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The problem of measuring a time-varying phase, even when the statistics of the variation is known, is
considerably harder than that of measuring a constant phase. In particular, the usual bounds on accuracy, such as
the 1/(4n̄) standard quantum limit with coherent states, do not apply. Here, by restricting to coherent states, we are
able to analytically obtain the achievable accuracy, the equivalent of the standard quantum limit, for a wide class
of phase variation. In particular, we consider the case where the phase has Gaussian statistics and a power-law
spectrum equal to κp−1/|ω|p for large ω, for some p > 1. For coherent states with mean photon flux N , we
give the quantum Cramér-Rao bound on the mean-square phase error as [p sin(π/p)]−1(4N /κ)−(p−1)/p . Next, we
consider whether the bound can be achieved by an adaptive homodyne measurement in the limitN /κ � 1, which
allows the photocurrent to be linearized. Applying the optimal filtering for the resultant linear Gaussian system,
we find the same scaling with N , but with a prefactor larger by a factor of p. By contrast, if we employ optimal
smoothing we can exactly obtain the quantum Cramér-Rao bound. That is, contrary to previously considered
(p = 2) cases of phase estimation, here the improvement offered by smoothing over filtering is not limited to a
factor of 2 but rather can be unbounded by a factor of p. We also study numerically the performance of these
estimators for an adaptive measurement in the limit where N /κ is not large and find a more complicated picture.
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I. INTRODUCTION

Estimating a phase imposed on an optical beam is an
important task in quantum metrology, with applications in
many areas [1]. Here we consider a phase shift on a single
beam, which is estimated via “dyne” measurements [1]. That is,
the phase is measured relative to a strong local oscillator (LO),
which is treated classically, and only the intensity in the beam
carrying the phase information is considered as the resource.

Standard techniques use coherent states, and the accuracy
is limited due to the shot noise of coherent states. The limit
for coherent states is called the standard quantum limit (SQL).
Alternatively, one may use squeezed states or more advanced
states to improve the accuracy, as originally proposed in
Ref. [2]. The ultimate limit to the accuracy using arbitrary
states is often called the Heisenberg limit.

Phase measurements are most easily analyzed when the
phase is constant. In that case, the resource is just the aver-
age photon number n̄. In the limit n̄ � 1, the SQL on the
mean-square error (MSE) is proportional to 1/n̄ [3] and the
Heisenberg limit is proportional to 1/n̄2 [4]. There was much
debate over the ultimate limits to phase measurement [5–14],
but rigorous proofs now exist [15–21].

In many applications, the phase varies continually in time,
so the above results do not apply. In this situation, the appropri-
ate resource is not the mean photon number (which depends on
the integration time of the measurement) but rather the average
photon flux, N . To analyze this problem, it is necessary to
consider a particular form of variation for the phase. Early

work considered phases that vary as a Wiener process and
analyzed adaptive measurements on squeezed beams [22–24].
Later work considered the more general case of Gaussian phase
variation with a spectrum scaling as 1/|ω|p for p > 1 and
derived ultimate (Heisenberg) limits on the accuracy [25,26].
The case most commonly considered is white noise, p = 2,
but p = 4 occurs in physical systems [27] and in principle
there is no upper limit on the value of p. Recently it was
shown how to achieve the same scaling as the ultimate limit
using adaptive measurements on squeezed beams, albeit with
a different prefactor [28].

Reference [25] also considered the coherent-state case and
derived a scaling proportional to 1/N (p−1)/p for a rigorous
lower bound on the mean-square phase error. This quantum
Cramér-Rao bound (QCRB) for coherent states can be
regarded as a SQL for a varying phase. In this paper, we are
concerned with the achievability of this SQL for arbitrary
p. Specifically, we consider two techniques from classical
estimation theory: filtering and smoothing [29–34]. Filtering
involves conditioning the estimate on prior measurements of
the system. If we allow a delay in the estimation, we can use
smoothing to obtain a better estimate by conditioning on the
entire measurement record.

Here, we obtain the prefactor in the QCRB for an optimal
unbiased measurement. We then show, using optimal filtering,
that the QCRB scaling can be achieved for a phase estimate,
although the prefactor will never be as low as that in the
QCRB. Interestingly, if we consider a spectrum scaling as
1/|ω|p for the phase, the prefactor compared to the QCRB
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grows unboundedly by a factor of p. However, as we go on
to show, the technique of smoothing does allow the lowest
possible MSE—that of the QCRB—to be achieved for an
arbitrary phase spectrum. If we then consider a power-law
spectral density for the phase we can model the system as a
linear Gaussian (LG) estimation problem. By doing so we can
study the convergence, as N increases, of the performance
of the optimal linear filter and smoother to its asymptotic
value for p an even integer. We do this for p = 2 and p = 4,
and also numerically demonstrate for p = 4 that a suboptimal
filter that has previously been employed in many theoretical
treatments [22–24] fails to converge. For the optimal smoother,
we confirm numerically that the advantage over filtering in
terms of MSE is a factor of 4 for p = 4. This surpasses the
factor of 2 previously observed [30–32] for p = 2 and an
unbounded improvement is predicted as p increases.

This paper is structured as follows. In Sec. II we discuss the
type of system we will consider and review Fisher information
to find the QCRB. In Sec. III, having defined the problem, we
apply Wiener filtering to find the error. Next we apply Wiener
smoothing to attain the QCRB in Sec. IV. We then model this
system as a LG system in Sec. V. Finally, we simulate this
system without linearizing the photocurrent and compare it to
the linearized results in Sec. VI so as to explore the regime of
low intensity.

