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We investigate the entanglement of n-mode n-partite Gaussian fermionic states (GFS). First, we identify a
reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be
mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU
if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted
by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order
the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC)
among pure n-partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished
via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of
Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian
SLOCC classes of pure n-mode n-partite states and derive them explicitly for few-mode states. Furthermore, we
consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n-mode n-partite
GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside
this set via fermionic LOCC. We generalize these findings also to the pure m-mode n-partite (for m > n) case.
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I. INTRODUCTION

Entanglement [1] plays a crucial role in understanding the
quantum physics of systems composed of many subsystems or
many particles. It is the primary resource of many applications
in quantum computation and communication and is the basis of
many of the intriguing effects of quantum many-body physics.

In multipartite systems, there are various qualitatively
different kinds of entanglement. Relating them to physical
properties [2] or to performable tasks [3,4] contributes to
elucidating the role of entanglement in nature and as a resource
for quantum technologies [5].

One very successful approach to identify different classes
of entanglement is to consider whether states can be converted
into each other using some naturally restricted set of quantum
operations, defining states for which such conversion is mu-
tually impossible to belong to distinct classes. This has lead
to the discovery of inequivalent kinds of entanglement [6,7]
and to their classification [8,9]. Furthermore, the maximally
entangled states and sets, which are the most relevant states
regarding local state transformations, have been identified
[1,10–14].

Most of these notions have been developed consider-
ing systems of distinguishable particles, and with system
Hilbert spaces that have a natural tensor-product structure
imposed by the spatial separation of subsystems. When ap-
plying them to systems of indistinguishable particles, central
notions of entanglement theory have to be adapted to account
for (anti)commutation relations and superselection rules that
restrict the set of allowed operations and modify the structure
of “local” operations.

In the present article, we investigate the entanglement
properties of multipartite fermionic states. There are both
fundamental and practical reasons to do so: On the one hand,
fermions are the fundamental constituents of matter, and hence
to understand the entanglement properties of quantum many-
body systems the fermionic perspective is indispensable. This
has motivated a broad effort to study fermionic entanglement
and work out the differences with qubit systems; see, e.g.,
Refs. [15–24].

Even in quantum information, where bosonic or effec-
tively distinguishable particles play the major important role,
genuinely fermionic systems such as single semiconductor
electrons or holes in quantum dots [25], ballistic electrons
in quantum wires or edge channels [26–28], or Majorana
fermions in quantum wires [29] are of increasing interest.
On the other hand, this analysis gives insights into the nature
of entanglement in general and the comparison of fermionic,
bosonic, and distinguishable systems affords a clearer picture
of the role of statistics.

Here we apply this state-conversion-based entanglement
classification to multipartite Gaussian fermionic states. This
important family of states contains the eigen- and thermal states
of quadratic Hamiltonians, i.e., those describing quasifree
single-particle dynamics. Despite their simplicity, these states
comprise a large range of different kinds of entangled states,
including GHZ-like states, spin-squeezed states, paired states
[30], and topological states [31], thus serving as a convenient
test bed for entanglement studies, and they can be used for basic
quantum information processing tasks such as probabilistic
teleportation [32], entanglement distillation [33], or metrology
[30,34,35], while for universal quantum computation, the
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Gaussian states and operations have to be augmented by a
non-Gaussian measurement [36]. In the present work, we focus
first on pure n-partite states with a single mode per party
and investigate their transformation properties under different
kinds of local fermionic operations. Then we generalize some
of the results to m-mode n-partite (for m > n) states.

The outline of the remainder of the paper is the follow-
ing. In Sec. II, we recall the definition and some properties
of fermionic states (FS), Gaussian fermionic states (GFS),
and Gaussian operations. Moreover, we recall the mapping
between GFS and spin states using the Jordan-Wigner trans-
formation. In Sec. III, we consider mixed GFS and first recall
the various definitions of separability for FS [16]. We identify
a reasonable definition of separability of GFS. Then, we
introduce a standard form for the covariance matrix (CM),
which is invariant under Gaussian local unitaries (GLU). In the
last two sections, Secs. IV and V, we investigate the entangle-
ment properties of pure GFS considering Gaussian local oper-
ations assisted by classical communication (GLOCC). As this
class of operations turns out to be trivial for n-mode n-partite
as well as multipartite multimode pure fully entangled GFS,
we study also Gaussian stochastic local operations assisted
by classical communication (GSLOCC) and fermionic local
operations assisted by classical communication (FLOCC) to
still obtain insights into the entanglement of GFS. In particular,
the following results are presented: (i) We characterize the
separable Gaussian fermionic states and different kinds of local
Gaussian fermionic operations (GLOCC, GSLOCC, Gaussian
separable operations (GSEP)); (ii) we derive a standard form
for n-mode, n-partite GFS into which any such state can be
transformed by GLU; as this standard form is unique, two GFS
are GLU equivalent if and only if (iff) their standard forms
coincide; (iii) we show that there are no nontrivial Gaussian
fermionic LOCC transformations between fully entangled pure
n-partite GFS; (iv) we characterize the Gaussian SLOCC
classes for pure n-mode, n-partite GFS; (v) we consider
fermionic LOCC between Gaussian states and identify the
corresponding maximally entangled set (MES), and, finally,
(vi) we generalize some of these findings to the m-mode
n-partite (m > n) case.

