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Chaos in quantum steering in high-dimensional systems
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Quantum steering means that in some bipartite quantum systems the local measurements on one side can
determine the state of the other side. Here we show that in high-dimensional systems there exists a specific
entangled state which can display a kind of chaos effect when being adopted for steering. That is, a subtle
difference in the measurement results on one side can steer the other side into completely orthogonal states.
Moreover, by expanding the result to infinite-dimensional systems, we find two sets of states for which, contrary
to common belief, even though their density matrices approach being identical, the steering between them is
impossible. This property makes them very useful for quantum cryptography.
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I. INTRODUCTION

The concept of quantum steering (a.k.a., entanglement
steering or Einstein-Podolsky-Rosen steering), first introduced
by Schrödinger in 1935 [1,2], is a generalization of the “spooky
action at a distance” proposed by Einstein, Podolsky, and
Rosen [3]. It means that some bipartite quantum systems can
display a kind of nonlocality, such that the local measurements
on one side of the system can affect (i.e., “steer”) the state
of the other side. Recently, with technological advances in
handling quantum entangled states, the theoretical researches
on quantum steering became even more active [4–10], with
research topics ranging from the relationship between steering,
entanglement, and nonlocality to the quantifying of steering,
and the criterion of steerability (i.e., whether steering can be
observed in a specific quantum state), etc.

Here we are interested in two questions.
(i) Given a steerable bipartite system α ⊗ β such that

two local measurements on α can steer β into two highly
distinguishable states, respectively, will the two measurements
always be highly distinguishable too?

(ii) Given two sets of states which have identical density
matrices, is it always possible to find a bipartite system that
could steer the state of its subsystem between the elements of
the two sets?

In the next section, we will answer the first question by
showing that there exists a specific entangled state in high-
dimensional systems, which can display a kind of chaos effect
in steering, i.e., a very subtle difference in the measurement
results on α can steer β into completely orthogonal states.
Then in Sec. III, we will answer the second question by
proposing two sets of states in infinite-dimensional systems,
the density matrices of which approach each other, and show
that, contrary to common belief, it is impossible to find a
bipartite system that can realize the steering between these
matrices. The significance of this result will be elaborated in
Sec. IV.
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II. CHAOS EFFECT IN FINITE-DIMENSIONAL SYSTEMS

Consider a bipartite system α ⊗ β prepared in the entangled
state:

|�〉 = 1√
n − 1

n−1∑
i=1

|αi+〉α|φi+〉β. (1)

Here α and β are both n-dimensional systems, with |αi+〉α
and |i〉β (i = 0, . . . ,n − 1) being their orthonormal bases,
respectively (the subscripts α and β will be omitted thereafter),
and

|φi+〉 ≡ 1√
2

(|0〉 + |i〉) (2)

for i = 1, . . . ,n − 1. Now we will show that Eq. (1) can display
a kind of chaos effect when we try to steer the state of β by
measuring system α.

Defining

|φi−〉 ≡ 1√
2

(|0〉 − |i〉) (3)

for i = 1, . . . ,n − 1, and

|φn±〉 ≡ 1√
n

(
|0〉 ∓

∑n−1

i=1
|i〉

)
, (4)

we can see that the sets B± ≡ {|φi±〉,i = 1, . . . ,n} form two
complete (but nonorthogonal) bases of the n-dimensional
system β.

Expanding each |φi+〉 (i = 1, . . . ,n − 1) in the basis B−,
we have

|φi+〉 = 2 − n

n
|φi−〉 +

n−1∑
i ′=1,i ′ �=i

2

n
|φi ′−〉 +

√
2

n
|φn−〉. (5)

Substituting it into Eq. (1) gives

|�〉 = 1√
n − 1

( n−1∑
i=1

2 − n

n
|αi+〉|φi−〉
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+
n−1∑
i=1

n−1∑
i ′=1,i ′ �=i

2

n
|αi+〉|φi ′−〉

)

+
√

2

n

(
1√

n − 1

n−1∑
i=1

|αi+〉
)

|φn−〉. (6)

Rearranging the second term on the right yields

|�〉 = 1√
n − 1

n−1∑
i=1

(
2 − n

n
|αi+〉 + 2

n

n−1∑
i ′=1,i ′ �=i

|αi ′+〉
)

|φi−〉

+
√

2

n

(
1√

n − 1

n−1∑
i=1

|αi+〉
)

|φn−〉. (7)