II. QUANTUM CRAMÉR-RAO BOUND

Consider a time-varying phase ϕ(t) for a coherent beam
with Gaussian and stationary statistics. This means that the
expectation value of the phase 〈ϕ(t)〉 is time independent and
can be taken to be equal to 0. Furthermore, the autocorrelation
function �(t,t ′) = 〈ϕ(t)ϕ(t ′)〉 will only be a function of t − t ′
and hence can be expressed using a single time argument t .
The spectral density S(ω) is given by the Fourier transform of
the autocorrelation function,

S(ω) =
∫ ∞

−∞
dt �(t) e−iωt . (1)

The QCRB for coherent states is derived using Fisher
information, following the approach in Ref. [25], based on
Ref. [35]. Before deriving the QCRB, we briefly review the
Fisher information [1]. If we only consider a single unknown
parameter u, then the Fisher information is a number F and
its reciprocal bounds from below the MSE in any unbiased
estimate of the variable. For estimation of a set of variables
{uj }, we have a Fisher information matrix Fjk and the bound
involves the matrix inverse. If now we consider a parameter
varying in time u(t), then we replace the square matrix with a
function dependent on two arguments, F (t,t ′). This is the case
we will be dealing with.

As mentioned previously, we assume the beam has sta-
tionary statistics. Consequently, F (t,t ′) can be replaced with
F (t − t ′). Moreover, to bound the MSE, we can take this
Fisher information function to be comprised of a classical and
a quantum component,

F (t − t ′) = F (C)(t − t ′) + F (Q)(t − t ′). (2)

Here F (C) encodes any prior information about the phase, while
F (Q) is a property of the quantum system(s) from which we

obtain any further information about the phase. The QCRB on
the MSE is then given by [35]

〈[ϕ(t) − ϕ̆(t)]2〉 � F−1(0), (3)

where ϕ̆(t) is any unbiased estimate of the phase and the inverse
of the Fisher information function is defined by∫ ∞

−∞
ds F−1(t − s)F (s − t ′) = δ(t − t ′). (4)

If we then take the Fourier transform of Eq. (4), we find
˜F−1(ω) = 1/F̃ (ω). Substituting in Eq. (2) yields

˜F−1(ω) = 1

F̃ (C)(ω) + F̃ (Q)(ω)
, (5)

and F−1(0) is obtained by integrating over ω:

F−1(0) = 1

2π

∫ ∞

−∞
dω˜F−1(ω). (6)

For a coherent-state beam, the quantum component of
the Fisher information is given by F (Q)(t − t ′) = 4N δ(t − t ′)
[25]. Hence performing a Fourier transform yields F̃ (Q)(ω) =
4N . The classical (prior information) contribution to the Fisher
information is given by F (C)(t − t ′) = �−1(t − t ′) [25], from
the assumption that the phase fluctuations are Gaussian. This
means that F̃ (C)(ω) = 1/Sϕ(ω) and we can express Eq. (5) as

˜F−1(ω) =
[

1

Sϕ(ω)
+ 4N

]−1

. (7)

Finally, substituting Eq. (7) into Eq. (6) gives

MSE � F−1(0) =
∫ ∞

−∞

dω

2π

[
1

Sϕ(ω)
+ 4N

]−1

. (8)

III. OPTIMAL FILTERING

Consider an adaptive homodyne measurement scheme to
determine the phase, as seen in Fig. 1. The quadratures of a
beam can be measured by combining it with a strong LO using a
50/50 beam splitter. The quadrature measurement arises from
the difference in the photocurrent I (t) from the outputs of the
beam splitter. The LO also has its own phase shift θ that may be
controlled. To measure the phase quadrature, the phase of the
local oscillator θ is chosen to be close to the phase of the beam
ϕ. When ϕ is unknown, an adaptive scheme can be used, where
θ is varied during the measurement to track the phase ϕ [36].

For a coherent beam the expression for the photocurrent is
given by [22]

I = 2
√
N sin (ϕ − θ ) + ζ (t), (9)

where ζ (t) is real classical white noise, satisfying 〈ζ (t)ζ (t ′)〉 =
δ(t − t ′). In the coherent-state case any adaptive scheme which
ensures that |θ − ϕ| � 1 for all time (or even for all but a small
proportion of time) will be practically as good as one in which
θ = ϕ. This being the case, we can linearize Eq. (9) to obtain

I ≈ 2
√
N (ϕ − θ ) + ζ (t). (10)

It is convenient to add θ to I/2
√
N to give the signal

r(t) := I/(2
√
N ) + θ, (11)
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FIG. 1. The scheme for an adaptive homodyne measurement of
the phase of a coherent beam ϕ. D1 and D2 are the photodetectors
measuring the two outputs of the 50/50 beam splitter. I (t) is the
difference in the photocurrent between D1 and D2. The processor
adjusts the phase of the LO, θ , based on I (t).

where we have scaled the photocurrent to simplify the calcu-
lations for both the filtering and the smoothing cases. Then in
the linear approximation the signal is independent of θ and is

r(t) ≈ ϕ(t) + n(t), (12)

where n(t) = ζ (t)/2
√
N . The spectrum of the measurement

is then given by

Sr (ω) = Sϕ(ω) + Sn, (13)

where the spectrum of the measurement noise is Sn = 1/4N . It
is important to note that the measurement noise is independent
of any stochastic increment in the phase variation.

