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Scrambling of quantum information in quantum many-body systems
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We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in
quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt
the tripartite mutual information (TMI) that becomes negative when quantum information is delocalized. We
clarify that scrambling is an independent property of the integrability of Hamiltonians; TMI can be negative
or positive for both integrable and nonintegrable systems. This implies that scrambling is a separate concept
from conventional quantum chaos characterized by nonintegrability. Specifically, we argue that there are a few
exceptional initial states that do not exhibit scrambling, and show that such exceptional initial states have small
effective dimensions. Furthermore, we calculate TMI in the Sachdev-Ye-Kitaev (SYK) model, a fermionic toy
model of quantum gravity. We find that disorder does not make scrambling slower but makes it smoother in the
SYK model, in contrast to many-body localization in spin chains.

DOI: 10.1103/PhysRevA.97.042330

I. INTRODUCTION

Whether or not an isolated system thermalizes is a fun-
damental issue in statistical mechanics, which is related to
the nonintegrability of Hamiltonians. In classical systems,
thermalization has been discussed in terms of the ergodicity
of chaotic systems [1]. In quantum systems, a counterpart
of classical chaos is not immediately obvious because the
Schrödinger equation is linear. Nevertheless, it has been
established that there are some indicators of chaotic behaviors
in quantum systems, such as the level statistics of Hamiltonians
[2–4] and decay of the Loschmidt echo [5,6]. More recently,
the eigenstate-thermalization hypothesis (ETH) [7–11] has
attracted attention as another indicator of quantum chaos in
many-body systems, which states that even a single-energy
eigenstate is thermal. All these indicators of quantum chaos are
directly related to the integrability of Hamiltonians; noninte-
grable quantum systems exhibit chaos. Such a chaotic behavior
in isolated quantum systems is also a topic of active research
in real experiments with ultracold atoms [12–14], trapped ions
[15], NMR [5], and superconducting qubits [16].

In order to investigate the “chaotic” properties of quan-
tum many-body systems beyond the conventional concept of
quantum chaos, it is significant to focus on the dynamics
of quantum information encoded in quantum many-body
systems. How does locally encoded quantum information
spread out over the entire system by unitary dynamics? Such
delocalization of quantum information is referred to as scram-
bling [17–21]. Investigating scrambling is important not only
for understanding the relaxation dynamics of experimental
systems at hand, but also in terms of the information paradox
of black holes [17], where it has been argued that black
holes are the fastest scramblers in the universe [18]. How-
ever, the fundamental relationship between scrambling and
conventional quantum chaos has not been comprehensively
understood.

Scrambling can be quantified by the tripartite mutual in-
formation (TMI) [21,22], which becomes negative if quantum

information is scrambled. There is also another measure of
scrambling, named the out-of-time-ordered correlator (OTOC)
[20,21,23–30]. It has been argued that the decay rate of
the OTOC is connected to the Lyapunov exponent in the
semiclassical limit [23]. TMI and OTOC capture essentially
the same feature of scrambling [21], where OTOC depends on
a choice of observables but TMI does not. In the context of the
holographic theory of quantum gravity, TMI is shown negative
[31] if the Ryu-Takayanagi formula [32] is applied, suggesting
that gravity has a scrambling property. This is consistent
with fast scrambling in the Sachdev-Ye-Kitaev (SYK) model
[23,33–40], a toy model of a quantum black hole. Then, a
natural question raised is to what extent such a property of
quantum gravity is intrinsic to gravity or can be valid for
general quantum many-body systems.

In this paper, we perform systematic numerical calculations
of real-time dynamics of TMI in quantum many-body systems
under unitary dynamics, by using exact diagonalization of
Hamiltonians. We consider a small system (say, a qubit)
and a quantum many-body system (say, a spin chain). The
information of the small system is initially encoded in the
many-body system through entanglement. The many-body
system then evolves unitarily, and we observe how the
locally encoded information is scrambled over the entire
many-body system. We note that temporal TMI has been
investigated by using the channel-state duality in Ref. [21],
while here we calculate instantaneous TMI, with which we
can study the role of the initial states.

