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Studies of quantum metrology have shown that the use of many-body entangled states can lead to an
enhancement in sensitivity when compared with unentangled states. In this paper, we quantify the metrological
advantage of entanglement in a setting where the measured quantity is a linear function of parameters individually
coupled to each qubit. We first generalize the Heisenberg limit to the measurement of nonlocal observables in a
quantum network, deriving a bound based on the multiparameter quantum Fisher information. We then propose
measurement protocols that can make use of Greenberger–Horne–Zeilinger (GHZ) states or spin-squeezed states
and show that in the case of GHZ states the protocol is optimal, i.e., it saturates our bound. We also identify
nanoscale magnetic resonance imaging as a promising setting for this technology.
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I. INTRODUCTION

Entanglement is a valuable resource in precision measure-
ment, because measurements using entangled probe systems
have fundamentally higher optimal sensitivity than those us-
ing unentangled states [1]. A generic measurement using N

unentangled probes will have a standard deviation from the
true value asymptotically proportional to 1/

√
N . By using

N maximally entangled probes, a single parameter coupled
independently to each probe system can be measured with
an uncertainty proportional to 1/N . This is the best possible
scaling consistent with the Heisenberg uncertainty principle
and is known as the Heisenberg limit [1,2]. The procedure
can also be reversed-enhanced sensitivity to disturbances can
provide experimental evidence of entanglement [3–5].

Measurements making use of entanglement usually couple
one parameter to N different systems [1,6,7]. However, the
emerging potential of long-range quantum information opens
new avenues for metrology [8,9] and entanglement distribution
[10]. The ability to distribute entanglement across spatially
separated regions has already been used for recent loophole-
free tests of Bell’s inequality [11–13]. In this work, we are
interested in coupling N parameters to N different systems,
which may be spatially separated, and measuring a linear
function of all of them [see Fig. 1(a)] such as a single mode of a
spatially varying field. Such measurements may be of interest
in geodesy, geophysics, or medical imaging [14–18], but in this
paper we focus on potential application to nanoscale nuclear
magnetic resonance (NMR) imaging. Later in this paper we
discuss precisely how our method might apply in this setting.

The function q we wish to measure is a weighted sum of
the deterministic individual parameters θi , where i indexes the
individual systems and each weight is denoted by a known real
number αi ,

q =
N∑

i=1

αiθi = α · θ . (1)

In this paper, we characterize the advantage entanglement
provides in this setting and construct an optimal strategy
equivalent to turning the evolution of some qubits “on” and
“off” for a time proportional to the weight with which their
parameter contributes to the function q [see Fig. 1(b)]. With
this scheme of “partial time evolution,” we can measure a linear
function with the minimum variance permitted by quantum
mechanics, which can be viewed as an extension of the
Heisenberg limit to linear combinations. We will also show
that our method can protect the secrecy of the result, allowing
the network as a whole to perform a measurement without
eavesdroppers learning any details of α · θ .

II. SETUP

We consider a system in which there are N sensor nodes.
Each sensor node i possesses a single qubit coupled to an
unknown parameter θi unique to each node. We suppose that
the state evolves unitarily under the Hamiltonian

Ĥ = Ĥc(t) +
N∑

i=1

1

2
θi σ̂

z
i . (2)

Here, Ĥc(t) is a time-dependent control Hamiltonian chosen
by us, which may include coupling to additional ancilla qubits
and σ̂

x,y,z

i are the Pauli operators acting on qubit i. We wish to
measure the quantity q defined in Eq. (1). We assume that ∀ i :
|αi | � 1 and additionally that there is at least one αi such that
αi = 1. These conditions simply set a scale for the function,
and for an arbitrary α all that is needed is division by the largest
αi to meet this requirement. As an example, a network with two
nodes interested in measuring the contrast between those nodes
would set α = (1,−1) to measure θ1 − θ2. We would like to
establish how well an arbitrary measurement of α · θ can be
made and what the best measurement protocol is for doing so.
By “protocol” we mean three different choices: (1) which input
state we begin with, (2) what auxiliary control Hamiltonian
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(a)

(b)

FIG. 1. (a) An illustration of the network setup in a nanoscale
NMR setting. Nodes, located at different points relative to a large
molecule, share an entangled state; at each node there is both an
unknown parameter θi and a known relative weight αi . We are
concerned with estimating α · θ . (b) Illustration of the partial time
evolution protocol for three qubits. Solid green segments of the
timeline represent periods when a qubit is evolving due to coupling
to the local parameter θi , while dashed red segments represent
periods after the qubit stops evolving. The switches occur at times
corresponding to the qubits’ weights in the final linear combination.
The weight of the last qubit is α3 = 1.

Ĥc(t) we implement, and (3) how the final measurement is
made.