Define

|α̃i−〉 ≡ c−

(
2 − n

n
|αi+〉 + 2

n

n−1∑
i ′=1,i ′ �=i

|αi ′+〉
)

(8)

for i = 1, . . . ,n − 1, where the normalization constant

c− ≡ 1√(
2−n
n

)2 + (n − 2)
(

2
n

)2
= 1√

1 − 4/n2
. (9)

Also define

|α̃n−〉 ≡ 1√
n − 1

n−1∑
i=1

|αi+〉, (10)

then Eq. (7) becomes

|�〉 = 1√
n − 1

n−1∑
i=1

1

c−
|α̃i−〉|φi−〉 +

√
2

n
|α̃n−〉|φn−〉. (11)

For a given i (i ∈ {1, . . . ,n − 1}), if we apply the mea-
surement {|α̃i−〉〈α̃i−|,I − |α̃i−〉〈α̃i−|} (where I is the identity
operator) on system α, there is a small but nonvanishing
probability that the projection |α̃i−〉〈α̃i−| will be successful.
In this case, Eq. (11) shows that system β will collapse to

|φ̃i−〉 ≡ c′
[

1

c−
√

n − 1

(
|φi−〉 +

n−1∑
i ′=1,i ′ �=i

〈α̃i− |α̃i ′−〉|φi ′−〉
)

+
√

2

n
〈α̃i− |α̃n−〉|φn−〉

]
, (12)

where the normalization constant

c′ =
√

n(n − 1)(n + 2)

(n2 + 2)
. (13)

From Eqs. (8) and (10) we can derive

〈α̃i− |α̃i ′−〉 = −4

n2 − 4
(14)

for any i �= i ′ (i,i ′ ∈ {1, . . . ,n − 1}), and

〈α̃i− |α̃n−〉 =
√

n − 2√
n − 1

√
n + 2

(15)

for any i (i ∈ {1, . . . ,n − 1}). Substituting them and c− =
1/

√
1 − 4/n2 into Eq. (12), we have

|φ̃i−〉 = c′
[√

1 − 4/n2

√
n − 1

(
|φi−〉 − 4

n2 − 4

n−1∑
i ′=1,i ′ �=i

|φi ′−〉
)

+
√

2/n
√

n − 2√
n − 1

√
n + 2

|φn−〉
]
. (16)

Thus we obtain Result 1.
Result 1. If we manage to project system α into the state

|α̃i−〉 defined in Eq. (8), then β will collapse into the state
|φ̃i−〉 in Eq. (16).

On the other hand, from Eq. (1) we can see that for the
same given i, if we apply the measurement {|αi+〉〈αi+|,I −
|αi+〉〈αi+|} on system α instead, there is also a small but
nonvanishing probability that the projection |αi+〉〈αi+| will
be successful. In this case, the resultant state of system β can
be obtained directly from Eq. (1), yielding Result 2.

Result 2. If we manage to project system α into the state
|αi+〉, then β will collapse into the state |φi+〉 in Eq. (2).

Now let us study the relationship between the states in
Results 1 and 2. From Eq. (8) we find

|〈αi+ |α̃i−〉|2 = |2 − n

n
c−|2 = 1 − 4

n + 2
, (17)

i.e., |αi+〉 and |α̃i−〉 are very close to each other when n is
high. In contrast, multiplying 〈φi+| by the right-hand side of
Eq. (16), we have

〈φi+|φ̃i−〉 = c′
[√

1 − 4/n2

√
n − 1

(
〈φi+ |φi−〉

− 4

n2 − 4

n−1∑
i ′=1,i ′ �=i

〈φi+ |φi ′−〉
)

+
√

2/n
√

n − 2√
n − 1

√
n + 2

〈φi+ |φn−〉
]

= c′
{√

1 − 4/n2

√
n − 1

[
0 − 4

n2 − 4
(n − 2)

1

2

]

+
√

2/n
√

n − 2√
n − 1

√
n + 2

√
2/n

}
= 0 (18)

for any n, i.e., |φi+〉 and |φ̃i−〉 are always strictly orthogonal
to each other. Recall that Results 1 and 2 mean that projecting
system α into |αi+〉 (or |α̃i−〉) will make system β collapse
into |φi+〉 (or |φ̃i−〉). Then with the fact that |αi+〉 and |α̃i−〉
are very close while |φi+〉 and |φ̃i−〉 are strictly orthogonal, we
obtain Conclusion 1.