By studying quantum spin chains such as the XXX model
and the transverse-field Ising (TFI) model with and without
integrability breaking terms, we find that scrambling occurs
(i.e., TMI becomes negative) for both the integrable and
nonintegrable systems for a majority of the initial states. On the
other hand, for a few exceptional initial states, scrambling does
not occur (i.e., TMI becomes positive) for both the integrable
and nonintegrable cases of the XXX model. We also show that
these exceptional states have small effective dimensions.
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FIG. 1. Schematics of our setup. Initially, qubit A is maximally
entangled with qubit B, while C and D are not correlated with
A and B. Then, BCD evolves unitarily with a Hamiltonian that is
either integrable or nonintegrable, and either clean or disordered. We
calculate the real-time dynamics of TMI between A, B, and C.

These results clarify that scrambling is an independent prop-
erty of the integrability of Hamiltonians. Therefore, scram-
bling does not straightforwardly correspond to conventional
quantum chaos, making a sharp contrast to the level statistics
and ETH. We remark that the relationship between integra-
bility and ballistic entanglement spreading has been studied
[41–43], while delocalization and entanglement spreading
capture different aspects of information dynamics [44], as will
be discussed later in detail.

We also consider the SYK model with four-body interaction
of complex fermions, and find that disorder does not lead to
slow dynamics but instead makes scrambling smoother than
a clean case. This is in contrast to the slow scrambling in the
many-body localized (MBL) phase of a spin chain [45–52].

The rest of this paper is organized as follows. In Sec. II, we
formulate our setup and introduce TMI. In Sec. III, we show
our main numerical results. We first discuss the relationship
between scrambling and integrability with one-dimensional
quantum spin systems. We also investigate the effect of
disorder in the MBL phase and the SYK model. In Sec. IV,
we summarize our results. In the Appendix, we show some
supplemental numerical results.

II. SETUP

A. System and initial state

We consider either a spin-1/2 or a fermionic system on
a lattice, which consists of small system A on a single site
and a many-body system on L sites (Fig. 1). The many-body
system is divided into three subsystems B, C, and D, whose
sizes (the numbers of the lattice sites) are, respectively, given
by 1, l, and L − l − 1. The lattice structure BCD is supposed
to be one dimensional for spin chains or all connected for the
SYK model. For a single site of a spin (fermion) system, we
write |0〉 as the spin-up (particle-occupied) state, and |1〉 as the
spin-down (particle-empty) state. In any case, a single qubit is
on a single site.

We first prepare a product state,

1√
2

(|0〉A + |1〉A) ⊗ |�〉BCD, (1)

where |�〉BCD is a product state with the state of each qubit
being |0〉 or |1〉 (e.g., the Néel state |0〉|1〉|0〉 · · · |0〉|1〉 or the
all-up state |0〉|0〉 · · · |0〉, etc.). We then apply the CNOT gate
on the state (1), where the control qubit is A and the target

qubit is B. By this CNOT gate, information about A is locally
encoded in B through entanglement. Then, only BCD obeys a
unitary time evolution with a time-independent Hamiltonian.
We calculate the time dependence of TMI between A, B, and C,
which characterizes scrambling of the information about A that
was initially encoded in B. We note that the foregoing setup is
associated with a thought experiment that one of the qubits of
an Einstein-Podolsky-Rosen (EPR) pair is thrown into a black
hole and then scrambled [17].

B. Tripartite mutual information

We next consider TMI. Let X, Y, and Z be subregions of the
lattice (i.e., subsets of the lattice sites). The bipartite mutual
information (BMI) is defined as I2(X : Y ) := SX + SY − SXY,
where SX := trX[−ρ̂X ln ρ̂X] is the von Neumann entropy of
a reduced density operator ρ̂X := trXc [ρ̂], with Xc being the
complemental set of X. Then, TMI is defined by [21,22]

I3(X : Y : Z) := I2(X : Y ) + I2(X : Z) − I2(X : YZ). (2)

Here, TMI is negative when I2(X : Y ) + I2(X : Z) < I2(X :
YZ), which implies that information about X stored in compos-
ite YZ is larger than the sum of the amounts of information that
Y and Z have individually; information about X is delocalized
to Y and Z in such a case.

To illustrate the meaning of TMI, let us consider three
classical bits x,y,z and the following situations: (i) I3(x : y :
z) = − ln 2, if x = y ⊕ z and y,z are independent and random,
where ⊕ describes the binary sum. In this case, neither y nor z is
individually correlated with x, but composite yz is maximally
correlated with x. (ii) I3(x : y : z) = 0, if x,y, and z are all
independent and random. In this case, there is no correlation
between x,y, and z. (iii) I3(x : y : z) = ln 2, if x = y = z and
x is random. In this case, the three bits form the maximum
three-body correlation.