The optimal estimate of a time-varying phase, or any
parameter, is the estimate that minimizes the MSE. Finding
the optimal estimate is typically a difficult problem to solve.
However, if we consider the stationary or long-time case,
then we can apply Wiener’s frequency domain approach to
filtering [30,33,34]. The minimum MSE for a signal of the
form r(t) = ϕ(t) + n(t), where n(t) is Gaussian white noise,
is [34, p. 803]

MSEF = Sn

∫ ∞

−∞

dω

2π
ln

[
1 + Sϕ(ω)

Sn

]
, (14)

where the subscript F indicates filtering (and we will use S

for smoothing). Using Sn = 1/(4N ) and the inequality ln(1 +
x) > x/(1 + x) for x > 0, it follows that

MSEF >

∫ ∞

−∞

dω

2π

[
1

Sϕ(ω)
+ 4N

]−1

, (15)

where the right-hand side is identical to the expression in
Eq. (8). This indicates that the filtered estimate will never attain
the QCRB. Nevertheless, for x�1, ln(1 + x) ≈ x/(1 + x), so
it could be expected that the filtered estimate is close to the
QCRB for 4NSϕ(ω) small.

We consider the case that the phase has a power-law
spectral density; that is, Sϕ(ω) = κp−1/|ω|p. Substituting in

the spectral densities for both the noise and the phase into
Eq. (14) and using integration by parts, we get

MSEF = (4Nπ )−1p

∫ ∞

0

dω

1 + ωp/μ
, (16)

where μ = 4Nκp−1, for p > 1. Solving this integral yields
the filtered MSE

MSEF = [sin(π/p)]−1(4N /κ)−(p−1)/p (17)

for p > 1.
We can also solve for the QCRB for this specific spectrum

using Eq. (8) to obtain

MSE � [p sin(π/p)]−1(4N /κ)−(p−1)/p. (18)

Note that, unlike the filtered MSE (17), no photocurrent lin-
earization assumption is necessary to derive Eq. (18). Indeed,
we do not make any assumptions on how the coherent beam is
measured.

The filtered estimate has the same scaling with N as the
QCRB (18) but does not attain the QCRB prefactor exactly.
This difference is what was expected from the inequality in
Eq. (15). The surprising feature of the result is that the prefactor
for filtering diverges from the QCRB linearly in p. However,
it is possible to reduce the MSE of the estimate by using
the information about the system more effectively, as will be
explored in Sec. IV.

Another interesting feature is that filtering gives a prefactor
close to that for the QCRB for p close to 1 (though both
prefactors diverge as p → 1). That is, filtering gives close
to the best estimate, despite using only half of the possible
data. As discussed above, the inequality is due to the inequality
ln(1 + x) > x/(1 + x), which is close to equality when x � 1.
Because x corresponds to Sϕ(ω)/Sn = 4NSϕ(ω), we can ex-
pect the results to be close if NSϕ(ω) � 1. This cannot be true
for all ω, because Sϕ(0) is large regardless of p. However, the
MSE depends on an integral over ω. It turns out that, for p close
to 1, the majority of the contribution to the integral is for values
of ω where NSϕ(ω) � 1. As a result, ln(1 + x) ≈ x/(1 + x)
for most of the contribution to the integral, and the prefactor
for filtering is close to the QCRB.

IV. OPTIMAL SMOOTHING

As noted in Sec. III, the filtered estimate cannot attain the
QCRB for the MSE. However, smoothing [30–32] can give
a better estimate by estimating ϕ(t) using the signal r(s) for
s > t as well as s < t . Since we are now considering twice as
much data, the estimate will be more accurate than filtering,
and one might expect a factor of 2 improvement. We should
mention that the expression for the photocurrent (12) still
holds for this case, with the LO phase still set as θ = ϕ̆F , since
the feedback loop must be causal (cannot use any information
from the future).

We will now show that Wiener’s frequency domain ap-
proach to smoothing [30,33,34] achieves the QCRB with
coherent states, even allowing an arbitrary spectrum for the
phase. For a noisy record of the form in Eq. (12), the minimum
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MSE for smoothing is given by [33, p. 802]

MSES =
∫ ∞

−∞

dω

2π

[
1

Sϕ(ω)
+ 1

Sn

]−1

. (19)

Substituting in for the spectrum of the noise, Sn = 1/4N , we
arrive at

MSES =
∫ ∞

−∞

dω

2π

[
1

Sϕ(ω)
+ 4N

]−1

, (20)

where this is the exact expression in the QCRB given in Eq. (8).
That is to say, the smoothed estimate of the MSE will

achieve the lower limit given by the QCRB for an arbitrary
spectrum of the phase. This may not necessarily be surprising,
as it is the estimate that makes use of all possible information.
However, when we consider the case Sϕ(ω) = κp−1/|ω|p, the
filtered error, seen in Sec. III, diverges from the QCRB by a fac-
tor of p. As we have found that smoothing can reach the QCRB,
this shows that smoothing provides an unbounded improve-
ment over filtering. In the p = 2 case previously considered
[30,31], smoothing offered only a factor of 2 improvement.

V. LG ESTIMATION

Ultimately, we are not only interested in the minimum error
in an estimate of the phase, but also how to make that estimate.
While it is possible to obtain smoothed estimators from the
frequency approach without much trouble, it turns out that
it is rather difficult to determine the filtered estimator. The
problem is that the closed-form solution for the filter [33,
p. 788] assumes a spectrum Sϕ that is a rational function. It
is possible to approximate the spectrum arbitrarily accurately
over a given frequency range using rational functions, but more
accurate approximations will require more complicated filters.
Moreover, a single approximation cannot be accurate for all
frequencies, because Sϕ(ω) = κp−1/|ω|p for the noninteger p

will always have different asymptotic scaling than a rational
approximation. It would be necessary to choose the approxi-
mation dependent on κ and N in order to make it accurate over
the appropriate range of frequencies.