We define the quality of measurement in terms of an
estimator Q constructed from experimental data. (Throughout
this paper, we denote operators with hats, vectors by boldface,
quantities to be estimated by lowercase, and corresponding
estimators by uppercase.) We assume that the estimator is un-
biased, so that its expectation value is the true value E[Q] = q.
Then our metric for the quality of the measurement is the
average squared error, or variance, of the estimator,

Var Q = E[(Q − q)2]. (3)

If measurements of θi can be made locally with accuracy
Var �i for an estimator �i , then we could compute the linear
combination by local measurements and classical computation.
In this case, the variance is given by classical statistical theory
as Var Q = ‖α‖2 Var �0 assuming that Var �i is identical at
each site and equal to Var �0. A measurement of an individual
θi in Eq. (2) can be made in time t with a variance of 1/t2 [2].
Therefore, our entanglement-free figure of merit is

Var Q � ‖α‖2

t2
. (4)

We consider this the standard quantum limit for networks. To
compare with the typical case where N independent qubits
measure a single parameter, consider the average θ̄ , which is
equivalent to setting all αi = 1 and then using �̄ = Q/N to
obtain Var �̄ = 1/Nt2. It is our goal in this paper to present a
means to improve on the limit in Eq. (4).

III. HEISENBERG LIMIT FOR SENSOR NETWORKS

A. Using Fisher information matrix

Our task is to perform parameter estimation on a quantum
system evolving under some set of parameters {θi} linearly
coupled to sensor qubits as in Eq. (2) [19–22]. Although
we are only interested in measuring a single number, we
still need to treat a system that has many parameters in the
evolution, necessitating the use of a multiparameter theory as
in Refs. [23–31]. It is known from classical estimation theory
that, given a probability distribution p(z) over a set of outcomes
z that depends on a number of parameters, all estimators of the
parameters obey the Cramér-Rao inequality [32,33],

� � F−1

M
. (5)

Here, M is the number of experiments performed, F is the
Fisher information matrix (see below), and � is the covariance
matrix, where �ij = E[(�i − θi)(�j − θj )]. The inequality
is a matrix inequality, meaning that M� − F−1 is positive
semidefinite. We will concern ourselves with the single-shot
Fisher information, and set M = 1 from now on. The Fisher
information matrix captures how each parameter changes the
probability distribution of outcomes,

Fij =
∫

p(z)

(
∂ ln p(z)

∂θi

)(
∂ ln p(z)

∂θj

)
dz. (6)

This bound is a purely classical statement about proba-
bility distributions, and is saturated asymptotically using a
maximum-likelihood estimator [34]. Note that, although we
have presented the formulas for the Fisher information matrix,
in the case of a single parameter, the Fisher information will
be a scalar, which can be obtained by setting i = j in Eq. (6).

Quantum theory bounds the probability distributions that
can result from a state evolved under a parameter-dependent
unitary operation [19]. We thus define the quantum Fisher
information FQ for a process with a given initial state as
the maximization of the Fisher information over all possible
measurement schemes. This gives rise to the quantum Cramér-
Rao bound (QCRB), which simply replaces F with FQ in
Eq. (5). A matrix element of FQ for a pure state evolving under
a Hamiltonian Ĥ is given by

(FQ)ij = 4t2[〈ĝi ĝj 〉 − 〈ĝi〉〈ĝj 〉], (7)

where ĝi = (∂Ĥ/∂θi) is the generator corresponding to param-
eter i. For instance, in Eq. (2) the generator ĝi is the operator
1
2 σ̂ z

i . Unlike the Cramér-Rao bound, the QCRB cannot always
be satisfied, even asymptotically. However, in the setting of this
paper, where all generators commute, it can be [23]. Equation
(5) then takes the form

� � F−1 � F−1
Q . (8)

To formulate the appropriate Cramér-Rao bound in the case
where the quantity we wish to estimate is a linear combination
of the θi , we simply use the fact that the variance of a
linear combination α · θ can be written as αT �α. It follows
immediately from Eq. (8) that

Var Q � αT F−1
Q α. (9)
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Note that, although we began by considering the full covariance
matrix, we now focus on just a single scalar αT F−1

Q α because
our quantity of interest is a single linear transformation of the
original parameters.

To properly define the Cramér-Rao bound, it is necessary to
consider the fact that F and FQ are only positive semidefinite
and not necessarily invertible. For instance, if a parameter has
no effect on probabilities at all, then it cannot be estimated
from experimental results and the bound on the variance of its
estimator is undefined. To sidestep this issue, we can instead
look at F̃Q, the quantum Fisher information projected onto
its own image [31], assuming that α has no overlap with the
kernel of FQ. This matrix (and its inverse) are now both positive
definite, meaning they can always be inverted. Equation (9) is
therefore always well defined if F̃Q is used.