While the above examples are classical, a similar argument
applies to quantum situations. In fact, TMI can be utilized to
characterize nonlocal and long-range entanglement in topolog-
ical orders [53].

III. NUMERICAL RESULTS

In this section, we show our main results on one-
dimensional spin chains and the SYK model.

A. Scrambling and integrability

We first discuss scrambling in the XXX model in one
dimension with and without an integrability breaking term.
The Hamiltonian is given by

ĤXXX :=
∑
〈i,j〉

Jσ i · σ j +
∑
〈〈i,j〉〉

J ′σ i · σ j , (3)

where i and j are indices of sites, and 〈i,j 〉 and 〈〈i,j 〉〉 mean
that i and j run within nearest neighbor (NN) and next-nearest
neighbor (NNN), respectively. The Pauli matrices for a spin are
written as σα

i (α = x,y,z), and we define σ i := (σx
i ,σ

y

i ,σ z
i ).

Let J > 0. This model is integrable if J ′ = 0, while it is
nonintegrable if J ′ > 0.
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FIG. 2. Time dependence of BMI and TMI for the nonintegrable
XXX model with parameters L = 14,J ′ = 0.8J , and l = 1 or L/2 −
1. The information content and the initial state are (a) BMI, Néel, (b)
BMI, all up, (c) TMI, Néel, and (d) TMI, all up.

We consider the nonintegrable case with J ′ = 0.8J in
Eq. (3), where the parameters are taken so that the level
statistics is the Wigner-Dyson distribution [4], implying that
the system is fully chaotic in the sense of conventional quantum
chaos. Figures 2(a) and 2(b) show the time dependence of BMI
I2(A : BC) with the initial state being (a) Néel or (b) all up,
along with TMI I3(A : B : C) in Figs. 2(c) and 2(d).

At initial time t = 0, BMI is given by 2 ln 2 because of the
entanglement between A and B. As time increases, BMI decays
for all the cases. In Fig. 2(a), the decay is much smoother, where
BMI saturates at zero for l = 1 and at ln 2 for l = L/2 − 1.
These are consistent with the behaviors of TMI as discussed
below.

Figure 2(c) shows that TMI becomes negative for the initial
Néel state, implying scrambling. For l = 1, TMI decreases
from zero, goes through a minima, and gradually returns to
zero. This means that information is scrambled inside ABC in
a short-time regime, and then completely disappears from BC

 0

 2

 4

 6

 8

 0  10  20  30

nonintegrable

integrable

FIG. 3. Dependence on the subsystem size of the decay time τ of
BMI. The system size is L = 128 and the initial state is all up.

in a longer-time regime. For l = L/2 − 1, TMI monotonically
decreases and saturates at a negative value. This means that
information is scrambled but is not totally lost from BC, even
in a long-time regime. These results are consistent with the
behaviors of BMI.

On the other hand, as shown in Fig. 2(d), TMI is positive
when the initial state is all up. In this case, information is not
scrambled, but a three-body correlation forms among A, B, and
C. We remark that entanglement spreads ballistically even in
this case. Figure 3 shows the decay time τ , at which I2(A : BC)
becomes a ln 2 (0 < a < 2) for the first time. The constant a

can be arbitrarily chosen and here we set a = 1.9. Figure 3
clearly shows the linear dependence of τ on l, which implies
that entanglement spreads ballistically. This clarifies that what
TMI characterizes is delocalization of quantum information,
rather than ballistic spreading of entanglement. More detailed
results on entanglement spreading are shown in the Appendix.

We next discuss the integrable case with J ′ = 0 in Eq. (3).
Figure 4 shows the time dependence of TMI for the initial state
being (a) Néel or (b) all up. The qualitative behavior of TMI is
similar to the nonintegrable case; scrambling occurs in Fig. 4(a)
but does not in Fig. 4(b). We do not observe recurrence induced
by integrability because our system size is sufficiently large.

We therefore conclude that scrambling occurs indepen-
dently of integrability. We note that the time range of our
numerical simulation is sufficiently long to see the role of
nonintegrability. In fact, the level spacing at the peak of the
Wigner-Dyson distribution corresponds to J t � 103 in our
nonintegrable model [55]. We also note that our numerical
simulation is not restricted to the low-energy states, which can
be effectively described by the integrable field theory [56].

