |H 〉1 + ũ1V |V 〉1)|V 〉2

= |H 〉1(u1H |H 〉2 + ũ1H |V 〉2)

+ |V 〉1(u1V |H 〉2 + ũ1V |V 〉2) (13)

up to normalization. Equation (13) implies that a state con-
verted from |�+〉1,2 in the optical system corresponding to U1

is the same as a state converted from |�+〉1,2 in the optical
system corresponding to UT

2 . For |�+〉3,4 and the optical
system corresponding to W , we can explain in the same way.
Furthermore, in order to detect a photon by each of two
threshold detectors shown in the right-hand side of Fig. 2, two
photons have to go through the optical systems corresponding
to UT

2 and WT
3 , respectively. From these facts, we conclude that

the equivalence shown in Fig. 2 is satisfied. For our nonlocal
conversion methods, it is enough to consider only the optical

system for two photons in nodes 2 and 3, which corresponds
to V ′ ≡ V (UT ⊗ WT ) (see also the right-hand side of Fig. 2).

B. Nonlocal four-qubit state conversion

In this section, we derive success probabilities of optimal
nonlocal four-qubit state conversion from |�+〉1,2|�+〉3,4 us-
ing the optical system given in Sec. III A. Without loss of
generality, we assume that two photons in nodes 2 and 3
are input from spacial modes 1 and 2, respectively. After
the unitary operator V ′ is performed on two photons in
nodes 2 and 3, each of creation operators is transformed
as follows:

V ′a†
1H V ′† =

L∑
j=1

(βjH b
†
jH + βjV b

†
jV )

V ′a†
1V V ′† =

L∑
j=1

(γjHb
†
jH + γjV b

†
jV )

V ′a†
2H V ′† =

L∑
j=1

(αjH b
†
jH + αjV b

†
jV )

V ′a†
2V V ′† =

L∑
j=1

(ηjHb
†
jH + ηjV b

†
jV ),

where L(� 2) is the number of input (output) spa-
cial modes. Here, complex numbers αjs , βjs , γjs , and
ηjs satisfy

∑L
j=1

∑
s=H,V |αjs |2 = ∑L

j=1

∑
s=H,V |βjs |2 =∑L

j=1

∑
s=H,V |γjs |2 = ∑L

j=1

∑
s=H,V |ηjs |2 = 1. When the

postselection succeeds, i.e., two photons are detected by two
threshold detectors in output spacial modes 1 and 2, an output
state |F 〉 is given by

|F 〉 ≡ �postV
′|�+〉1,2|�+〉3,4√

psuc
,
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TABLE I. Optimal values of psuc for well-known four-qubit
entangled states.

|t〉 Optimal value of psuc

|C4〉 1/9
|GHZ4〉 1/2
|W4〉 0
|D(2)

4 〉 0
|�+〉1,3|�+〉2,4 1
|�+〉1,4|�+〉2,3 1/4
|χ〉 0

where psuc(> 0) is the success probability of the postselection,
�post is defined as

�post ≡
∑

s1=H,V

∑
s2=H,V

(
2∏

l=1

b
†
lsl

)
|vac〉〈vac|

(
2∏

l′=1

b
†
l′sl′

)
,

and |vac〉 is a vacuum state. In order to convert to a target state
|t〉, it is necessary to satisfy that |F 〉 = |t〉. By taking inner
product with |s1s2〉1,4, we obtain

�postV
′|s1s2〉2,3 = 2

√
psuc〈s1s2|1,4|t〉. (14)

By substituting (s1,s2) = (H,H ), (H,V ), (V,H ), and (V,V )
into Eq. (14), we obtain following four equations:

�postV
′|HH 〉2,3 = 2

√
psuc〈HH |1,4|t〉1,2,3,4 (15)

�postV
′|HV 〉2,3 = 2

√
psuc〈HV |1,4|t〉1,2,3,4 (16)

�postV
′|V H 〉2,3 = 2

√
psuc〈V H |1,4|t〉1,2,3,4 (17)

�postV
′|V V 〉2,3 = 2

√
psuc〈V V |1,4|t〉1,2,3,4. (18)

Furthermore, by taking inner product with |s1s2〉2,3 in both
sides of each of Eqs. (15), (16), (17), and (18), we obtain
16 constraints in total. Considering these constraints, we

)b()a(

(c)

1

2

1

2

1

2
1’

2’

1’

2’

1’

2’

FIG. 3. Optical systems that achieve optimal values of psuc. If one photon is detected in each of output special modes 1 and 2, which are
denoted by 1′ and 2′, respectively, the postselection succeeds. (a) A nonlocal converter for |C4〉. If one photon goes for either of two dashed
arrows, the conversion is failed. (b) A nonlocal converter for |GHZ4〉. (c) A nonlocal converter for |�+〉1,4|�+〉2,3. Note that photons proceed
in the direction of the arrows. A gray box with a diagonal line represents PDBS whose transmittance for H(V)-polarized photons is 1 (1/3). A
blue rectangle with two diagonal lines represents a wave plate that operates as X. A blue rectangle with a diagonal line represents a PS that
operates as Z. A black line represents a mirror. A pale green box with a diagonal line represents PDBS whose transmittance for H (V )-polarized
photons is 1 (0), i.e., polarizing beam splitter (PBS). A green rectangle represents a wave plate that operates as the Hadamard gate.
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TH

TV

TH

TV

( )b()a

FIG. 4. The transmittance dependence of the success probability and the fidelity of the optical system shown in Fig. 3(a). TH and TV denote
the transmittance of PDBSs for H - and V -polarized photons, respectively. The black dot represents the ideal case. (a) The success probability.
(b) The fidelity between an output quantum state and |C4〉.

derive the optimal value of the success probability psuc for
well-known four-qubit entangled states (see Appendix A for
details). The optimal success probabilities are summarized
in Table I.