Since F̃Q is Hermitian and positive definite, (F̃Q)1/2 is
Hermitian. We can then write the following for an arbitrary
real b by invoking the Cauchy–Schwarz inequality:

αT F̃−1
Q α =

∥∥∥√
F̃−1

Q α

∥∥∥2
∥∥∥∥
√

F̃Qb

∥∥∥∥
2

bT F̃Qb
(10)

�

∥∥∥∥αT

√
F̃−1

Q

√
F̃Qb

∥∥∥∥
2

bT F̃Qb
(11)

� ‖αT b‖2

bT F̃Qb
. (12)

Taking b to be the bth element of the standard basis gives

Var Q � αT F̃−1
Q α � α2

b

(F̃Q)bb

. (13)

Here, (F̃Q)bb is the quantum Fisher information for a single
parameter, as defined by Eq. (7). In Ref. [21], it was shown that
for any time-dependent control Hamiltonian Ĥc(t), including
those with ancilla qubits,

(F̃Q)bb � t2‖ĝb‖2
s . (14)

Here ‖ĝb‖s is the operator seminorm (difference between the
largest and smallest eigenvalues) of the generator correspond-
ing to parameter θb. Our final bound comes from applying this
condition and recognizing that the formula must hold for all b:

Var Q � max
b

α2
b

t2‖ĝb‖2
s

. (15)

We emphasize that Eq. (15) remains true no matter what time-
dependent control Ĥc(t) is applied.

In Eq. (2), all ĝb = 1
2 σ̂ z

b , ‖ĝb‖s = 1, and we find a bound,

Var Q � max
i

α2
i

t2
= 1

t2
. (16)

Here we have used the fact that the largest αi = 1. If we
want to estimate the average of the θi , then all qubits are
equally weighted and the desired quantity is θ̄ = q/N , so
Var �̄ � 1/N2t2 and we reproduce the desired Heisenberg
scaling which is more precise than the 1/Nt2 in Eq. (4).
However, note that if we wanted to estimate only a single θi ,
then we would not benefit from the entanglement. In general,

FIG. 2. Numerical optimization of αT F −1
Q α for two qubits with

α1 = 1 compared with the bound predicted by our analytic result.
Each point is generated by running a gradient descent algorithm until
convergence; the control parameters begin at small random values.
The dashed (dotted) line is the analytic bound derived from the first
(second) qubit. As α2 increases, the second qubit becomes the source
of the relevant bound.

we can, for some situations, greatly improve the precision of
parameter estimation with nonlocal techniques if the parameter
itself is also nonlocal. Our bound allows us to explore the full
range of possible α between these two extremes. Compared
to the bound on unentangled states [Eq. (4)], Eq. (15) simply
picks out the largest contribution due to uncertainty from a
single site. Equation (15) can be viewed as an extension of the
usual Heisenberg bound to linear combinations of parameters.

We can illustrate the above argument by optimizing over
the space of all control Hamiltonians Ĥc(t). Because this
is computationally expensive, we limit ourselves to a two-
qubit sensor network with no ancillas. The Hamiltonians we
optimize over include enough operators to provide universal
control on two qubits, meaning we can effectively modify the
input state as well as the final measurement basis in order
to optimize the Fisher information. To test the form of our
bound, Eq. (15), which depends both on relative weights of
each parameter and the underlying generator, we couple θ1

to a generator σ̂ z
1 which has ‖σ̂ z

1 ‖s = 2. We leave the second
qubit coupled to a generator 1

2 σ̂ z
2 as in Eq. (2). The bound

corresponding to the first qubit from Eq. (15) is α2
1/4t2 and

that of the second qubit is α2
2/t2. In our numerics, we set

α1 = t = 1, meaning the two bounds are 1/4 and α2
2 . Our

analytic result leads us to believe therefore that if α2
2 > 1/4,

the minimum possible variance should be α2
2 . However, if

α2
2 < 1/4, then the lower bound should be 1/4. That behavior

is precisely what we find through the numerical optimization
shown in Fig. 2, confirming Eq. (15).

B. Using single-parameter bounds

It is tempting to dismiss the above argument as unneces-
sarily complicated, because the ultimate quantity of interest is
only a single parameter. Why not simply apply the Cramér-Rao
bound directly to α · θ instead of using the matrix approach?
We will now show that the single-parameter bound that arises
from naive application of the Cramér-Rao bound is looser than
Eq. (15). This gap occurs because the single-parameter bound
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can only be applied if there is only one unknown parameter
controlling the evolution of the input state, which implicitly
places a constraint on the other components of the field. Later,
we discuss how the single-parameter approach can be amended
to take this into account and agree with Eq. (15).

To apply the single-parameter Cramér-Rao bound to our
evolution Hamiltonian Eq. (2), we consider the Hamiltonian
as 1

2θ · σ̂ where σ̂ is simply a vector of operators whose ith
element is σ̂ z

i . We then rewrite θ in a new basis,

θ =
N−1∑
i=0

(αi · θ )β i . (17)

We assume that α0 = α and that the other αi>0 make up a basis.
The set of vectors β i is then a dual basis such that αi · βj = δij .
(For this basis as well, we drop the subscript 0 to indicate that
this particular vector corresponds to the parameter of interest).
The advantage of rewriting θ this way is that we can now
identify the term in the Hamiltonian which is proportional only
to α · θ . The generator corresponding to the quantity α · θ is

ĝ = ∂Ĥ

∂(α · θ )
= β · σ̂

2
. (18)