On the other hand, for an even integer p, it is possible
to easily describe the estimators by formulating the system
as an LG estimation problem. Again, we are considering an
adaptive homodyne measuring scheme where the photocurrent
is given by Eq. (9). However, we now rescale the linearized
photocurrent to fit with the convention of LG theory as

y(t) := I + 2
√
N θ. (21)

Then the linear approximation is

y(t) ≈ 2
√
Nϕ(t) + ζ (t). (22)

To apply LG estimation theory, we consider p = 2n + 2, n ∈
N0, and define

ϕ(t) := xn(t)κn+1/2, (23)

xk+1(t) :=
∫ t

−∞
ds xk(s), k ∈ N0, (24)

x0(t) :=
∫ t

−∞
dW (s), (25)

where dW (s) is an infinitesimal Wiener increment. Then it
is easy to verify that ϕ(t) is a Gaussian stochastic process
with spectrum Sϕ(ω) = κp−1/|ω|p by considering Sϕ(ω) =∫ ∞
−∞〈ϕ(ω)ϕ(ω′)〉dω′. The system of equations (22)–(25) then

form what is known as a LG estimation system [1].
To write the system in standard form [1], we define the

following vector:

x = (x0,x1, . . . ,xn)T , (26)

and matrices

A =

⎛⎜⎜⎜⎜⎝
0 0 0 0
1 0 0 0
0 1 0 0 · · ·
0 0 1 0

...

⎞⎟⎟⎟⎟⎠, (27)

E = (
1 0 0 · · · 0

)T
, (28)

C = (
0 0 0 · · · √

μ
)
, (29)

with μ = 4Nκ2n+1. To be precise: A is of dimension (n + 1) ×
(n + 1), and has elements Aj,k = δj,k+1; C is of dimension
1 × (n + 1), and has elements Ck = √

μδk,n; E is of dimension
(n + 1) × 1, and has elements Ek = δk,0. Then the LG system
(22)–(25) can be rewritten as

dx(t) = A x(t) dt + E dW (t), (30)

y(t) = C x(t) + ζ (t), (31)

where dW (t) is that appearing in Eq. (25).

A. LG optimal filtering

The optimal estimator that uses information only up to
the current time is the solution of the stochastic differential
equation [1]

dx̆(t) = (A − V CT C)x̆(t)dt + V CT y(t)dt, (32)

where V is the covariance matrix 〈(x̆ − x)2〉. This is stochastic
because of the white noise in y(t) as per Eq. (31). This estimator
is often called the filtered estimate.

In general, to determine the covariance matrix V one would
have to solve a differential matrix Riccati equation. However,
we want the stationary, or long-time covariance matrix, which
is given by the algebraic matrix Riccati equation [1]:

0 = AV + V AT + EET − V CT CV. (33)

To confirm the results of Sec. III we will calculate the MSE by
solving the Riccati equation. Evaluating the (k,
) element of
the right-hand side of Eq. (33) gives

0 = Vk−1,
 + Vk,
−1 + δk,0δ
,0 − μVk,nVn,
. (34)

Starting with taking k = 
 = 0 and noting that V is symmetric,
we obtain 0 = 1 − μV 2

0,n, and so

V0,n = 1√
μ

. (35)

If we guess a solution of the form

Vk,
 = Ṽk,
 μα(k+
)+β, (36)
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then from Eq. (34) we get, for k and 
 not both zero,

(Ṽk−1,
 + Ṽk,
−1)μα(k+
−1)+β = (Ṽk,nṼn,
)μα(k+
+2n)+2β.

(37)
For Ṽk,
 to be independent of μ we need

(2n + 1)α + β = −1. (38)

In the case where k and 
 are both zero, we have already found
that Eq. (34) is satisfied with Ṽ0,n μnα+β = μ−1/2. Therefore,
to obtain Ṽk,
 independent of μ we need

nα + β = −1/2, (39)

and Ṽ0,n = 1. We consequently obtain two equations with two
unknowns α and β, which have the solution

α = β = − 1

2n + 2
. (40)

Thus we find that with

Vk,
 = Ṽk,
 μ−(k+
+1)/p, (41)

Ṽk,
 is independent of μ. Then Eq. (34) simplifies to a
recurrence relation for Ṽk,
 that is independent of μ:

Ṽk−1,
 + Ṽk,
−1 + δk,0δ
,0 − Ṽk,nṼn,
 = 0. (42)

This was solved analytically for n = 0,1,2, giving solutions

Ṽ = 1, (43)

Ṽ =
(√

2 1
1

√
2

)
, (44)

Ṽ =
⎛⎝2 2 1

2 3 2
1 2 2

⎞⎠, (45)

respectively. For larger n we solved Eq. (42) numerically. Some
patterns about Ṽ are already apparent in the n = 2 case. These
matrices, as well as being symmetric about the diagonal, are
symmetric about the antidiagonal. Additionally, the top row
satisfies Ṽ0,k = Ṽ0,n−1−k for k � n − 1. These patterns persist
throughout all calculated matrices for Ṽ .

Substituting μ = 4Nκ2n+1 and using Eq. (23) we obtain
for the achievable MSE,

MSEF = κ2n+1Vn,n = Ṽn,n(4N /κ)−(p−1)/p, (46)

for a p = 2n + 2 even positive integer. From Fig. 2, we see
that the LG method for calculating the MSE in the phase, while
limited to even p, matches the frequency domain approach of
Eq. (17), as expected.