Next, we consider optical systems that achieve the optimal
values of psuc (see Fig. 3). In fact, the optical systems given
in Fig. 3 are equivalent to existing optical systems proposed
for well-known four-qubit entangled states, which are given in
Table I. The optical system shown in Fig. 3(a) is essentially
equivalent to the controlled-Z gate and the controlled-X gate
proposed in Refs. [39,40]. The optical systems shown in
Figs. 3(b) and 3(c) are also essentially equivalent to a nonlocal
gate proposed in Ref. [33]. With respect to an optical system
for conversion to |�+〉1,3|�+〉2,4, which is not shown here,
it can obviously be constructed using only mirrors. Note that
these optical systems are not unique ones that achieve optimal
success probabilities. In fact, |GHZ4〉 can also be converted
from |�+〉1,2|�+〉3,4 with probability 1/2 by performing the

type-II fusion gate, which is not shown here [41]. While it was
not known whether these existing optical systems are optimal
or not, our results show the optimality of these existing optical
systems from a network perspective. Our results also show that
|W4〉, |D(2)

4 〉, and |χ〉 cannot be converted from |�+〉1,2|�+〉3,4

using only passive linear optics and postselection (see Table I).
In the last of this section, we analyze practicality of our

schemes. First, we focus on the optical system shown in
Fig. 3(a). We consider how change in transmittance of PDBSs
affects the success probability psuc and the fidelity F between
an output quantum state and |C4〉. For simplicity, we assume
that all of PDBSs have the same transmittance TH and TV for
H - and V -polarized photons, respectively. In the ideal case,
TH and TV is set to 1 and 1/3, respectively. Furthermore, we
assume that HWPs and the PS ideally work because we can
adjust their function by rotating angles of them. The efficiency
of two threshold detectors are denoted by η and η′. In this case,
psuc and F are written as

psuc = ηη′(T 2
H + 2THTV + T 2

V − 6T 2
HTV − 6THT 2

V + 12T 2
HT 2

V

)
4

(19)

F = |TH + 2THTV − TV |
2
√

T 2
H + 2THTV + T 2

V − 6T 2
H TV − 6TH T 2

V + 12T 2
H T 2

V

(20)

and are plotted in Fig. 4 in the case of η = η′ = 1 (see
Appendix B for the derivation of psuc and F ). Accordingly, the
efficiency of detectors does not affect the fidelity. Furthermore,
from Fig. 4(b), it is known that F � 0.9 is satisfied even when
the deviation from the ideal values of TH and TV is 0.14,
i.e., TH = 0.86 and TV = (1 ± 0.14)/3. This implies that our
scheme is robust against experimental imperfections and de-
tector inefficiencies. With respect to photon distinguishability,
we can adopt the same analysis used in Ref. [39]. As a result,
considerable deviation from the optimal performance occurs
due to photon distinguishability as with Ref. [39]. Second, we
focus on the optical systems shown in Figs. 3(b) and 3(c).
Since these optical systems are based on the Mach-Zehnder
interferometer, stabilization is important to realize them. By
using a Sagnac interferometer, we can improve stability of

them. In fact, essentially equivalent optical systems have
already been experimentally characterized by using the Sagnac
interferometer [34]. Accordingly, by using the same technique,
it would be possible to realize our method.

C. Improvement of success probabilities using ancillary qubits

We show that |W4〉, |D(2)
4 〉, and |χ〉 can be probabilistically

converted from |�+〉1,2|�+〉3,4 if ancillary qubits are available
in addition to passive linear optics and postselection. Note
that we minimize the access to ancillary qubits as possible.
To this end, we also consider the conversion from |C4〉 to
|D(2)

4 〉 and |χ〉. Such conversion can be done with probabilities
3/10 and 1/2 using optical systems given in Ref. [33] and
Fig. 5, respectively. Based on this fact, we construct conversion
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1

2

1’

2’

FIG. 5. An optical system that converts to |χ〉 from |C4〉 if one
photon is detected in each of output spacial modes 1 and 2, which are
denoted by 1′ and 2′, respectively.

methods for |D(2)
4 〉 and |χ〉 as follows: First, polarization-

encoded qubits are converted into spatial dual-rail qubits using
a PDBS and a wave plate. This can be done with probability
1. Second, the controlled-Z gate is performed on photons in
nodes 2 and 3 using Knill-Laflamme-Milburn (KLM) scheme
[42]. This step requires two ancillary qubits and succeeds with
probability 1/16. Third, spatial dual-rail qubits are converted
into polarization-encoded qubits using a PDBS and a wave

plate. As a result, |�+〉1,2|�+〉3,4 is converted to |C4〉. Finally,
|C4〉 is converted to |D(2)

4 〉 or |χ〉 using the optical systems men-
tioned above. Accordingly, |�+〉1,2|�+〉3,4 can be converted
to |D(2)