II. PRELIMINARIES

We summarize here some results concerning GFS and
introduce our notation. We consider systems composed of
n fermionic modes. To each mode k = 1, . . . ,n belongs a
creation and an annihilation operator bk,b

†
k , obeying the an-

ticommutation relations {b†k,b†l } = {bk,bl} = 0,{bk,b
†
l } = δkl .

The antisymmetric Fock space over n modes is spanned by the
Fock basis defined as

|k1, . . . ,kn〉 = (b†1)k1 . . . (b†n)kn |0〉, (1)

where ki ∈ {0,1} for all i ∈ {1, . . . ,n} and the vacuum state |0〉
obeys bi |0〉 = 0 ∀i. Note that |k1, . . . ,kn〉 is an eigenstate of
all number operators ni = b

†
i bi to eigenvalue ki .

It is sometimes more convenient to consider the 2n Hermi-
tian fermionic Majorana operators,

c̃2k−1 = bk + b
†
k, c̃2k = −i(bk − b

†
k), (2)

instead of the creation and annihilation operators. The anti-
commutation relations are then equivalent to

{c̃k,c̃l} = 2δkl . (3)

For any Clifford algebra satisfying the relation above, the oper-
ators bk = 1

2 (c̃2k−1 + ic̃2k) obey the anticommutation relation
and vice versa.

A linear transformation of the fermionic operators {c̃k},
i.e., c̃k → c̃′

k = ∑
l Okl c̃l , preserves the canonical anticom-

mutation relations iff O ∈ O(2n,R), i.e., iff O is a real
orthogonal matrix. These are called canonical transformations
or Bogoliubov transformations. They realize a basis change in
the fermionic phase space and can be implemented by Gaussian
operations (see below).

A. Gaussian states

A GFS of n modes is defined as the thermal (Gibbs)
state of a quadratic Hamiltonian, H = i

4 c̃T Gc̃ with G a real
antisymmetric 2n × 2n matrix and c̃ = (c̃1, . . . ,c̃2n), i.e.,

ρ = Ke− i
4 c̃T Gc̃, (4)

where K denotes a normalization constant (or, to include states
of nonmaximal rank, can be expressed as a limit of such
expressions). Equivalently, they can be characterized as those
states satisfying Wick’s theorem, i.e., for which all cumulants
vanish [37,38].

It is well known that any real antisymmetric 2n × 2n matrix
can be transformed into a normal form via a real special
orthogonal matrix [39]. More precisely, there exists a matrix
O ∈ SO(2n,R) such that

OGOT =⊕n
k=1βkJ2,where J2 =

(
0 1,

−1 0

)
, βk ∈ R. (5)

Hence, a GFS is a state of the form

ρ = ⊗̃n
k=1ρ

′
k, (6)

where ρ ′
k = 1

2 (1 − μk[b′†
k,b

′
k]) for μk = tanh(βk/2). Note that

here and in the following ⊗̃ denotes a product of operators
which are acting only on distinct sets of modes. However, we
only use this notation if the operators fulfill a commutation
relation. Here, the operators b′

k = ∑
l ulkbl obey again the

anticommutation relations; i.e., they are fermionic annihilation
operators [39]. Thus, ρ can be written as

ρ = 1

N
e− ∑

k βkb
′†
kb

′
k , (7)

where N = ∏
k(1 + e−βk ) denotes a normalization constant. It

is evident that a Gaussian state is completely determined by
its second moments, which are usually collected in the CM. In
terms of the Majorana operators the CM of a GFS, ρ, which
we denote by γ , is defined as

γkl = − 1

2i
tr(ρ[c̃k,c̃l]). (8)

As can be easily seen from this definition, the CM is an
antisymmetric 2n × 2n real matrix, which can be transformed
by a real special orthogonal matrix, O, into the normal form