B. Optimal smoothing

Smoothing in the LG regime can be considered as a two-
filter system [29,30] whereby the first filter considers all prior
data (i.e., the filtered estimate) and the second filter uses only
information after the current time, known as the retrofiltered
estimate. In practice, one would need to take all the data first
in order to calculate this retrofiltered estimate. Because the
system is completely reversible, we can use exactly the same
equations, except reversing the direction of time. That is,

dx̆R(t) = −(A − VRCT C)x̆R(t)dt − VRCT y(t)dt, (47)

0 5 10 15 20 25 30
0

2

4

6

8

10

FIG. 2. The optimal filtered MSE with coherent states using
Wiener filtering (blue solid) and the LG model (blue squares)
compared to the QCRB (red dashed).

where x̆R is the retrofiltered estimate. Henceforth we will use
the subscript R for the retrofiltered quantities, subscript F

for the filtered quantities, and subscript S for the smoothed
quantities. This equation needs to be solved backwards in
time, which means that numerically the −dt is replaced with
a positive increment, and there is no difference from the
equations to be solved for the filtered estimate, except for the
interval over which the data is taken. In order to obtain the best
possible estimate from the data, we can use both the filtered
and the retrofiltered estimate. This is known as the optimal
smoothed estimate,

x̆S = VS

(
V −1

F x̆F + V −1
R x̆R

)
, (48)

with smoothed covariance

V −1
S = V −1

F + V −1
R , (49)

where VF and VR satisfy the stationary filtered and retrofiltered
equations,

0 = AVF + VF AT + EET − VF CT CVF , (50)

0 = −AVR − VRAT + EET − VRCT CVR, (51)

respectively [29]. It should be mentioned that we are consid-
ering only the stationary solution, eliminating the requirement
for initial and final conditions.

To confirm the results of Sec. IV we will now determine
the smoothed covariance VS . The same approach used for
the filtered case was applied to solve for the retrofiltered
covariance. It is easy to show that by choosing [VR]k,
 =
[ṼR]k,
 μ−(k+
+1)/p we arrive at

[ṼR]k,
 = (−1)k+
[ṼF ]k,
 (52)

for the solution to the retrofiltered equation.
It can be verified that

V −1
F = [

Ṽ −1
F

]
k,


μ(k+
+1)/p, (53)

042334-5



LAVERICK, WISEMAN, DINANI, AND BERRY PHYSICAL REVIEW A 97, 042334 (2018)

and similarly for VR . Thus[
V −1

S

]
k,


=
([

Ṽ −1
F

]
k,


+ [
Ṽ −1

R

]
k,


)
μ(k+
+1)/p. (54)

It can be shown that the smoothed covariance VS has the form
[VS]k,
 = [ṼS]k,
 μ(k+
+1)/p, where ṼS is independent of μ.
Then Eq. (49) simplifies to

ṼS = (
Ṽ −1

F + Ṽ −1
R

)−1
. (55)

Unlike the filtered estimate, we were able to analytically solve
for [ṼS]k,
 to give

[ṼS]k,
 = (−1)(k−
)/2{p sin[π (k + 
 + 1)/p]}−1. (56)

Refer to Appendix A for the full derivation.
Like in the filtered case, the smoothed MSE is determined

by [VS]n,n. Thus

MSES = [p sin(π/p)]−1(4N /κ)−(p−1)/p, (57)

for even values of p. This is exactly the QCRB for the power-
law spectrum, Eq. (18) in Sec. III, which is what we expect,
because the smoothed estimate for LG systems is optimal, and
the optimal smoother should attain the QCRB.

VI. NUMERICS WITHOUT LINEARIZATION

The optimal filtering and smoothing, while it does offer
insight about the achievable accuracy, is based on a lineariza-
tion approximation for the photocurrent. In this section, we
are interested in how the linearized theory compares with a
simulation of the full nonlinear system. For the cases p = 2
and p = 4 we apply the optimal filters and smoothers from
LG theory to the nonlinear photocurrent. We also compare
these optimal estimators to a well-established method [23,24]
for calculating the phase estimate that does not make a
linearization approximation.

The simulation of the phase estimate uses the model of
Eqs. (23)–(25) with a feedback loop based on the photocurrent,
I (t), ensuring that the phase of the LO is equal to the estimate
of the time-varying phase, θ (t) = ϕ̆(t); see Fig. 3 for a single
realization of the noise for p = 2 and p = 4. Where this
simulation changes from the model discussed previously is that
the photocurrent is not linearized. That is, rather than Eq. (22)

or (31), we have

y(t) = I (t) + 2
√
N θ (t), (58)

where I (t) is given in Eq. (9). The simulation calculates the
phase estimate using Eqs. (32) and (58) to then calculate the
MSE.

A. Filtered estimate

To compare the simulated MSE for the nonlinear system
to the optimal LG filter for the linear system, the ratio
(simulated/optimal) was taken. Furthermore, we are interested
in how this ratio changes with N . To show this we chose to
plot the ratio as a function of the scaling (N /κ)(p−1)/p for
ease of comparison with different values of p. This is because
(N /κ)(p−1)/p is, up to a factor of order unity, the reciprocal
of the theoretical asymptotic MSE for any p. Thus when this
quantity is large (say 100) the filtered phase estimate ϕ̆(t) can
be expected to generally be close to (within ∼0.1 of) the true
phase ϕ(t). Because the LO phase θ (t) is set equal to the filtered
phase estimate, this means that, in this regime, the linearization
of the photocurrent, needed for the LG theory to be valid, will
be a good approximation.