To obtain the quantum Fisher information corresponding to
this generator, we consider the variance of the operator ĝ. The
maximum variance of this generator is given by the operator
seminorm [21]. Using this fact, we can write

FQ � t2‖ĝ‖2
s = t2

(∑
i

|βi |
)2

. (19)

In general the bound on Var Q derived from Eq. (19) is a
looser lower bound than Eq. (16). For example, with α = (1, 1

2 )
and α1 = ( 1

2 ,−1), this implies that β = ( 4
5 , 2

5 ). Equation (19)
would suggest that

Var Q � 25

36t2
, (20)

which is looser than the 1/t2 given by Eq. (15). This discrep-
ancy can be addressed by thinking more closely about the
process of choosing a new basis. We will use the seminorm
condition again to bound the maximum possible Fisher infor-
mation. To start calculating the seminorm, we express it in
terms of the elements of β:

‖ĝ‖s =
∥∥∥∥∥∥
∑

j

βj

1

2
σ̂ z

j

∥∥∥∥∥∥
s

=
∑

j

|βj |. (21)

We now show that it is possible to choose a basis such that
the seminorm in Eq. (21) goes to infinity. This shows that the
approach which led us to Eq. (19) should not be applied blindly,
and we then discuss how to control for this issue. First, an
illustration of the bound diverging. Suppose that, in a two-
parameter problem, the basis vectors we choose are α and α′. It
can then be shown by direct computation of the matrix inverse
that yields the dual basis that the implied maximum Fisher
information from Eq. (21) is

F � ‖ĝ‖s = α′
2 + α′

1

|α1α
′
2 − α′

1α2| . (22)

If we then choose α′ = (α1/α2 + ε,1), it follows that

F �
1 + ε + α1

α2

εα2
. (23)

As ε → 0, this becomes arbitrarily large. From this we con-
clude that our previous approach was ill advised because
it can yield arbitrarily small lower bounds on the estimator
variance—using this basis, we would conclude that the right-
hand side of Eq. (19) could be ∞.

To produce a useful bound from Eq. (21), we recognize
that any possible choice of basis must yield a valid bound.
Therefore, rather than look at one particular basis [as we did in
deriving Eq. (19)] we instead need to optimize for the highest
lower bound over all possible choices of basis. Finding the
tightest bound on Fisher information will then produce the
highest lower bound on parameter uncertainty. To do this,
we first write the following chain of inequalities using the
relationship of α and β:

1 =
∑

j

αjβj �
∑

j

|αjβj | �
∑

j

|βj |, (24)

where the last line follows due to the fact that |αj | � 1. Note
that we can achieve equality,∑

j

|βj | = 1, (25)

by taking the other N − 1 basis vector αj to be unit vectors ej

in the standard basis, making sure that the j that does not appear
has αj 
= 0 to ensure the entire space is spanned. Now we look
to the minimum possible value of ‖ĝ‖s . The minimum possible
value is interesting to us because the minimum ‖ĝ‖s will be
the choice of basis for which the bound on Fisher information
is tightest.

It follows from Eqs. (21) and (24) that the minimum
seminorm ‖ĝ‖s is equal to 1, implying that the maximum
value for Var ĝ is 1/4 [21]. Using this to optimize the bound in
Eq. (19) over all possible choices of reparametrization implies
that Var α · θ � 1/t2, just as we found in Eq. (16).

The single-parameter bound is applicable in our situation,
but it requires careful accounting of the influence of other
parameters in the problem. The reason that our previous results
such as Eq. (15) do not hold in this case is that Cramér-Rao
bound does not apply if we can take advantage of constraints
on the signal field θ to improve our estimation strategy.

These naive single-parameter bounds can be applied and
saturated if the field structure is known before the measurement
takes place. To demonstrate, suppose that for a set of fields
θ where we wish to learn α · θ , we know that the fields are
proportional to αi . Then we can write the total field as

θ = q
α

‖α‖2
, (26)

and our goal is to estimate q = α · θ . This is now a truly one-
parameter problem, enabling a new strategy which saturates
Eq. (19). By defining w as a new vector such that wi = sgn(αi),
we can measure the quantity

w · θ = q

∑ |αi |
‖α‖2

. (27)
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Since w is a linear combination which satisfies the condition
|wi | � 1, we can estimate q ′ = w · θ with accuracy bounded
by 1/t2 as shown in Sec. IV. Then,

Var(Q′) = Var

(
Q

∑ |αi |
‖α‖2

)
� 1

t2
, (28)

⇒ Var Q � ‖α‖4

t2
(∑ |αi |

)2 . (29)

This saturates the bound in Eq. (19). The reason we are
able to outperform Eq. (15) is that we have assumed some-
thing about the structure of the field which reduces it to a
lower-dimensional problem. This is only possible by using
knowledge about components of θ not parallel to α. Otherwise,
there is no guarantee that θ will be proportional to α. In general
cases w · θ will contain noise from “undesired” components.