To study the initial-state dependence of scrambling more
systematically, we calculated the XXX model with all possible
product states, |�〉BCD. We label 2L product states in the
computational basis by bit sequences from |000 · · · 0〉 to
|111 · · · 1〉. Figure 5 shows the initial-state dependence of
the maximum and minimum values of TMI in 0 � J t < 105,

042330-3



EIKI IYODA AND TAKAHIRO SAGAWA PHYSICAL REVIEW A 97, 042330 (2018)

-1

-0.5

 0

10-2 10-1 100 101 102 103 104 105

 0

 0.5

 1

10-2 10-1 100 101 102 103 104 105

(a)

(b)

FIG. 4. Time dependence of TMI for the integrable XXX model
with parameters L = 14,J ′ = 0, and l = 1 or L/2 − 1. The initial
state is (a) Néel and (b) all up.

written as Imax
3 and Imin

3 , respectively, for (a) nonintegrable
and (b) integrable cases. The horizontal axis shows the labels
of |�〉BCD in decimal. We see that scrambling occurs (Imin

3 < 0)
for most of the initial states.

On the other hand, there are only four initial states
with which scrambling does not occur (Imin

3 = 0) for both
Fig. 5(a) and Fig. 5(b). These four states are |0〉|0〉|0〉 · · · |0〉,
|1〉|0〉|0〉 · · · |0〉, |0〉|1〉|1〉 · · · |1〉, and |1〉|1〉|1〉 · · · |1〉. The
reason why these four states are exceptional is that the
Hamiltonian (3) conserves the total magnetization in the z

direction. This confines the dynamics into a much smaller
subspace of the Hilbert space, which leads to the absence of
scrambling.

In order to clarify the relationship between the initial state
and scrambling, we consider the effective dimension of the

FIG. 5. Initial-state dependence of the maximum (purple) and the
minimum (green) values of TMI for the XXX model with parameters
L = 12, l = L/2 − 1. (a) Nonintegrable case (J ′ = 0.8J ), (b) inte-
grable case (J ′ = 0).

FIG. 6. Effective dimension Deff vs the minimum value of TMI,
Imin

3 . Parameters are L = 12 and l = L/2 − 1. (a) XXX model,
(b) TFI model.

initial state, which is known to characterize the relaxation
process in isolated quantum systems. In particular, a large
effective dimension leads to relaxation of the expectation
value of an observable in the long-time regime [54]. Let the
initial state be |�〉 = ∑

i

∑di

α=1 ci,α|Ei,α〉, where |Ei,α〉 is the
eigenstate of the Hamiltonian with the eigenenergy Ei,α . Here,
Ei,α (=:Ei) is independent of α, and di represents the degree
of the degeneracy of Ei . The effective dimension of |�〉 is
defined as

Deff :=
(∑

i

p2
i

)−1

, (4)

where pi := ∑di

α=1 |ci,α|2 is the weight of Ei . We have calcu-
lated Deff of all the separable states used in Fig. 5. Figure 6(a)
shows a correlation between Imin

3 and Deff , i.e., Imin
3 tends to

be smaller when Deff is larger. In particular, the above four
exceptional states have very small effective dimensions, which
is consistent with the conservation of the total magnetization in
the z direction. Thus, this result suggests that if an initial state
does not exhibit scrambling, it has a small effective dimension.

FIG. 7. Initial-state dependence of the maximum (purple) and the
minimum (green) values of TMI for the TFI model with parameters
L = 12 and l = L/2 − 1. (a) Nonintegrable case (hx = 2.1J and
hz = 1.1J ), (b) integrable case (hx = J and hz = 0).
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We next consider TMI for the TFI model with and without
an integrability breaking term. The Hamiltonian is given by

ĤTFI :=
∑
〈i,j〉

Jσ z
i σ z

j +
∑

i

hxσ
x
i +

∑
i

hzσ
z
i . (5)

The transverse and longitudinal magnetic fields are given by
hx = J and hz = 0 for the integrable case, and by hx = 2.1J

and hz = 1.1J for the nonintegrable case. Figure 7 shows that
scrambling occurs for both the integrable and nonintegrable
cases and for all of the initial product states in the computa-
tional basis.