4 〉 and |χ〉 using two ancillary qubits with probabilities
3/160 and 1/32, respectively. The optical systems for |D(2)

4 〉
and |χ〉 are given in Figs. 6(a) and 6(b), respectively. For |W4〉,
we can also construct a conversion method based on existing
methods as follows: First, we transform |�+〉1,2|�+〉3,4 to
|W3〉 using method proposed in Ref. [43]. This transformation
requires no ancillary qubit and succeeds with probability 3/20.
Next we use the expansion method proposed in Refs. [29,30]
to generate |W4〉 from |W3〉 and one ancillary qubit. This
expansion succeeds with probability 4/15. Accordingly, this
conversion method succeeds with 1/25 and requires only
one ancillary qubit. The optical system for |W4〉 is given in
Fig. 6(c).

IV. COMPARISON WITH PREVIOUS SCHEMES

In previous conversion schemes using only LOCC,
|�+〉1,2|�+〉3,4 cannot be converted to |C4〉, |GHZ4〉,
|�+〉1,3|�+〉2,4, and |�+〉1,4|�+〉2,3. In our optimal scheme,
we realize such conversion using nonlocal two-qubit opera-
tions without ancillary qubits. Furthermore, in the situation
considered in Secs. II and III B, our scheme is optimal.

(a)

(b)

(c)

1

2

1’

2’

1

2

1’

2’

1

2

1’

2’

|H>

FIG. 6. Optical systems considered in Sec. III C. The KLM CZ gate represents a optical system given in Fig. 2 of Ref. [42]. The HWP

(θ±) converts |H 〉 (|V 〉) into cos (2θ±)|H 〉 + sin (2θ±)|V 〉 (sin (2θ±)|H 〉 − cos (2θ±)|V 〉), where 2θ± ≡ arcsin
√

(5 ± √
5)/10. (a) A nonlocal

converter for |D(2)
4 〉. (b) A nonlocal converter for |χ〉. (c) A nonlocal converter for |W4〉. When one photon is detected by a threshold detector,

this converter correctly works. On the other hand, if at least one photon goes for the dashed arrow, the conversion is failed.
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We also compare our optimal scheme given in Sec. III B
with a conversion scheme based on the KLM scheme [42],
which is a scheme for universal quantum computing, in terms
of the number of required ancillary qubits and the success
probability. Note that we consider the KLM scheme that
succeeds with probability 1/16 and requires two ancillary
qubits to perform the controlled-Z gate. In order to con-
vert to |C4〉 from |�+〉1,2|�+〉3,4, one controlled-Z gate is
required. Accordingly, the KLM-based scheme requires two
ancillary qubits and succeeds with probability 1/16. In order
to convert to |GHZ4〉, |�+〉1,3|�+〉2,4, or |�+〉1,4|�+〉2,3 from
|�+〉1,2|�+〉3,4, three controlled-Z gates are required. As a
result, the KLM-based scheme requires six ancillary qubits
and succeeds with probability 1/4096. This argument implies
that our method is more efficient than the KLM-based scheme
in terms of the number of required ancillary qubits and the
success probability when |�+〉1,2|�+〉3,4 is converted to |C4〉,
|GHZ4〉, |�+〉1,3|�+〉2,4, or |�+〉1,4|�+〉2,3. On the other
hand, when |�+〉1,2|�+〉3,4 is converted to |W4〉, |D(2)

4 〉, or |χ〉,
the KLM-based scheme is more efficient than our proposed
scheme because such conversion cannot be achieved using our
scheme.

V. CONCLUSION

In this paper, we have considered two kinds of two-qubit
operations to analyze optimal nonlocal conversion of two
Bell pairs. First, we have derived a necessary and sufficient
condition for two-qubit unitary operators. Second, we have
derived optimal success probabilities for nonlocal conversion
using passive linear optical systems and a postselection. In
these arguments, we have assumed that no ancillary qubits
are available. Furthermore, we have shown that the optimal
success probabilities can be improved using ancillary qubits.
Finally, we compare our scheme with previously proposed
schemes. Our method is more efficient than the KLM-based
scheme when |�+〉1,2|�+〉3,4 is converted to |C4〉, |GHZ4〉,
|�+〉1,3|�+〉2,4, or |�+〉1,4|�+〉2,3. On the other hand, when
|�+〉1,2|�+〉3,4 is converted to |W4〉, |D(2)

4 〉, or |χ〉, the KLM-
based scheme is more efficient than our scheme.

In the quantum networks, we have various situations for
sharing entangled resource states. For example, if nonlocal
operations performed on three photons are available, |C4〉 can
be converted from |�+〉|HH 〉 with probability 1/4 [44]. This
success probability is greater than one that can be achieved by
our method. As another example, an optical system proposed
in Ref. [45] can also be used for state conversion from
superposition of two Bell pairs to several four-qubit graph
states. It is an important step to clarify what we can do
using nonlocal operations toward the realization of advanced
quantum networks. Thus, there still remains an interesting open
problem of how to optimally convert to various entangled re-
source states with a certain initial state and restricted quantum
operations in quantum networks.
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APPENDIX A

We derive the achievable maximum values of psuc for
the conversion from the initial state |�+〉1,2|�+〉3,4 to the
well-known four-qubit entangled states, such as |C4〉, |GHZ4〉,
|W4〉, |D(2)

4 〉, |�+〉1,3|�+〉2,4, |�+〉1,4|�+〉2,3, and |χ〉.