For the case of both p = 2 and p = 4 we see in Fig. 4 that
the simulated MSE does converge to the optimal MSE in the
asymptotic limit, as we expected. However, as we move closer
to N = κ , the ratio gets much worse, increasing by a factor of
1.5 for p = 2 and 2.5 for p = 4. This spike corresponds to the
linearization of the photocurrent breaking down. In both cases
the asymptotic value was reached, to within an error that is too
small to see in the figures, when (N /κ)(p−1)/p ≈ 102.

B. Smoothed estimate

We then simulated the smoothed estimate using Eq. (48)
and compared it to the optimal LG filter. We see for the p = 2
smoothed estimate, shown in Fig. 4(a), the MSE is a factor
of 2 smaller than the filtered estimate in the asymptotic limit,
while for p = 4 in Fig. 4(b), it is smaller by a factor of 4.
These match predictions, and the lower bound derived from the
quantum Fisher information within about 0.6%. Moving closer
to N /κ = 1 we still observe the spike due to the linearization

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

3
3.5

4

FIG. 3. Simulations of typical samples of the system phase (blue) with the corresponding filtered phase estimate (green) and the smoothed
phase estimate (dashed black). The left plot is for p = 2 with (N /κ)1/2 = 10 and the right plot is for p = 4 with (N /κ)3/4 = 10.
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FIG. 4. The MSE for the simulated filtered estimate (blue squares), the ABC filtered estimates (red triangles), and the optimal smoothed
estimates (green circles) with coherent states as a ratio to the predicted filtered values in the asymptotic regime. The left plot is for p = 2, and
the right plot is for p = 4.

breaking down. In the case of p = 2 the size of the spike is
approximately a factor of 2 larger. However, looking at p = 4,
it has increased by a factor of about 8, indicating that the
smoother is more sensitive to the linearization breaking down
than the filter. Thus, while in the asymptotic limit smoothing
can offer a large improvement over filtering, there is a dimin-
ishing improvement when the linearization breaks down.

C. ABC method

Since the linearization of the photocurrent is clearly not
valid in the nonasymptotic regime, an obvious solution is to
use a method that does not rely on a linearization. From such a
method we might expect better results when (N /κ)(p−1)/p =
O(1). The “ABC” method, as we will call it, introduced
by Berry and Wiseman [22–24], uses two functions of the
photocurrent record, a and b, to calculate the time-varying
phase given by

a(t) =
∫ t

−∞
du eχ(u−t)eiθ I (u), (59)

b(t) = −
∫ t

−∞
du eχ(u−t)e2iθ , (60)

with 1/χ a time constant. The estimate of the phase at time t ,
which is also used for θ (t), is given by

ϕ̆(t) = arg[c(t)], c(t) = a(t) + χb(t)a∗(t). (61)

Note that we have used a lower case a, b, and c as opposed
to the capitals used in Refs. [22–24] so as not to confuse the
reader with the previous matrices A and C. We performed a
simulation using this model for the phase.

In the case of p = 2, the optimal χ is known to be χ = √
μ

[22]. In this case, convergence of the ABC MSE to the optimal
LG filter MSE in the asymptotic limit can be seen in Fig. 4.
However, the ABC method reached its asymptotic value, to
within error too small to see in the figures, for (N /κ)(p−1)/p ≈
103, which is slower convergence than the LG filter. Unex-
pectedly, when the linearization breaks down, i.e., N /κ =
O(1), the ABC estimate performs worse compared to the
optimal estimate by about 30%. Furthermore, the ABC method

performed even worse when p = 4. For long times the variance
in the estimate tended to become larger without limit and could
not be shown in Fig. 4. We were able to obtain bounded results
by introducing a low-frequency cutoff to the correlations,
similar (though not identical) to that of Ref. [28]. However,
when this was done, the results were sensitive to the cutoff.
This can be understood analytically, as shown in Appendix B.

VII. CONCLUSION

In this paper we investigated the estimation of a time-
varying phase of a coherent beam using an adaptive homodyne
scheme. We consider a phase with time-invariant Gaussian
statistics with a power-law spectral density, with exponent −p.
One can derive the quantum Cramér-Rao bound, an analytical,
asymptotically (in intensity) achievable bound for the mean-
square error. This result for coherent beams is an important
benchmark against which to judge any quantum advantage.
In the regime where we can linearize the photocurrent, the
filtered MSE was found to achieve the same scaling as the
QCRB, but the prefactor could not be achieved. However, when
we applied smoothing we found that it achieved the QCRB
for arbitrary phase spectrums. When considering a power-law
spectral density, we observed an improvement greater than
a factor of 2 for p > 2 over the filtered error. In fact, this
improvement increased without bound by a factor of p.

To investigate the system in the regime where the lineariza-
tion is not a good approximation, we performed numerical
simulation for both p = 2 and p = 4, for both filtering and
smoothing. In order to perform these simulations, we remod-
eled the system as an LG estimation problem. In all cases
we observed convergence to the LG theory in the asymptotic
limit. However, when N /κ = O(1) the linearization of the
photocurrent broke down and the simulation and LG optimal
MSE diverged. We then tested the alternate “ABC” method
[22–24] that was not based upon a linearized theory. For the
case of p = 2 we found that for small (N /κ)1/2 the results
were worse than the optimal LG filter but still converged to the
same MSE in the asymptotic limit. Furthermore, for the case
of p = 4, the ABC method could not provide a converging
solution.
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Observing the unbounded improvement smoothing can
offer over filtering would be an interesting experimental topic
for further study. It should be noted that the linear estimators
will still work with common forms of noise that simply
correspond to a multiplicative factor on the noise term dW .
For example, thermal noise is usually treated this way. Given
these results, it is also natural to ask if the LG estimators
can give improved results, compared to the ABC method,
for the squeezed states as well. Surprisingly, when we tested
this estimator for squeezed states, we found it gave very
poor results. Even a small amount of squeezing dramatically
increased the MSE above that for the coherent state instead of
decreasing it. This is due to the squeezed state system being
nonlinear, as the noise power varies (stochastically) with time
due to deviation of the LO phase from the unknown true phase.
Thus it is an open problem to find an estimator that does provide
improved performance for squeezed states.
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APPENDIX A: DERIVATION OF
THE SMOOTHED VARIANCE