The reason why scrambling occurs for the initial all-up
state is that the total magnetization in the z direction is no
longer conserved in the TFI model, and therefore quantum
information is mixed up in a huge subspace. To support this
observation, we have also calculated the effective dimension
of the TFI model. Figure 6(b) shows a similar trend as is the

FIG. 8. Time dependence of BMI and TMI for the disordered XXX
model with the initial Néel state with L = 12. The number of samples
is 128. The information content and the phase are (a) BMI, ergodic
(h = J ), (b) BMI, MBL (h = 10J ), (c) TMI, ergodic (h = J ), and
(d) TMI, MBL (h = 10J ).

case for the XXX model, while Deff is overall larger than the
case of the XXX model.

B. Many-body localized phase

We now consider the role of disorder by focusing on the
disordered XXX model. The Hamiltonian is given by

ĤMBL :=
∑
〈i,j〉

Jσ i · σ j +
∑

i

hiσ
z
i , (6)

where hi is a random magnetic field and is generated uniformly
from [−h,h] (h > 0). The amplitude of disorder h is h = J for
the ergodic phase and h = 10J for the MBL phase.

Figure 8 shows the time dependence of BMI and TMI with
the initial Néel state, where the ensemble average is taken
over 128 samples and the error bars represent the standard
deviations over the samples. In the ergodic phase, Figs. 8(a)
and 8(c) are qualitatively the same as the clean cases [Figs. 2(a)
and 2(c), and Figs. 4(a) and 4(c)]. In the MBL phase, Fig. 8(b)
shows that BMI decays quite slowly. This is consistent with
a phenomenology of local integrals of motion of MBL [47].
Figure 8(d) shows that the time scale of scrambling is similar
to the clean case for l = 1, but is quite longer for l = L/2 − 1.
This is also consistent with the phenomenology of MBL [47].
In fact, information can rapidly be scrambled in ABC if C
is small, while scrambling should be quite slow if C is large
because of the exponentially decaying interaction. In addition,
Fig. 9 shows TMI with the initial all-up state, where scrambling
does not occur in both the ergodic and the MBL phases.

C. Sachdev-Ye-Kitaev model

We next consider the SYK model [23,33–40] with complex
fermions,

ĤSYK := 1

(2L)3/2

∑
i,j,k,l

Jij ;klc
†
i c

†
j ckcl, (7)

FIG. 9. Time dependence of TMI for the disordered XXX model
with the initial all-up state with L = 12. The number of samples is
128. The phase are (a) ergodic (h = J ) and (b) MBL (h = 10J ).
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FIG. 10. Time dependence of TMI for the SYK model with
parameters L = 14, and l = 1 or L/2 − 1. (a) Disordered SYK model
with the initial Néel state. (b) Clean SYK model and typical samples
of the disordered SYK model with the initial Néel state. (c) Disordered
SYK model with the initial all-up state.

where c
†
i (ci) is the creation (annihilation) operator of a fermion

at site i. The coupling in the SYK model is all to all and
four body (four local), and random: Jij ;kl is sampled from
the complex Gaussian distribution with variance J 2, satisfying
Jij ;kl = −Jji;kl = −Jij ;lk = J ∗

lk;ji . We also consider a clean
SYK model without disorder (i.e., Jij ;kl ≡ J for i > j, k > l)
in order to clarify the role of disorder.

Figure 10(a) shows the time dependence of TMI for the
SYK model with the random coupling, where the initial state
is Néel (i.e., fermions are half filled), the ensemble average
is taken over 16 samples, and the error bars represent the
standard deviations over the samples. In particular, TMI for l =
L/2 − 1 monotonically decreases to a negative steady value.
This smooth decrease is contrasted to the case of the clean
SYK model shown in Fig. 10(b), where scrambling occurs
but TMI exhibits large temporal fluctuations. We note that for
typical disordered cases that are also shown in Fig. 10(b),
scrambling is smoother even without taking the ensemble
average. Therefore, disorder enhances scrambling in the case
of the fermionic SYK model, as opposed to the case of MBL
of spin chains.

In addition, Fig. 10(c) shows the case of the initial all-up
state (i.e., |0〉 · · · |0〉), where TMI is positive and scrambling
does not occur for both the disordered and clean cases. This
is a consequence of the conservation of the fermion number,

TABLE I. Summary of our numerical results.