1. |t〉 = |C4〉
The success probability of the state conversion for the state

|C4〉 is calculated with

�postV
′|�+〉1,2|�+〉3,4 = √

psuc|C4〉.
From inner products of |s1s2〉1,4 (s1,s2 ∈ {H,V }), we obtain

�postV
′|HH 〉2,3 = √

psuc|HH 〉2,3, (A1)

�postV
′|HV 〉2,3 = √

psuc|HV 〉2,3, (A2)

�postV
′|V H 〉2,3 = √

psuc|V H 〉2,3, (A3)

and

�postV
′|V V 〉2,3 = −√

psuc|V V 〉2,3. (A4)

Using inner products of |s1s2〉2,3 in both sides of each of
Eqs. (A1), (A2), (A3), and (A4), we also obtain

√
psuc = β1H α2H + β2Hα1H (A5)

= β1H η2V + β2V η1H (A6)

= γ1V α2H + γ2Hα1V (A7)

= −(γ1V η2V + γ2V η1V ), (A8)

and

0 = β1H α2V + β2V α1H (A9)

= β1V α2H + β2H α1V (A10)

= β1V α2V + β2V α1V (A11)

= β1H η2H + β2Hη1H

= β1V η2H + β2Hη1V

= β1V η2V + β2V η1V

= γ1Hα2H + γ2H α1H

= γ1Hα2V + γ2V α1H

= γ1V α2V + γ2V α1V (A12)

= γ1Hη2H + γ2Hη1H (A13)

= γ1Hη2V + γ2V η1H (A14)

= γ1V η2H + γ2Hη1V . (A15)

From Eqs. (A5), (A9), (A10), and (A11),

0 = (β1V α2H + β2Hα1V )α1Hα2V

+ (β1H α2V + β2V α1H )α2Hα1V

= (β1V α2V + β2V α2H )α1Hα2V

+ (β1H α2H + β2H α1H )α1V α2V

= √
psucα1V α2V . (A16)
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Here, α1V α2V = 0 is required to satisfy psuc > 0. Replacing α

with β in Eq. (A16), β1V β2V = 0 is also required. Moreover,
from the same way with Eqs. (A8), (A13), (A14), and (A15),
η1Hη2H = γ1H γ2H = 0. If α2V 	= 0, α1V = γ1V = 0 is derived
from α1V α2V = 0 and Eq. (A12), and then psuc = 0 is derived
from Eq. (A7). In order to satisfy psuc > 0, α2V = 0 has to be
satisfied. According to the same way used in the above proof, it
also requires β1V = η2H = γ1H = 0. By substituting α2V = 0
into Eq. (A9), we obtain 0 = β2V α1H . Here, we consider three
cases: (I) β2V = 0 and α1H 	= 0, (II) β2V 	= 0 and α1H = 0,
and (III) β2V = α1H = 0.

First, we consider the case (I). From Eqs. (A5)-(A8), the
square root of the success probability is given by

√
psuc = β1H α2H + β2H α1H = β1H η2V

= γ1V α2H = −γ1V η2V .

As a result, α2H = −η2V and β1H = −γ1V are satis-
fied, and they imply that β2Hα1H = −2β1H α2H . Since
|β1H |2 + |β2H |2 � 1 and |α1H |2 + |α2H |2 � 1 are satisfied
from

∑L
j=1

∑
s=H,V |αjs |2 = ∑L

j=1

∑
s=H,V |βjs |2 = 1, the

relation is rewritten as follows:

4|β1H α2H |2 = |β2Hα1H |2 � (1 − |β1H |2)(1 − |α2H |2)

|β1Hα2H |2 � 1 − (|α2H |2 + |β1H |2)

3
. (A17)

Since psuc = |β1Hα2H |2 is a monotone increasing function of
|β1H | and |α2H |, and [1 − (|α2H |2 + |β1H |2)]/3 is a monotone
decreasing function of |β1H | and |α2H |, psuc is maximized
by |β1H | and |α2H | that satisfy equality in Eq. (A17). We
define ε(> 0) such that |β1H |2 = ε|α2H |2 holds. From above
calculation, an upper bound of the success probability is given
by

psuc � max
ε

{
2ε2 + 16ε + 2 − 2(1 + ε)

√
ε2 + 14ε + 1

36ε

}
.

(A18)

Since the right-hand side of Eq. (A18) is maximized with ε =
1, psuc � 1/9. For the case (II), according to the process in the
same way as well as (I), psuc � 1/9. When we consider the
case (III), it can be divided into four cases: (i) β2H = γ2H =
γ2V = 0, (ii) α1V = η1H = η1V = 0, (iii) β2H = η1H = η1V =
0, and (iv) β2H = α1V = η1H = γ2H = 0. For (i) and (ii), from
Eqs. (A5)–(A8), η2V = α2H = −η2V is satisfied. As a result,
psuc = 0. For (iii) and (iv), with the same way as well as (I),
psuc � 1/9.