In many situations where the field structure is known,
new strategies can be introduced which may outperform our
previous results, even asymptotically. Consider as an example
a case with a field:

θ = θ
α

‖α‖2
+ θγ γ , (30)

where α · γ = 0 and θγ is a nuisance parameter describing the
field magnitude orthogonal to α. Any field can be written in
this way to separate out the α component. Suppose we measure
w · θ . We know that

Var Q′ � 1

t2
(31)

is an achievable bound. By writing w = cαα + cγ γ , decom-
posing w into its only relevant components, we can obtain the
following bound on Var Q:

Var Q � 1

t2cα

+ c2
γ ‖γ ‖2. (32)

Therefore, the optimal strategy is to pick a w which maximizes
w · α while minimizing (preferably to zero) w · γ . However,
in general, learning the structure of the field perpendicular to
α is just as difficult as learning the component parallel to α,
so beginning from a state of ignorance, it is still optimal to
measure α · θ rather than a different linear combination.

The bound in Eq. (19) can actually be found by other
statistical methods which fully treat the initial multiparameter
structure, for instance, the constrained Cramér-Rao bound of
Ref. [35]. It can also be derived from the Van Trees inequality
[36] by assuming that we have pre-existing knowledge that the
components of θ perpendicular to α have a normal distribution
of width ε and then taking the limit ε → 0.

If rather than a constraint we simply have some initial
information in the form of a prior distribution, the Van Trees
inequality (which takes into account that prior information)
will reduce to the Cramér-Rao bound in the limit of many
measurements. This is because the information gained from
measurements scales linearly with the number of measure-
ments while the prior information is static.

IV. PROTOCOLS

We now present two protocols that saturate the bound of
Eq. (16) and are therefore optimal. The first begins from

the conceptually simple Greenberger–Horne-Zeilinger (GHZ)
state or a spin-squeezed state and uses time-dependent control
during phase accumulation to produce an output state sensitive
to the desired α · θ , while the second method uses a more
complicated initial state but requires no control during the
phase accumulation.

A. Protocols involving time-dependent control

1. Using GHZ input state

We start by considering an N -qubit GHZ state:

1√
2

(|0〉⊗N + |1〉⊗N ). (33)

Under σ̂ z evolution, each |1〉 accumulates a phase relative to
|0〉. By allowing qubits to accumulate phase proportional to
the desired weight αi , we obtain a final state in which |1〉⊗N

has accumulated a total phase of α · θ t relative to |0〉⊗N . We
refer to our protocol as “partial time evolution” because it
relies on a qubit undergoing evolution for a fraction of the total
measurement time (see Fig. 1). We can realize this by applying
σ̂ x

i to a qubit at time ti = t(1 + αi)/2 so that the qubit evolution
will be identical to evolving it for a time αit . Note that if there
is a fixed experimental time t , this scheme can realize values of
αi ∈ [−1,1], which motivates our restrictions on the values of
individual αi . Specifying this sequence of gates identifies the
Ĥc(t) which defines the protocol. The result of this protocol is
an effective evolution according to the unitary operator

Û (t) = e−i t
2

∑N
i=1 αiθi σ̂

z
i . (34)

Under this evolution, the final state is

1√
2

(e−i t
2 q |0〉⊗N + ei t

2 q |1〉⊗N ). (35)

Now we make a measurement of the overall parity of the state,
P̂ = ⊗N

i=1 σ̂ x
i . The details of this measurement and calculation

of 〈P̂ 〉 are given in Ref. [1]; notably, the measurement can
be performed locally at each site. Measurement of the time-
dependent expectation value 〈P̂ 〉(t) allows for the estimation
of Q with accuracy [37]

Var Q = Var P̂ (t)

(∂〈P̂ 〉/∂q)2
= sin2 qt

t2 sin2 qt
= 1

t2
, (36)

saturating the bound in Eq. (16) and Fig. 2.
We can also directly evaluate FQ and F for this protocol.

FQ can be found by noting that this protocol is identical to
evolution under the Hamiltonian 1

2

∑
αiθi σ̂

z
i . Therefore the

quantum Fisher information matrix FQ is simply

(FQ)ij = t2
[〈
αiσ̂

z
i αj σ̂

z
j

〉 − 〈
αiσ̂

z
i

〉〈
αj σ̂

z
j

〉] = αiαj t
2. (37)

Furthermore, we can show that this FQ satisfies the second
inequality in Eq. (13). The inverse of F̃Q can be easily written,
as FQ simply projects onto α. To get F̃−1

Q F̃Q = αT α/‖α‖2

(identity on the image of FQ), we must have

F̃−1
Q = αiαj

t2‖α‖4
. (38)
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αT F̃−1
Q α is then equal to 1/t2, saturating the second inequality

in Eq. (13) for the basis vector b corresponding to the largest
α component, αb = 1.

To evaluate the classical Fisher information in this case, we
note that the final measurement [37] projects onto one of two
outcomes with probability sin2(α · θ t/2) and cos2(α · θ t/2).
Therefore the classical Fisher information is simply

F =
(

∂(sin2 α·θ t
2 )

∂α·θ
)2

sin2 α · θ t/2
+

(
∂(cos2 α·θ t

2 )
∂α·θ

)2

cos2 α · θ t/2
(39)

= t2. (40)

This Fisher information also implies the variance bound in
Eq. (16).