To solve a Riccati equation of the form Eq. (42), one can
construct a block matrix

Z =
(

AT −C̃T C̃

−EET −A

)
, (A1)

with dimensions of 2n + 2 = p. Using the earlier definitions
of A, C̃, and E we can then write the elements of Z as

Zjk =

⎧⎪⎨⎪⎩
δj+1,k j � n

−δp,k j = n + 1
−δ1,k j = n + 2
−δj−1,k j > n + 2

, (A2)

where we are now numbering the rows and/or columns from
1 as opposed to 0. If we construct a matrix of size 2n + 2 by
n + 1 from the eigenvectors of Z, represented in block-matrix
notation as (

Y

X

)
, (A3)

then the solution to the Riccati equation is given by

ṼF = XY−1. (A4)

If we solve for the eigenvalues we get

λk = ieπi(2k−1)/p (A5)

and can define the matrices, by taking the real negative
eigenvalues,

Yjk = λ
j−1
k , Xjk = 1

(−λk)j
. (A6)

We do not have an explicit analytic solution for X−1, so we de-
termined it numerically to determine the filtered covarianceVF .

We can similarly solve the retrofiltered case using a matrix

Z′ =
( −AT −C̃T C̃

−EET A

)
, (A7)

with the elements of Z′ given by

Z′
jk =

⎧⎪⎨⎪⎩
−δj+1,k j � n

−δp,k j = n + 1
−δ1,k j = n + 2
δj−1,k j > n + 2.

(A8)

Again, we construct a matrix with columns corresponding to
the eigenvectors of Z′, (

Y ′
X′

)
, (A9)

and the solution for the retrofiltered covariance matrix is

ṼR = X′(Y ′)−1. (A10)

Finding the eigenvectors of Z′ gives Y ′ and X′ as

Y ′
jk = (−λk)j−1, X′

jk = − 1

λ
j

k

. (A11)

These eigenvectors look very similar to the eigenvectors for
the filtered case. To see the similarity, we create another set of
eigenvectors by multiplying each column by −λk to give

Y ′
jk = (−λk)j , X′

jk = 1

λ
j−1
k

. (A12)

Since the covariance matrix is real, we can obtain the same
covariance matrix using the complex conjugates of Y ′ and X′.
Using λ∗

k = 1/λk the new matrices are

Y ′
jk = 1

(−λk)j
, X′

jk = λ
j−1
k . (A13)

We can see that X′ = Y and Y ′ = X, or ṼR = X−1Y , which is
the inverse of ṼF , implying (ṼF )−1 = ṼR .

It is straightforward to show from Eqs. (50) and (51) that
the inverse of ṼF satisfies the same equation as ṼR , except
flipped on the antidiagonal. This is enough to show that Ṽ −1

F

is the pertranspose (the transpose about the anti diagonal) of
ṼR , as well as being equal to ṼR . As a result, ṼF and ṼR are
bisymmetric.

To determine the smoothed variance we wish to determine

ṼS = [XY−1 + X′(Y ′)−1]−1, (A14)

which can be rewritten as

ṼS = Y [X + X′(Y ′)−1Y ]−1. (A15)

If we then construct a matrix(
X −X′
Y Y ′

)
(A16)

and take its inverse, the upper-left corner of the resulting matrix
is the term from Eq. (A15), [X + X′(Y ′)−1Y ]−1. This means
that if we can take the inverse of this block matrix, we can
determine ṼS without explicitly inverting Y ′. Using the formula
for λk , we have λk+n+1 = −λk . Therefore, the rows of the block
matrix (A16) are given by the same equation on both the left
and the right side. We can then turn this matrix into a form
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similar to a Fourier transform matrix. Thus we define a new
matrix,

T =
(

W W ′
V V ′

)
=

(
J 0
0 I

)(
X −X′
Y Y ′

)
, (A17)

where I is an identity matrix and J is an antidiagonal matrix
with entries

Jjk = (−1)kδj,n+2−k. (A18)

We use X′ and Y ′ as given by the original form in Eq. (A11),
not the modified form in Eq. (A13). The resulting W matrix
has elements

Wjk =
∑




Jj
X
k

=
∑




(−1)
δj,n+2−
(−λk)−


= λ
j−(n+2)
k . (A19)

Similarly, W ′ is given by

W ′
jk = −

∑



Jj
X
′

k

=
∑




(−1)
δj,n+2−
λ
−

k

= (−λk)j−(n+2)

= λ
j−(n+2)
k+n+1 . (A20)

As a result, the formulas for each block of T are consistent,
and we can describe the entire matrix T by the same formula,

Tjk = λ
j−(n+2)
k . (A21)

The inverse of T is well known and has the matrix elements

(T −1)jk = 1

p
λ

(n+2)−k
j . (A22)

Now we have (
X −X′
Y Y ′

)−1

= T −1

(
J 0
0 I

)
. (A23)

Therefore, to get the upper-left block of the inverse, we need
multiply the upper-left block of T −1 by J . That gives the simple
answer