2. |t〉 = |G H Z4〉
The conversion from |�+〉1,2|�+〉3,4 to the state |GHZ4〉

is written by

�postV
′|�+〉1,2|�+〉3,4 = √

psuc|GHZ4〉.
We also obtain the following equations from inner products of
|s1s2〉1,4:

�postV
′|HH 〉2,3 =

√
2psuc|HH 〉2,3, (A19)

�postV
′|HV 〉2,3 = 0, (A20)

�postV
′|V H 〉2,3 = 0, (A21)

and

�postV
′|V V 〉2,3 =

√
2psuc|V V 〉2,3. (A22)

We give the following relations from inner products of |s1s2〉2,3

with Eqs. (A19), (A20), (A21), and (A22):√
2psuc = β1H α2H + β2H α1H (A23)

= γ1V η2V + γ2V η1V , (A24)

and

0 = β1H α2V + β2V α1H (A25)

= β1V α2H + β2H α1V (A26)

= β1V α2V + β2V α1V (A27)

= β1H η2H + β2Hη1H (A28)

= β1H η2V + β2V η1H (A29)

= β1V η2H + β2Hη1V

= β1V η2V + β2V η1V

= γ1Hα2H + γ2H α1H

= γ1Hα2V + γ2V α1H

= γ1V α2H + γ2H α1V

= γ1V α2V + γ2V α1V

= γ1Hη2H + γ2Hη1H (A30)

= γ1Hη2V + γ2V η1H (A31)

= γ1V η2H + γ2Hη1V . (A32)

From Eqs. (A23), (A25), (A26), and (A27),

0 = (β1V α2H + β2H α1V )α1Hα2V

+ (β1H α2V + β2V α1H )α2Hα1V

=
√

2psucα1V α2V . (A33)

Accordingly, α1V α2V = 0 to satisfy psuc > 0. By replacing α

with β in Eq. (A33), we also obtain β1V β2V = 0. As results
of performing the similar calculation for Eqs. (A24), (A30),
(A31), and (A32), we get the relation of η1Hη2H = γ1H γ2H =
0. From above results, α1V = 0 or α2V = 0 must be satisfied at
least. For α1V and α2V , here, we redefine αiV as αiV = 0 and
αiV . For η1H and η2H , we also redefine ηkH as ηkH = 0 and
ηkH . From Eqs. (A28) and (A29) and above redefinitions,

0 = βkHηkH = βkHηkV . (A34)

Accordingly, we then have to consider two cases: (I) βkH = 0
and (II) βkH 	= 0.

(I) βkH = 0
From Eq. (A23),

psuc = |βkH |2|αkH |2
2

� 1

2
.

(II) βkH 	= 0
From Eq. (A34), ηkH = ηkV = 0 is derived and then

psuc = |γkV |2|ηkV |2
2

� 1

2
.
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Therefore, the maximum value of the success probability is
given by psuc � 1/2.

3. |t〉 = |W4〉
The conversion from |�+〉1,2|�+〉3,4 to the state |W4〉 is

given by

�postV
′|�+〉1,2|�+〉3,4 = √

psuc|W4〉.
By taking inner products of |s1s2〉1,4, we obtain

�postV
′|HH 〉2,3 = √

psuc(|HV 〉2,3 + |V H 〉2,3), (A35)

�postV
′|HV 〉2,3 = √

psuc|HH 〉2,3, (A36)

�postV
′|V H 〉2,3 = √

psuc|HH 〉2,3, (A37)

and

�postV
′|V V 〉2,3 = 0. (A38)

From inner products of |s1s2〉2,3 with Eqs. (A35), (A36), (A37),
and (A38), we obtain

√
psuc = β1H α2V + β2V α1H (A39)

= β1V α2H + β2Hα1V (A40)

= β1H η2H + β2H η1H (A41)

= γ1Hα2H + γ2Hα1H , (A42)

and

0 = β1H α2H + β2H α1H

= β1V α2V + β2V α1V (A43)

= β1H η2V + β2V η1H (A44)

= β1V η2H + β2H η1V (A45)

= β1V η2V + β2V η1V (A46)

= γ1Hα2V + γ2V α1H (A47)

= γ1V α2H + γ2Hα1V (A48)

= γ1V α2V + γ2V α1V (A49)

= γ1Hη2H + γ2Hη1H

= γ1Hη2V + γ2V η1H

= γ1V η2H + γ2Hη1V

= γ1V η2V + γ2V η1V .

From Eqs. (A42), (A47), (A48), and (A49),

0 = (γ1V α2H + γ2Hα1V )α1Hα2V

+ (γ1H α2V + γ2V α1H )α2Hα1V

= (γ1Hα2H + γ2Hα1H )α1V α2V

+ (γ1V α2V + γ2V α1V )α1Hα2H

= √
psucα1V α2V .

Accordingly, α1V α2V = 0 when psuc > 0 is satisfied. In a case
where α1V = 0, from Eqs. (A40) and (A43), α2V = 0. On the
other hand, in another case where α2V = 0, from Eqs. (A39)
and (A43), α1V = 0. Thus, α1V = α2V = 0. Then, we derive√

psuc = β2V α1H = β1V α2H from Eqs. (A39) and (A40). This

implies that in order to satisfy that psuc > 0, β1V β2V 	= 0 is
required. While, from Eqs. (A41), (A44), (A45), and (A46),
we obtain the following relation:

0 = (β1V η2H + β2H η1V )β1H β2V

+ (β1H η2V + β2V η1H )β2H β1V

= (β1H η2H + β2H η1H )β1V β2V

+ (β1V η2V + β2V η1V )β1H β2H

= √
psucβ1V β2V .