It may seem surprising that an optimal measurement can be
one in which most qubits spend some of the measurement time
idle. Since more time yields more signal, intuition suggests that
the most effective strategy would make better measurements
on the less-weighted qubits rather than keep them off for much
of the measurement time. For example, by disentangling a qubit
from the larger state halfway through the protocol, a separate
measurement could be made on θ1 + 1

2θ2 and 1
2θ2, which

appears to yield more information than just measuring the
quantity of interest θ1 + 1

2θ2. This reasoning fails because there
is no way to use information about θ2 to improve an estimate
of θ1 + 1

2θ2 without also knowing about θ1. Because we do not
know about the individual parameters, only a measurement of
the entire function is usable and our scheme is optimal in this
case. However, once we account for pre-existing knowledge
about the parameter values (drawn from physically motivated
estimates or less-precise previous measurements) our bound
will instead apply in the regime of asymptotically many
measurements (M � 1) and in that setting our scheme will also
saturate it [38]. This is because the value of prior knowledge
becomes increasingly low as we accumulate measurement
data.

One advantage of this protocol is that an eavesdropper can-
not learn the result of the network measurement by capturing a
subset of the nodes’ σ̂ x measurement results. This privacy can
be shown by tracing out the first qubit in Eq. (35), which leaves
no phase information in the resulting mixed state. The central
node can receive the measurement outcomes from all other
nodes but keep its own secret, and no eavesdropper is able to
extract information from the broadcasted results. This is true
even if the central node’s qubit is unweighted (i.e., αi = 0),
which follows simply from the properties of the GHZ state.

2. Using spin-squeezed states

The perfect security of the GHZ state arises because
obtaining the measurement result requires every qubit, but this
also implies an extreme sensitivity to noise. This noise can
be a serious problem for metrological applications [39,40].
Because the GHZ state decoheres faster than an individual
qubit, the advantage provided by entanglement is nullified if
the interrogation time of the qubit is limited by its coherence
time [41]. However, in many settings the time spent on a single
measurement will be much shorter than the decoherence time;
for instance, to gather data on short timescales. In these cases,

GHZ states still provide a metrological advantage. Note that
dynamical decoupling [42] or quantum error correction [43,44]
could be used to lengthen the effective decoherence time in
some cases.

In other situations, however, it may be that decoherence
is the dominant concern. In these situations, the best strategy
uses a highly symmetric entangled state which is more robust
against noise than the GHZ state [41]. Under dephasing,
these states can still offer a constant factor improvement over
unentangled metrology. In this section, we show that spin-
squeezed states can also function as inputs to the partial time
evolution protocol, and so may be good candidates for a sensor
network operating in a situation where decoherence limits the
interrogation time. Squeezed states are collective spin states
which, due to entanglement, have reduced variance along one
axis of the collective Bloch sphere at the cost of increased
variance along an orthogonal axis [2,45]. Recently, it has been
shown that these states may allow Heisenberg-scaling mea-
surements even without single-particle detection, which makes
them very attractive for experimental implementations [46].

We consider a state whose overall spin vector is aligned
along +x, such that 〈σ̂ x

i 〉 ≈ 1. We assume that the other spin
components have zero expectation value, but that the variance
of the collective spin projection Ĵy = 1

2

∑
i σ̂

y

i is decreased
while the variance of Ĵz is increased. We quantify this effect
through the spin-squeezing parameter ξ [2],

ξ =
√

Var Ĵy

N/4
. (41)

Suppose that we perform Ramsey interferometry on such a
state [2,37]. The protocol includes both partial time evolution
Û (t) and a final rotation pulse R̂x( π

2 ) = exp(−i π
4

∑
i σ̂

x
i ). A

final measurement is made of the total spin projection Ĵz after
applying these operations:

〈Ĵz(t)〉 =
〈
Û †(t)R̂†

x

(π

2

)
Ĵz(0)R̂x

(π

2

)
Û (t)

〉
(42)

= 1

2

〈
N∑

i=1

σ̂ x
i sin αiθi t + σ̂

y

i cos αiθi t

〉
. (43)

If we specify that this expectation is to be taken over a
squeezed state with 〈σ̂ x

i 〉 ≈ 1 and 〈σ̂ y

i 〉 = 0, then our signal
will be sensitive only to α · θ if each individual phase is
small:

〈Ĵz(t)〉squeezed ≈ 1

2

N∑
i=1

sin αiθi t ≈ t

2

N∑
i=1

αiθi . (44)

This shows that a squeezed state can be used for measurements
of linear functions. The sensitivity can then be calculated just
as in Eq. (36),

Var Q = Var Ĵz(t)

(∂〈Ĵz(t)〉
/
∂q)2

∣∣∣∣
q=0

= Var Ĵy

t2/4
= Nξ 2

t2
. (45)

We evaluate the sensitivity at q = 0 because we are interested
in small signals. Partial time evolution with spin-squeezed
input beats the standard quantum limit if ξ � ‖α‖/√N . Note
that there are N components of α and therefore ‖α‖ will
generally be of order

√
N assuming that the moments of the
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field being measured are well distributed. Squeezed states
can achieve squeezing proportional to N−1/2 [2,45], which
approaches the bound in Eq. (16) up to numerical prefactors
not scaling with N .