Scrambled (I3 < 0) Not scrambled (I3 > 0)

Nonintegrable XXX +J ′ (Néel) XXX+J ′ (all up)
TFI + hz (Néel, all up)

Integrable XXX (Néel) XXX (all up)
TFI (Néel, all up)
Clean SYK (Néel) Clean SYK (all up)

Disordered MBL (Néel) MBL (all up)
Disordered SYK (Néel) Disordered SYK (all up)

as is the case for the XXX model with the conservation of the
initial magnetization.

IV. CONCLUDING REMARKS

We have systematically investigated the scrambling dynam-
ics of quantum information in isolated quantum many-body
systems, where we have adopted TMI as a measure of scram-
bling. We summarize the foregoing numerical results in Table I
(see also the Appendix for supplemental results). We have
observed that scrambling occurs independently of integrability,
where an overwhelming majority of initial states exhibits
scrambling for both the integrable and nonintegrable cases.
We have also calculated the effective dimension to clarify the
relationship between the initial state and scrambling, which
shows that the exceptional initial states without scrambling
have small effective dimensions. Although the connection
between TMI and scrambling has already been established in
previous works [21,22], our work has revealed that scrambling
is a separate concept from conventional quantum chaos.

We have also investigated the MBL phase of a spin chain
and the SYK model. We found that disorder makes scrambling
smoother in the SYK model, which is contrastive to the case
of the MBL spin chain. We postpone a more detailed analysis
of the origin of this feature of the SYK model [57]. Here we
only note that the clean SYK model is integrable, as shown in
Table I [57].

We remark that experimental realizations of the SYK
model have been theoretically proposed with ultracold atoms
[38] and a solid-state device [58]. Furthermore, OTOC has
experimentally been measured with trapped ions [59]. By using
such state-of-the-art quantum technologies, the scrambling
dynamics of quantum many-body systems can be investigated,
and our results can be experimentally tested, which is a future
issue.
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APPENDIX: SUPPLEMENTAL NUMERICAL RESULTS

In this Appendix, we show some supplemental numerical
results, which support the conclusions in the main text.
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FIG. 11. Time dependence of BMI for (a) nonintegrable and (b)
integrable XXX models. The system size is L = 128 and the initial
state is all up.

FIG. 12. BMI as a function of time t and subsystem size l for
(a) nonintegrable and (b) integrable XXX models. The system size is
L = 128 and the initial state is all up.

FIG. 13. Time dependence of BMI for the TFI model with L =
14. The integrability and the initial state are (a) nonintegrable, Néel,
(b) nonintegrable, all up, (c) integrable, Néel, and (d) integrable,
all up.

We first show numerical results on ballistic entanglement
spreading for the integrable and nonintegrable XXX models. In
particular, we consider the initial all-up state, where scrambling
does not occur. In this case, we can numerically access a
much larger size (L = 128) because the total magnetization
is conserved in the XXX model. Figure 11 shows the time
dependence of BMI for several l. Figure 12 shows BMI versus
time and l, from which we again see the ballistic entanglement
spreading.

Figures 13 and 14 show the time dependence of BMI and
TMI for the TFI model (5), respectively. Figure 14 again shows
that scrambling occurs independently of integrability or the
initial state.

Figure 15 shows the time dependence of BMI and TMI
for the disordered XXX model (6) with the initial all-up state.
Figure 15(a) is similar to the time dependence of the clean
XXX model. Figure 15(b) shows that entanglement spreading
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FIG. 14. Time dependence of TMI for the TFI model with L =
14. The integrability and the initial state are (a) nonintegrable, Néel,
(b) nonintegrable, all up, (c) integrable, Néel, and (d) integrable,
all up.

is quite slow, which is consistent with the phenomenology of
the MBL phase [47].

Finally, Figs. 16(a) and 16(b) show the time dependence
of BMI for the disordered SYK model with the initial Néel
state and the initial all-up state. In the both cases, BMI decays
irrespective of whether or not scrambling occurs.

FIG. 15. Time dependence of BMI for the disordered XXX model
with the initial all-up state with L = 12. The number of samples is
128. The phase is (a) ergodic (h = J ) and (b) MBL (h = 10J ).

FIG. 16. Time dependence of BMI for the disordered SYK model.
The ensemble average is taken over 16 samples. The initial state and
the system size is (a) Néel, L = 12 and (b) all up, L = 10.
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