Then β1V β2V = 0. As a result, psuc = 0.

4. |t〉 = |D(2)
4 〉

The state conversion from |�+〉1,2|�+〉3,4 to the state |D(2)
4 〉

is written as

�postV
′|�+〉1,2|�+〉3,4 = √

psuc

∣∣D(2)
4

〉
.

We obtain the following relations with inner products of
|s1s2〉1,4,

�postV
′|HH 〉2,3

2
=

√
psuc|V V 〉2,3√

6
, (A50)

�postV
′|HV 〉2,3

2
=

√
psuc(|HV 〉2,3 + |V H 〉2,3)√

6
, (A51)

�postV
′|V H 〉2,3

2
=

√
psuc(|HV 〉2,3 + |V H 〉2,3)√

6
, (A52)

and

�postV
′|V V 〉2,3

2
=

√
psuc|HH 〉2,3√

6
. (A53)

From inner products of |s1s2〉2,3 using Eqs. (A50), (A51),
(A52), and (A53), we obtain the following relations:√

psuc

6
= β1V α2V + β2V α1V

2
(A54)

= β1H η2V + β2V η1H

2
(A55)

= β1V η2H + β2H η1V

2
(A56)

= γ1H α2V + γ2V α1H

2
(A57)

= γ1V α2H + γ2Hα1V

2
(A58)

= γ1H η2H + γ2Hη1H

2
, (A59)

and

0 = β1H α2H + β2Hα1H (A60)

= β1V α2H + β2Hα1V (A61)

= β1H α2V + β2V α1H (A62)

= β1H η2H + β2H η1H

= β1V η2V + β2V η1V
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= γ1Hα2H + γ2Hα1H (A63)

= γ1V α2V + γ2V α1V

= γ1Hη2V + γ2V η1H

= γ1V η2H + γ2Hη1V

= γ1V η2V + γ2V η1V .

From Eqs. (A54), (A60), (A61), and (A62),

0 = (β1V α2H + β2H α1V )α1H α2V

+ (β2V α1H + β1H α2V )α2Hα1V

= (β1V α2V + β2V α1V )α1Hα2H

+ (β2H α1H + β1H α2H )α1V α2V

=
√

2psuc

3
α1Hα2H .

With psuc > 0, α1H α2H = 0. Here, we consider two cases, i.e.,
(I) α1H = 0 and (II) α2H = 0.

(I) α1H = 0
From Eq. (A57), α2V γ1H 	= 0. Then, with Eqs. (A62) and
(A63), β1H = α2H = 0. From Eqs. (A58) and (A61), β2H = 0
and α1V 	= 0 are also derived.

(II) α2H = 0
From Eq. (A58), α1V γ2H 	= 0. Then, with Eqs. (A61) and
(A63), β2H = α1H = 0. From Eqs. (A57) and (A62), β1H = 0
and α2V 	= 0 are also derived.

From above results, α1H = α2H = β1H = β2H = 0 and
α1V α2V 	= 0 are given. Then, from Eqs. (A54)–(A59),√

2psuc

3
= γ1Hη2H + γ2Hη1H

= 2psuc

3

(
1

α2V β1V

+ 1

α1V β2V

)

= 2psuc

3

α1V β2V + α2V β1V

α1V β2V α2V β1V

α1V β2V α2V β1V = 2psuc

3
. (A64)

From Eqs. (A54) and (A64), we obtain

2psuc

3
= α1V β2V α2V β1V

=
⎛
⎝

√
2psuc

3
− β2V α1V

⎞
⎠β2V α1V

e±iπ/3

√
2psuc

3
= β2V α1V (A65)

=
√

2psuc

3
− β1V α2V

β1V α2V = e∓iπ/3

√
2psuc

3
(A66)

and then

2psuc

3
= |β2V α1V |2 = |β1V α2V |2 = |η1Hβ2V |2 = |η2Hβ1V |2

= |γ1Hα2V |2 = |γ2Hα1V |2.

Accordingly, psuc is maximized when |α1V |2 + |α2V |2 = 1 is
satisfied. With [V ′a†

1H V ′†,V ′a†
2H V ′†] = 0, and Eqs. (A65) and

(A66), we get the following relation:

0 = α∗
1V β1V + α∗

2V β2V

= α∗
1V

e∓iπ/3

α2V

√
2psuc

3
+ α∗

2V

e±iπ/3

α1V

√
2psuc

3

=
√

psuc

6
[1 ∓ i

√
3(|α1V |2 − |α2V |2)].

As a result, psuc = 0.

5. |t〉 = |�+〉1,3|�+〉2,4

psuc = 1 can be achieved because a swap operation between
photons in nodes 2 and 3 can be done using passive linear optics
with unit probability.

6. |t〉 = |�+〉1,4|�+〉2,3

The state conversion from |�+〉1,2|�+〉3,4 to |�+〉1,4|�+〉2,3

is written by

�postV
′|�+〉1,2|�+〉3,4 = √

psuc|�+〉1,4|�+〉2,3.