[(X + X′Y ′−1Y )−1]jk = 1

p

∑



λ
(n+2)−

j (−1)kδ
,n+2−k

= 1

p
(−λj )k. (A24)

To get the final answer, we need to simply multiply by Y ,

[ṼS]jk = [Y (X + X′Y ′−1Y )−1]jk

=
n+1∑

=1

λ
j−1



1

p
(−λ
)k

= 1

p
(−1)k

n+1∑

=1

λ
j+k−1



= 1

p
(−1)kij+k−1

n+1∑

=1

eπi(2
−1)(j+k−1)/p

= 1

p
(−1)kij+k−1eπi(j+k−1)/p eπi(j+k−1) − 1

e2πi(j+k−1)/p − 1

= 1

p
(−1)kij+k−1 eπi(j+k−1) − 1

eπi(j+k−1)/p − e−πi(j+k−1)/p

= 1 − eπi(j+k−1)

2

ij−k

p sin[π (j + k − 1)/p]
. (A25)

Now if we have j + k − 1 even, or equivalently, j − k odd,
then eπi(j+k−1) = 1 so we get zero. If j − k is even, then we
have the result

(−1)(j−k)/2

p sin[π (j + k − 1)/p]
. (A26)

In this expression we are taking j and k numbered from
1, in contrast to the numbering from 0 in the body of the
paper. Switching to numbering from 0 gives the expression
in Eq. (56). Taking j = k = n + 1, we get

1

p sin[π (p − 1)/p]
= 1

p sin(π/p)
, (A27)

as required.

APPENDIX B: DERIVATION OF MSE
FOR A SIMPLE ESTIMATOR

As stated in the main text, the ABC estimator works for p =
2, but for p = 4 the simulations give divergent results. Here
we consider phase estimation with a coherent beam, where the
high-frequency phase spectrum has an inverse power p, with
p a positive even integer. We wish to consider estimation using
the method in Sec. IV of Ref. [28]. This divergence can be fixed
by introducing decay in the phase dynamics. Specifically, we
modify Eqs. (24) and (25) by

xk+1(t) =
∫ t

−∞
du eλk+1(u−t)xk(u), k ∈ N, (B1)

x0(t) =
∫ t

−∞
dW (u) eλ0(u−t). (B2)

As stated, this gives convergent results for the phase uncer-
tainty, but the results are sensitive to the exact values of λk

used.
The behavior just described can be predicted in a simplified

linearized theory. Using the theory in Ref. [22], it was shown
that for a coherent state, the phase estimate ϕ̆(t) using the ABC
method can be approximated by

ϕ̆(t) = χ

∫ t

−∞
du

[
θ (u) + I (u)

2
√
N

]
eχ(u−t). (B3)

Linearizing the photocurrent reduces this equation to

ϕ̆ = χ

2
√
N

∫ t

−∞
du eχ(u−t)y(u), (B4)
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and from this it is straightforward to show that, for p = 4, the predicted MSE diverges if λ1 = λ0 = 0, while if we take λ0 =
λ �= 0, λ1 = 0 then convergent results can be obtained, albeit dependent heavily on λ.

In both cases, the MSE is given by

〈(ϕ̆ − ϕ)2〉 =
〈(

χ

∫ t

−∞
du eχ(u−t)ϕ(u) +

∫ t

−∞
dW (u) eχ(u−t) − ϕ(t)

)2
〉

=
〈(

χ

∫ t

−∞
du eχ(u−t)ϕ(u) − ϕ(t)

)2
〉

+
〈(∫ t

−∞
dW (u) eχ(u−t)

)2
〉

=
〈(

χ

∫ t

−∞
du eχ(u−t)[ϕ(u) − ϕ(t)]

)2
〉

+ 1

2χ

= χ

∫ t

−∞
du1

∫ t

−∞
du2 eχ(u1+u2−2t)〈[ϕ(u1) − ϕ(t)][ϕ(u2) − ϕ(t)]〉 + 1

2χ
. (B5)

First consider the divergent case, with no cutoff. Then the expectation value in Eq. (B5) evaluates to

〈[ϕ(u1) − ϕ(t)][ϕ(u2) − ϕ(t)]〉 = κ3
∫ t

u1

dv1

∫ t

u2

dv2 〈x0(v1)x0(v2)〉

= κ3
∫ t

u1

dv1

∫ t

u2

dv2

〈∫ v1

−∞

∫ v2

−∞
dW (w1)dW (w2)

〉
= ∞. (B6)

Hence, if there is no damping in the phase variation, the MSE diverges for this estimator. If we instead introduce a frequency
cutoff by setting dx0 = −λx0 + dW , we then get

〈[ϕ(u1) − ϕ(t)][ϕ(u2) − ϕ(t)]〉 = κ3
∫ t

u1

dv1

∫ t

u2

dv2

〈∫ v1

−∞

∫ v2

−∞
dW (w1)dW (w2) eλ(w1+w2−v1−v2)

〉
= κ3

∫ t

u1

dv1

∫ t

u2

dv2

∫ min(v1,v2)

−∞
dw eλ(2w−v1−v2)

= κ3
∫ t

u1

dv1

∫ t

u2

dv2
1

2λ
e−λ|v1−v2|

= κ3

2λ3

[
eλ(u1−t) + eλ(u2−t) − eλ(−|u1−u2|) − 1 + 2λt − 2 max(u1,u2)λ

]
. (B7)

Using this expression, a simple integral gives the MSE for the estimator as

〈(ϕ̆ − ϕ)2〉 = κ3

2λχ3(λ + χ )
+ 1

2χ
, (B8)

which shows a sensitive dependence on λ, as was found numerically.
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