Other highly entangled states such as Dicke states also have
metrological value in the presence of noise and could also serve
as input states to partial time evolution with similarly favorable
scaling [30,47–50].

B. Time-independent protocols

In this section, we present two other possible measurement
schemes for linear combinations of parameters. Both of these
differ from the protocols of Sec. IV A because they prepare
a particular state and then allow for free evolution during
phase accumulation, rather than using pulses to evolve for
an effective time of αit on qubit i. We will present time-
independent schemes that begin with both a GHZ-like state
and the spin-squeezed state. Note that these protocols rely on
assumptions about the size of signals θi or the evolution time t .

1. Using GHZ-like input state

We begin by defining a single-qubit state |τ 〉, where τ is a
vector whose elements are τj = −1,0,1:

|τ 〉 =
N⊗

j=1

{|0〉 , τj 
= −1
|1〉 , τj = −1.

(46)

We then define the entangled state |ψ(τ )〉 as

|ψ(τ )〉 = 1√
2

(|τ 〉 + |−τ 〉). (47)

This state can be understood as a general class that includes the
GHZ state as the case τj = 1 for all j . For every τj = −1, spin
j is flipped relative to the GHZ state, while for every τj = 0,
spin j is entirely disentangled.

To measure α · θ , we will evolve |ψ(τ )〉 under the Hamil-
tonian in Eq. (2) and then measure the following observable
�̂(τ ):

�̂(τ ) =
⊗

j

(
σ̂ j

x

)τj
. (48)

That is, we multiply the outcomes of the individual projective
σx measurements for each qubit which was originally entan-
gled with the others (τj 
= 0). It can be shown that probability
distribution of this observable is

P (�̂ = ±1|τ ,θ ) =
{

cos2 (θ · τ t/2), 1
sin2 (θ · τ t/2), −1.

(49)

To create a final protocol, we now randomize the choice of
τ , which in turn means we randomly select both the initial state
and the final measurement. An overall sensitivity to α · θ can
be realized if the probability distribution for every individual
spin to be τj is given by

P (τj ) =
{

αj (αj ±1)
2 , τj = ±1

1 − α2
j , τj = 0.

(50)

By then summing over P (τ ), we find that 〈�̂(θ ,t)〉 = 1 −
t2(α · θ)2 to lowest order in t . Since �̂2 = 1, we can use the

same approach as Eq. (36) to find that the sensitivity for this
measurement is Var Q = 1/t2, leading to the same sensitivity
as the time-independent protocol.

2. Using spin-squeezed states

To implement a time-independent protocol that makes use
of a spin-squeezed input state, we will actually use a two-
part measurement protocol. First we will derive a general
expression that applies to both parts, and then show how they
can be combined.

Much as in Sec. IV A 2, we use the Heisenberg evolution
of the total angular momentum along one axis to evaluate the
final observable. We can begin with the result of Eq. (43), but
with two alterations. First, rather than Û representing a partial
time evolution on each qubit, it will instead be the full time
evolution operator Û = exp(−it

∑
θi σ̂

z
i ). Second, we add an

additional operator at the beginning of the protocol, which we
write as Q̂(η):

Q̂(η) =
N⊗

i=1

r̂ i
z(ηi). (51)

Here, r̂ i
z is the single-qubit rotation about the z axis. That is,

we apply a qubit-dependent rotation about the z axis before we
begin the evolution. The final operator Ĵz(t) will be

Ĵz(t) = Q̂†(η)Û †(t)R̂†
x

(π

2

)
Ĵz(0)R̂x

(π

2

)
Û (t)Q̂(η). (52)

The effect of Q̂ is to add an additional phase to the evolution,
meaning the final value for 〈Ĵz(t)〉 can be found by substituting
the angles θi t + ηi for αiθi t in Eq. (43). As a result, we find
that the final expectation value is

〈Ĵz(t)〉= 1

2

〈
N∑

i=1

σ̂ x
i sin (θi t + ηi) + σ̂

y

i cos (θi t + ηi)

〉
. (53)

By using the conditions 〈σ̂ x
i 〉 ≈ 1 and 〈σ̂ y

i 〉 ≈ 0, we find that

〈Ĵz(t)〉 ≈ 1
2 sin(θi t + ηi). (54)

Now we introduce a two-step protocol. In the first step,
we perform this sequence (prepare a spin-squeezed state, add
qubit-dependent rotations, evolve, measure Ĵz) with ηi = φi ,
where cos φi = αi . We call the quantity measured Ĵ+

z . Next, we
repeat the process with ηi = −φi and call the resulting quantity
Ĵ−

z . The expectation value of the sum of these quantities is

〈Ĵ+
z + Ĵ−

z 〉 ≈ 1

2

N∑
i=1

sin (θi t + φi) + sin (θi t − φi) (55)

=
N∑

i=1

cos φi sin θi t ≈
N∑

i=1

αiθi t. (56)

Here, as in Sec. IV A 2, we have assumed that the phases to
be detected, θi t , are small enough to make the small-angle
approximation.