By taking inner product of |HH 〉1,4, we obtain the following
relation:

�postV
′|HH 〉2,3 = √

psuc(|HH 〉2,3 + |V V 〉2,3). (A67)

By also taking inner products of |s1s1〉2,3 with Eq. (A67), we
obtain the following equation:

√
psuc = β1H α2H + β2Hα1H = β1H α2V + β2V α1V

and then

√
psuc = β1H α2H + β2Hα1H

= β1H α2H + β2H α1H + β1H α2V + β2V α1V

2

=
∣∣∣∣β1H α2H + β2H α1H + β1H α2V + β2V α1V

2

∣∣∣∣
� |β1H α2H | + |β2Hα1H | + |β1Hα2V | + |β2V α1V |

2
.

(A68)

Equation (A68) is maximized when
∑2

j=1(|αjH |2 + |αjV |2) =∑2
j=1(|βjH |2 + |βjV |2) = 1 is satisfied. In order to derive the

maximum value of psuc, we use the method of Lagrange

042341-11



YUKI TAKEUCHI, NOBUYUKI IMOTO, AND TOSHIYUKI TASHIMA PHYSICAL REVIEW A 97, 042341 (2018)

multiplier. First, using variables λ and μ, we define a function
f as

f ≡ |β1Hα2H | + |β2Hα1H | + |β1Hα2V | + |β2V α1V |
2

+ λ

⎡
⎣ 2∑

j=1

(|βjH |2 + |βjV |2) − 1

⎤
⎦

+μ

⎡
⎣ 2∑

j=1

(|αjH |2 + |αjV |2) − 1

⎤
⎦.

Second, we calculate

∂f

∂x
= 0, (A69)

where x ∈ {|α1H |,|α1V |,|α2H |,|α2V |,|β1H |,|β1V |,|β2H |,
|β2V |,λ,μ}. From Eq. (A69), we obtain the following

relations:

|α2H | = −4λ|β1H |, (A70)

|α2V | = −4λ|β1V |, (A71)

|α1H | = −4λ|β2H |, (A72)

|α1V | = −4λ|β2V |, (A73)
2∑

j=1

(|αjH |2 + |αjV |2) = 1, (A74)

and
2∑

j=1

(|βjH |2 + |βjV |2) = 1. (A75)

From Eqs. (A70)–(A75), λ = −1/4. Then, we obtain
√

psuc �
1/2. Note that λ = −1/4 gives the (local) maximum of
Eq. (A68). As the result, psuc � 1/4.

7. |t〉 = |χ〉
The state conversion to |χ〉 from |�+〉1,2|�+〉3,4 is given as

�postV
′|�+〉1,2|�+〉3,4 = √

psuc|χ〉.
We take the following relations from inner products of |s1s2〉1,4:

�postV
′|HH 〉2,3 =

√
psuc

2
(|HH 〉2,3 + |V V 〉2,3), (A76)

�postV
′|HV 〉2,3 = −

√
psuc

2
(|HV 〉2,3 + |V H 〉2,3), (A77)

�postV
′|V H 〉2,3 =

√
psuc

2
(|HV 〉2,3 + |V H 〉2,3), (A78)

and

�postV
′|V V 〉2,3 =

√
psuc

2
(|HH 〉2,3 + |V V 〉2,3). (A79)

From inner products of |s1s2〉2,3 with Eqs. (A76), (A77), (A78),

and (A79), we obtain the following equations:√
psuc

2
= β1H α2H + β2H α1H (A80)

= β1V α2V + β2V α1V (A81)

= −(β1H η2V + β2V η1H ) (A82)

= −(β1V η2H + β2H η1V )

= γ1H α2V + γ2V α1H (A83)

= γ1V α2H + γ2Hα1V

= γ1H η2H + γ2Hη1H (A84)

= γ1V η2V + γ2V η1V ,

and

0 = β1H α2V + β2V α1H (A85)

= β1V α2H + β2H α1V (A86)

= β1H η2H + β2Hη1H (A87)

= β1V η2V + β2V η1V

= γ1Hα2H + γ2H α1H (A88)

= γ1V α2V + γ2V α1V

= γ1Hη2V + γ2V η1H (A89)

= γ1V η2H + γ2Hη1V .

When αis = 0 (i ∈ {1,2},s ∈ {H,V }) is satisfied,√
psuc

2
= βisαis = γisαis,

and

0 = βisαis = γisαis,

where 1 ≡ 2, 2 ≡ 1, H ≡ V , and V ≡ H . Finally, we get
psuc = 0. With the same way of the above process, we also
calculate with βi ′s ′ , γĩs̃ , and ηĩ ′ s̃ ′ (i ′,ĩ,ĩ ′ ∈ {1,2}, s ′,s̃,s̃ ′ ∈
{H,V }) and then αisβi ′s ′γĩs̃ηĩ ′ s̃ ′ 	= 0, when psuc > 0. From
Eqs. (A80), (A81), (A85), and (A86),

0 = (β1Hα2V + β2V α1H )α1V α2H

+ (β1V α2H + β2H α1V )α1Hα2V

= (β1Hα2H + β2H α1H )α1V α2V

+ (β1V α2V + β2V α1V )α1Hα2H

=
√

psuc

2
(α1V α2V + α1H α2H ). (A90)

Replacing α with β in Eq. (A90),

0 =
√

psuc

2
(β1V β2V + β1H β2H ).