Conclusion 1. There exists a certain form of states [see,
e.g., Eq. (1)] in high-dimensional systems, such that when it
is adopted for quantum steering we can observe the following
“chaos” behavior: a very subtle difference on the measurement
results on α can lead to completely orthogonal steering results
on β.

However, at first glance this chaos effect seems hard to
find because, as stated above, for a given i if we apply the
measurement {|α̃i−〉〈α̃i−|,I − |α̃i−〉〈α̃i−|} on system α, the
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projection |α̃i−〉〈α̃i−| will be successful with a very small
probability only. Meanwhile, for any finite n, Eqs. (8) and
(10) show that {|α̃i−〉,i = 1, . . . ,n} is a nonorthogonal set,
so that we cannot use it as an orthogonal measurement ba-
sis. Nevertheless, {|αi+〉,i = 0,1, . . . ,n − 1} is an orthogonal
measurement basis, as this is how it was defined below Eq. (1).
Suppose that we prepare the state |�〉 in Eq. (1) and apply the
complete measurement {|αi+〉〈αi+|,i = 0,1, . . . ,n − 1} on α.
In this case the measurement device will surely produce an
output i0 ∈ {1, . . . ,n − 1}. Then from Result 2, we will assume
that α was projected to |αi0+〉 successfully and system β was
steered into |φi0+〉. But in practice, there could be a chance
that, due to the imprecision of the measurement device, α may
actually be projected into |α̃i0−〉 since Eq. (17) indicates that
it is very close to |αi0+〉 when n is high. Theoretically, this
is equivalent to applying the measurements {|α̃i0−〉〈α̃i0−|,I −
|α̃i0−〉〈α̃i0−|}, and the projection |α̃i0−〉〈α̃i0−| was successful.
Thus β was actually steered into |φ̃i0−〉, i.e., the chaos effect
can indeed occur physically.

It is also worth further studying whether such chaos could
be at least one of the origins of quantum uncertainty in
measurements. We would like to leave it open for future
discussions.

III. ANOMALOUS BEHAVIOR IN
INFINITE-DIMENSIONAL SYSTEMS

When taking the n → ∞ limit in the above equations, the
result will be even more interesting. We shall prove below that
it will lead to Conclusion 2.

Conclusion 2. In infinite-dimensional systems, it is impossi-
ble to construct a bipartite system α ⊗ β, such that by the local
measurement on system α alone the state of system β can be
steered between the following two sets of evenly distributed
states: {

|φi+〉 ≡ 1√
2

(|0〉 + |i〉),i = 1, . . . ,n − 1

}
(19)

and {
|φi−〉 ≡ 1√

2
(|0〉 − |i〉),i = 1, . . . ,n − 1

}
, (20)

where n → ∞.
That is, we are going to prove that for any bipartite system

α ⊗ β it is impossible to find two different measurements M+
and M−, such that applying M+ on α will make β collapse to
one of the states in set {|φi+〉}, while applying M− on α instead
will make β collapse to one of the states in set {|φi−〉}.

Let us start the proof by assuming that there is a bipartite
system α ⊗ β which can steer the state of β to the elements
of set {|φi+〉}. Then there must exist a local measurement M+,
such that applying it on α will yield an index i of state |φi+〉
to which β will have collapsed. Denote the eigenstates of M+
as |αi+〉 (i = 0, . . . ,n − 1), i.e.,

M+ =
n−1∑
i=0

i|αi+〉〈αi+|. (21)

Then the state of α ⊗ β can surely be written in the form of
Eq. (1). In brief, any system that can steer the state of its part

into set {|φi+〉} will take the form of Eq. (1) as long as the basis
{|αi+〉,i = 0, . . . ,n − 1} is properly defined.