To evaluate the sensitivity of this measurement, we look at
the point of zero signal as in Eq. (45). At zero signal, J+

z + J−
z

gives
∑

αiσ
y

i . It can be shown that Var
∑

αiσ
y

i � 4 Var Jy ,
and so, by the same calculations used in Eq. (45), the variance
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is no more than 4Nξ 2/t2. Note, however, that this assumes
that both Ĵ+ and Ĵ− are measured for time t . For a fairer
comparison, we can replace t with t/2 so the time required for
the two-step protocol is the same as for one time-dependent
round. In this case, the sensitivity is no worse than 16Nξ 2/t2.

Interestingly, this two-step protocol requires only single-
qubit operations once the initial squeezed state is created.
This may make it a more tractable scheme for experimental
realizations of quantum enhancements in measurements of
linear combinations of parameters.

V. ENTANGLEMENT-ENHANCED MOLECULAR NMR

Many applications of entangled sensor networks may
emerge as distributed entanglement becomes easier to achieve.
In this section we focus on an application which may be
viable in the near future: nanoscale nuclear magnetic resonance
(NMR) as a form of molecular microscopy. NMR has long
been used to investigate the chemical composition of molecular
structures and perform medical imaging [51]. The spatial
resolution of NMR had been limited to a few micrometers until
the recent advent of nitrogen-vacancy (NV) center magnetome-
ters [52–54]. These magnetometers are sensitive to nanotesla
magnetic fields with spatial resolution on the nanometer scale
and can be used to image molecules or single proteins deposited
on a diamond layer with embedded NV centers [55–57].

Nanoscale NMR applications are a promising setting for
entanglement-enhanced sensor networks. The electronic spin
associated with an NV center in diamond can be operated
as a two-level system whose free evolution results in the
accumulation of phase dependent on the local magnetic field
[54]. Because NV centers are useful platforms for quantum
information processing, entangling protocols already exist and
have been demonstrated experimentally [58–61]. Our protocol
is particularly useful for studies of chemical or magnetic dy-
namics, such as Ref. [62], because the measurement timescale
may be much shorter than the decoherence time of the GHZ
state, making our noise-free treatment applicable.

Linear combinations of spatially separated field values
are interesting measurement quantities in nanoscale NMR.
Reference [63] describes an imaging protocol which combines
many different Fourier spatial modes, and Ref. [56] similarly
combines many signals to perform molecular microscopy.
These measurements could be performed more accurately by
using entangled NV sensors. In addition, our entanglement
scheme can perform simple subtraction of the signal between
two qubits. This allows common mode noise subtraction
between a sensor qubit and another qubit exposed only to
environmental noise. In general, even if a full GHZ state of all
sensors is not feasible, smaller clusters of entangled sensors
can still enhance sensitivity.

Entanglement-enhanced imaging of objects larger than
single molecules may also be a fruitful area of research. An
experiment detecting the firing of a single animal neuron with
accuracy near the standard quantum limit has already been
performed [64], making exploration of techniques surpassing
the limit a natural next step. Similar experiments could demon-
strate an enhancement due to distributed entanglement in the
near future.

VI. OUTLOOK

We have presented measurement protocols for quantum
networks which are useful for measuring linear combinations
of parameters and developed a Heisenberg limit for the optimal
estimation of linear combinations. Our protocol can be con-
sidered a generalization of entanglement-enhanced Ramsey
spectroscopy, as in Ref. [1], to the measurement of spatially
varying quantities. In the future, we hope to search for further
protocols and to remove the requirements of small signal or
evolution time where we have imposed them. We identified
magnetometry in general and nanoscale NMR in particular as
candidate applications of our protocol, but we wish to stress
our protocol’s significantly broader scope. In particular, we
expect that our protocol will be useful for measuring spatially
varying quantities in contexts such as gravimetry [65,66],
spectroscopy [6], and rotation sensing [67–69]. Note there is
also no requirement that the parameters measured in a linear
combination be of the same physical source. For instance, a
sensor network could measure a linear combination of both
electric and magnetic fields.

In general, our protocol can be applied in any setting where
Ramsey spectroscopy can be applied if the quantity of interest
is nonlocal. In addition, recent work [70] indicates that spatial
correlations in measurements may be a useful tool for noise-
filtering and error correction in quantum sensors.

Many schemes for quantum sensing rely on coherence
in photonic, rather than atomic, degrees of freedom, such
as spectroscopic microscopy [71]. A recent manuscript [31]
provides a general framework for treatment of sensor networks
which is applicable to photonic systems and others.
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