With the same process for other equations and psuc > 0,

α1V α2V + α1Hα2H = 0, (A91)

β1V β2V + β1H β2H = 0,
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α1V α2H + α1H α2V = 0, (A92)

β1V β2H + β1H β2V = 0,

γ1V γ2V + γ1Hγ2H = 0,

η1V η2V + η1Hη2H = 0,

γ1V γ2H + γ1Hγ2V = 0,

and

η1V η2H + η1Hη2V = 0.

From Eqs. (A91) and (A92),

−α1H α2V

α2H

= −α1H α2H

α2V

α2V

α2H

= α2H

α2V

α2V = (−1)aα2H .

Here, a ∈ {0,1}. From the same equations, we also obtain the
following equation:

−α1V α2V

α1H

= −α1H α2V

α1V

α1V

α1H

= α1H

α1V

α1V = −(−1)aα1H .

By using the same way for other equations, β2V = (−1)bβ2H ,
β1V = −(−1)bβ1H , γ2V = (−1)cγ2H , γ1V = −(−1)cγ1H ,
η2V = (−1)dη2H , and η1V = −(−1)dη1H are also derived.
Here, b,c,d ∈ {0,1}. From Eqs. (A80) and (A85),√

psuc

2
= β1H α2H + β2H α1H

= (−1)aβ1H α2V + (−1)bβ2V α1H

= [(−1)a − (−1)b]β1H α2V .

Here, a = b ⊕ 1 has to be held to satisfy psuc > 0. From
Eqs. (A82) and (A87),√

psuc

2
= −(β1H η2V + β2V η1H )

= −[(−1)dβ1H η2H + (−1)bβ2H η1H ]

= −[(−1)d − (−1)b]β1H η2H .

Then, b = d ⊕ 1 holds with psuc > 0. From Eqs. (A83) and
(A88), √

psuc

2
= γ1Hα2V + γ2V α1H

= (−1)aγ1Hα2H + (−1)cγ2Hα1H

= [(−1)a − (−1)c]γ1Hα2H

= [1 − (−1)a⊕c]γ1Hα2V ,

and then a = c ⊕ 1, when psuc > 0. From Eqs. (A84) and
(A89), √

psuc

2
= γ1Hη2H + γ2Hη1H

= (−1)dγ1Hη2V + (−1)cγ2V η1H

= [(−1)d − (−1)c]γ1Hη2V

= [1 − (−1)c⊕d ]γ1Hη2H ,

and then c = d ⊕ 1, when psuc > 0. Thus,√
psuc

2
= (−1)a2β1H α2V = −(−1)a2β1H η2H

= 2γ1Hα2V = 2γ1H η2H ,

and then α2V = −η2H = −α2V . However, this contradicts
αisβi ′s ′γĩs̃ηĩ ′ s̃ ′ 	= 0. Accordingly, psuc = 0.

APPENDIX B

In this Appendix, we derive Eqs. (19) and (20). We define UPDBS as a unitary operator denoting the function of the PDBS with
transmittance TH and TV . By using this definition and Pauli operators Xi and Zi acting on spatial mode i, the success probability
can be written as

psuc = ηη′‖�postZ2′X2′X1′UPDBSX2X1UPDBSUPDBS|�+〉|�+〉‖2

= ηη′
∥∥∥∥∥�postZ2′X2′X1′UPDBSX2X1

TH |HHHH 〉 + √
THTV (|HHV V 〉 + |V V HH 〉) + TV |V V V V 〉

2

∥∥∥∥∥
2

= ηη′
∥∥∥∥∥�postZ2′X2′X1′UPDBS

TH |HV V H 〉 + √
THTV (|HV HV 〉 + |V HV H 〉) + TV |V HHV 〉

2

∥∥∥∥∥
2

= ηη′

4
‖TH (1 − 2TV )|HHHH 〉 + THTV (|HHV V 〉 + |V V HH 〉)

+
√

TH (1 − TH )TV (1 − TV )(|HV HV 〉 + |V HV H 〉) − TV (2TH − 1)|V V V V 〉‖2
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= ηη′

4

[
T 2

H (1 − 2TV )2 + 2T 2
HT 2

V + 2TH (1 − TH )TV (1 − TV ) + T 2
V (2TH − 1)2

]
= ηη′(T 2

H + 2THTV + T 2
V − 6T 2

HTV − 6THT 2
V + 12T 2

H T 2
V

)
4

,

where ‖|ψ〉‖ ≡ √〈ψ |ψ〉. From above calculation, when the postselection succeeds, the output state |ψout〉 is

|ψout〉 =
√

ηη′

2
√

psuc
[TH (1 − 2TV )|HHHH 〉 + THTV (|HHV V 〉 + |V V HH 〉)

+
√

TH (1 − TH )TV (1 − TV )(|HV HV 〉 + |V HV H 〉) − TV (2TH − 1)|V V V V 〉].
Accordingly, the fidelity F is

F =
√

|〈C4|ψout〉|2 = |〈C4|ψout〉| = |TH (1 − 2TV ) + 2THTV + TV (2TH − 1)|
2
√

T 2
H + 2THTV + T 2

V − 6T 2
HTV − 6TH T 2

V + 12T 2
H T 2

V

= |TH + 2THTV − TV |
2
√

T 2
H + 2THTV + T 2

V − 6T 2
H TV − 6TH T 2

V + 12T 2
HT 2

V

.
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