Now the question is whether such a system can be steered
into the states in set {|φi−〉}. If the answer is yes, then it means
that there exists another local measurement M−, such that
applying it on α will yield an index i of state |φi−〉 to which
β will have collapsed. Denote the eigenstates of M− as |αi−〉
(i = 0, . . . ,n − 1), i.e.,

M− =
n−1∑
i=0

i|αi−〉〈αi−|. (22)

Then the same |�〉 in Eq. (1) should also be able to be expanded
in the basis {|αi−〉} as

|�〉 = 1√
n − 1

n−1∑
i=1

|αi−〉|φi−〉. (23)

Let us study what is the relationship between the measurements
M+and M−.

Since the equations in the previous section are valid for any
n, they also apply when n → ∞. So we can still obtain Results
1 and 2 that projecting system α into |αi+〉 (or |α̃i−〉) will make
system β collapse into |φi+〉 (or |φ̃i−〉).

But multiplying 〈αi+| by the right-hand side of Eq. (8), we
have

〈αi+ |α̃i−〉 = 2 − n

n
c− = −

√
1 − 4

n + 2
. (24)

Likewise, multiplying 〈φi−| by the right-hand side of Eq. (16)
gives

〈φi− |φ̃i−〉 =
√

1 − 2n + 2

n2 + 2
. (25)

Therefore, in the n → ∞ limit we have

|α̃i−〉 = −|αi+〉 (26)

and

|φ̃i−〉 = |φi−〉. (27)

That is, in infinite-dimensional systems, Result 2 becomes
Result 2′.

Result 2′. If we manage to project system α into −|αi+〉,
then β will collapse into |φi−〉.

Now recall that we assumed that Eq. (23) also applies to
this system, which implies that if we manage to project system
α into |αi−〉 then β will collapse into |φi−〉. Comparing with
Result 2′ and Eq. (26), we know that

|αi−〉 = |α̃i−〉 = −|αi+〉 (28)

and therefore

|αi−〉〈αi−| = |αi+〉〈αi+| (29)
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for i = 1, . . . ,n − 1. Also, since
∑n−1

i=0 |αi±〉〈αi±| = I with I

being the identity matrix, we have

|α0−〉〈α0−| = I −
n−1∑
i=1

|αi−〉〈αi−|

= I −
n−1∑
i=1

|αi+〉〈αi+| = |α0+〉〈α0+|. (30)

Substituting these into Eqs. (21) and (22), we find

M+ = M−. (31)

These equations mean that if we want to collapse β into one
of the states in the set {|φi+〉} (or {|φi−〉}) then we should
measure α in the basis {|αi+〉,i = 0, . . . ,n − 1} (or {|αi−〉 =
−|αi+〉,i = 0, . . . ,n − 1}). However, as the global negative
sign before the state vector has no physical meaning, these two
bases are actually the same. Consequently, the measurements
M+ and M− on α for collapsing β to an element of the sets
{|φi+〉} and {|φi−〉}, respectively, are no longer two different
measurements when n → ∞.

Thus it is shown that for any bipartite system α ⊗ β which
can steer the state of β to the elements of set {|φi+〉}, if we
want to steer the state of β to the elements of set {|φi−〉}
instead, we will find that the corresponding measurement M−
is completely indistinguishable from the measurement M+
for steering β to {|φi+〉}. This completes the proof that it is
impossible to find a bipartite system which can steer one of
its parts between the states {|φi+〉} and {|φi−〉} by choosing
different measurements on the other part.

Some might wonder whether it is legitimate to take the
n → ∞ limit in our above equations and those in the Appendix.
But in fact this impossibility of steering can be found even for
finite n, as long as it is sufficiently high. This is because all
physical measurement devices are subjected to the uncertainty
principle, so that they cannot be manufactured and adjusted
with unlimited precision. When n rises to an extremely high
(but still finite) value, even though Eq. (26) is not rigorously
satisfied, 〈αi+|α̃i−〉 will become so close to −1 [as shown by
Eq. (24)] that distinguishing |α̃i−〉 and −|αi+〉 will require
extremely subtle adjustment on the measurement devices (such
as controlling the width of the slits in interference systems,
twisting the angles of the lens, etc.), which falls within the
Planck scale. Such subtle adjustment is inaccessible, both
theoretically and practically. Thus |α̃i−〉 and −|αi+〉 become
physically indistinguishable, so that even if the measurements
M+ and M− are not strictly equal to each other distinguishing
them is still impossible. As a consequence, the local measure-
ments on α are insufficient for steering β between {|φi+〉} and
{|φi−〉} even in such a finite-dimensional bipartite system.

IV. SIGNIFICANCE OF THE RESULT

It might look trivial just to find two sets of states and prove
that it is impossible to realize the quantum steering between
them. But a very important feature of our result is that the two
sets of states {|φi+〉} and {|φi−〉} also display another distinct
property. As shown in the Appendix, the trace distance between
the density matrices ρ+ and ρ− corresponding to {|φi+〉} and
{|φi−〉}, respectively, is D(ρ+,ρ−) = 1/

√
n − 1, which drops

as n increases. Therefore, when n is extremely high, {|φi+〉}
and {|φi−〉} will become physically indistinguishable.

This property is important because in quantum steering
there is a well-known result called the Hughston-Jozsa-
Wootters (HJW) theorem [11]. It also appears under different
names (e.g., the Uhlmann theorem) and presentations in
literature [12–14]. A very concise summary of its conclusion
can be found in Ref. [15], which goes as follows.

Let ψ1, ψ2, ..., ψm and ψ ′
1, ψ ′

2, ..., ψ ′
m′ be two sets of

possible quantum states with associated probabilities described
by an identical density matrix ρ. It is possible to construct a
composite system α ⊗ β such that β alone has density matrix
ρ and such that there exists a pair of measurements Mψ and
Mψ ′ with the property that applying Mψ (Mψ ′) to α yields an
index i of state ψi (ψ ′

i ) to which β will have collapsed.
The original proofs of the HJW theorem are defined only

for finite-dimensional ensembles. Later, they were generalized
to the infinite-dimensional ensembles [16,17]. But our result
seems to conflict with this theorem, as we showed that for
extremely high n constructing such a composite system to
steer between the two sets {|φi+〉} and {|φi−〉} defined in
Eqs. (19) and (20) is impossible, even though their trace
distance D(ρ+,ρ−) can be made arbitrarily small.

Nevertheless, after checking the existing proofs of the HJW
theorem [11–14,16,17] carefully, this is not surprising because
of the following two reasons:

(1) These proofs are valid for two ensembles with exactly
the same density matrix that spans the same subspace. In
contrast, in our case, the two density matrices corresponding
to the sets {|φi+〉} and {|φi−〉} merely approach each other in
the n → ∞ limit. For any finite n, the subspaces that they span
are never exactly the same. The proofs of the HJW theorem
were never claimed to be applied to such cases.

(2) Those proofs merely predicted the existence of two
measurements, Mψ and Mψ ′ . They have not shown explicitly
how different the two measurements are. Our above analysis
clearly gives the relationship between the two measurements
M+ and M− on α for collapsing β to an element of {|φi+〉} and
{|φi−〉}, respectively. That is, the corresponding measurement
bases are {|αi+〉,i = 0, . . . ,n − 1} and {|αi−〉 = −|αi+〉,i =
0, . . . ,n − 1}), where the difference is merely a global negative
sign which has no physical meaning. Thus we can see that
although our final outcome (that steering between these two
specific sets is impossible) looks different from the prediction
of the HJW theorem (as summarized above), there is no
theoretical conflict between the proofs of that theorem and
ours.

The properties of {|φi+〉} and {|φi−〉} that we found above
could make them very useful in quantum cryptography. There
are many no-go theorems in this field, such as the impossibility
of unconditionally secure quantum bit commitment [18,19]
and the insecurity proof of two-party quantum secure compu-
tations [20]. They are all based directly on the above-mentioned
conclusion of the HJW theorem. In brief, the cheater begins
these quantum cryptographic tasks using entangled states,
although in the honest case he is expected to use either ψi

or ψ ′
i alone, where the density matrices of the sets {ψi} and

{ψ ′
i } are required to be identical (so that the other party cannot

distinguish them). At the end of the process, he chooses be-
tween the two measurements Mψ and Mψ ′ on his own system
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α, so that system β held by the other party will collapse either
to ψi or ψ ′

i at the cheater’s own choice, just as it is described in
the HJW theorem. With this method, the cheater can gain extra
advantage than what is allowed in the honest case, making the
corresponding cryptographic protocol insecure. But our result
shows that when ψi and ψ ′

i are taken as |φi+〉 and |φi−〉 in
Eqs. (19) and (20), the two measurementsMψ and Mψ ′ become
indistinguishable for infinite-dimensional systems, so that the
cheater no longer has the freedom to choose the state to which
β will collapse. Meanwhile, the two sets {|φi+〉} and {|φi−〉}
also meet the requirement that they can be indistinguishable
to the other party. Therefore, quantum protocols built upon the
states {|φi+〉} and {|φi−〉} may eventually evade the cheating
strategy in these no-go theorems. We will study such protocols
in forthcoming works.

V. SUMMARY

We showed that when a finite-dimensional bipartite system
α ⊗ β is prepared in the state described in Eq. (1) it can display

a chaos effect in quantum steering, such that a subtle difference
in the measurement results on α can lead to completely
orthogonal steering results on β.

For infinite-dimensional systems, we showed that it is
impossible to construct a bipartite system α ⊗ β which can
steer the state of system β between the two sets defined in
Eqs. (19) and (20), even though the trace distance between the
density matrices of the two sets can be made arbitrarily small
as n increases. This result could be very useful for quantum
cryptography.

It is also interesting to study whether there exist other forms
of states which can lead to similar anomalous behavior in
steering, especially in finite-dimensional systems.
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APPENDIX: THE TRACE DISTANCE

Let ρ+ and ρ− denote the density matrices of the two sets of evenly distributed states {|φi+〉} and {|φi−〉} defined in Eqs. (19)
and (20), respectively. Here we calculate the trace distance between ρ+ and ρ−.

Denote

ρ0±i ≡ 1√
2

(|0〉 ± |i〉) 1√
2

(〈0| ± 〈i|)

= 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0
...

0

±1

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
1 0 · · · 0 ±1 0 · · · 0

] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 · · · 0 ± 1

2 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...

0 0 · · · 0 0 0 · · · 0

± 1
2 0 · · · 0 1

2 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

...
...

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A1)

Then for any finite n, when each state (|0〉 ± |i〉)/√2 (i = 1,2, . . . ,n − 1) in Eq. (19) or (20) occurs with equal probabilities
1/(n − 1), the corresponding density matrices are

ρ± = 1

n − 1

n−1∑
i=1

ρ0±i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 ± 1

2(n−1) ± 1
2(n−1) ± 1

2(n−1) · · · ± 1
2(n−1) ± 1

2(n−1)

± 1
2(n−1)

1
2(n−1) 0 0 · · · 0 0

± 1
2(n−1) 0 1

2(n−1) 0 · · · 0 0

± 1
2(n−1) 0 0 1

2(n−1) · · · 0 0
...

...
...

...
. . .

...
...

± 1
2(n−1) 0 0 0 · · · 1

2(n−1) 0

± 1
2(n−1) 0 0 0 · · · 0 1

2(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A2)
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Therefore,

ρ+ − ρ− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
n−1

1
n−1 · · · 1

n−1
1

n−1 0 0 · · · 0
1

n−1 0 0 · · · 0
...

...
...

. . .
...

1
n−1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A3)

and we have

(ρ+ − ρ−)
†
(ρ+ − ρ−) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
n−1 0 0 · · · 0

0 1
(n−1)2

1
(n−1)2 · · · 1

(n−1)2

0 1
(n−1)2

1
(n−1)2 · · · 1

(n−1)2

...
...

...
. . .

...

0 1
(n−1)2

1
(n−1)2 · · · 1

(n−1)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A4)

√
(ρ+ − ρ−)†(ρ+ − ρ−) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
(n−1)1/2 0 0 · · · 0

0 1
(n−1)3/2

1
(n−1)3/2 · · · 1

(n−1)3/2

0 1
(n−1)3/2

1
(n−1)3/2 · · · 1

(n−1)3/2

...
...

...
. . .

...

0 1
(n−1)3/2

1
(n−1)3/2 · · · 1

(n−1)3/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A5)

where (ρ+ − ρ−)† denotes the Hermitian conjugation of (ρ+ − ρ−). Thus the trace distance between ρ+ and ρ− is

D(ρ+,ρ−) ≡ 1

2
tr
√

(ρ+ − ρ−)†(ρ+ − ρ−) = 1√
n − 1

. (A6)
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