OγOT = ⊕n
k=1(−μkJ2). (9)
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Note that μk = tanh(βk/2) [30]. This normal form is referred
to as the (fermionic) Williamson normal form [39]. Note that
in contrast to the case of bosons, no first moments have to be
specified for fermions since due to the parity superselection
rule all physical states have tr(c̃kρ) = 0. Thus, GFS are
completely characterized by their second moments, i.e., their
CM, due to Wick’s theorem [40]

iptr(ρc̃j1 . . . c̃j2p
) = Pf(γj1,...,j2p

), (10)

where 1 � j1 < · · · < j2p � 2n and γj1,...,j2p
is the 2p × 2p

submatrix of γ with rows and columns j1, . . . ,j2p. Here Pf
denotes the Pfaffian which for a 2n × 2n matrix A = (ai,j )
is defined as Pf(A) = 1

2nn!

∑
π∈S2n

sgn(π )
∏n

i=1 aπ(2i−1),π(2i),
where the sum is over all permutations π and sgn(π ) the
signature of π and satisfies Pf(A)2 = det(A).

Note that an antisymmetric real matrix γ corresponds to
the CM of a GFS, in particular to a normalized positive
semidefinite operator, iff γ 2 � −1, i.e., iff all the eigenvalues
of γ , which are all purely imaginary, have modulus smaller or
equal to one. The CM corresponds to a pure state if γ 2 = −1.
That is, μk ∈ [−1,1] in Eq. (9) and |μk| = 1∀k in case the state
is pure. For instance, the CM corresponding to the vacuum state
would be γ = −J2, whereas the one corresponding to |1〉〈1|
would be J2. Hence, the CM corresponding to the completely
mixed state is γ = 0.

B. Jordan-Wigner transformation

Let us recall here that there exists a one-to-one mapping
between FS and qubit states, which is known as Jordan-
Wigner transformation. Let us consider n modes and define
the operators

c2j−1 = Z ⊗ Z ⊗ · · · ⊗ Z ⊗ Xj ⊗ 1 . . . ,

c2j = Z ⊗ Z ⊗ · · · ⊗ Z ⊗ Yj ⊗ 1 . . . . (11)

These operators obey the same anticommutation relations
as the Majorana operators.

Consider now a FS

|�〉 =
∑

i1...,in∈0,1

αi1...,in(b†1)i1 (b†2)i2 . . . (b†n)in |0〉, (12)

where |0〉 denotes the vacuum state and αi1...,in ∈ C. Because
(b†k)2 = 0, one can associate to the state given in Eq. (12) the
n-qubit state

|�〉 =
∑
i1...,in

αi1...,in |i1 . . . ,in〉1,...,n. (13)

The Jordan-Wigner transformation is a unitary mapping
between the antisymmetric Fock space of n modes and the
Hilbert space of n qubits, relating Fermi operators c̃i with qubit
operators in Eq. (11) and the states in Eq. (12) with the ones
in Eq. (13).

Note, however, that the parties are ordered and one cannot
simply reorder them, as the order is fixed due to the commuta-
tion relations. To give an example, the state |00〉12 + |11〉12 =
|00〉21 − |11〉21, where the minus sign results from permuting

particles 1 and 2. To be more precise, the operation which has to
be performed on the qubit state in order to swap two systems is
the fermionic swap, which is the mapping |ij 〉 → (−1)ij |ji〉.
In order to perform, for instance, a partial trace, also these
commutation relations have to be taken into account. That
is, first the party over which the trace is performed has to be
swapped (with a fermionic swap) to the last position [41]. After
that, the partial trace can be performed as usual. Fermionic
mixed states are then convex combinations of fermionic pure
states.

Note that the parity conservation implies that a FS is
always a direct sum of states whose support is only in the
subspace with even parity and states whose support is only
in the subspace with odd parity. Here, the subspace with
even (odd) parity coincides with the set of states which are
a superposition of Fock states which have all an even (odd)
number of 1’s, respectively. Denoting by Pe (Po) the projector
onto the even (odd) subspace, we hence have that a state with
density matrix ρ is fermionic iff ρ = PeρPe + PoρPo, i.e., iff
PeρPo = PoρPe = 0 [42].

Especially when one is working with this representation, it is
important to be able to identify which of the FS are Gaussian.
Fortunately, given a FS, the following result can be used to
decide whether it is Gaussian or not. Recall that any operator
in the Clifford algebra generated by the Majorana operators c̃i

(i = 1, . . . ,2n) can be written as

x = α1 +
2n∑

p=1

∑
1�a1<a2<...ap�2n

αa1,...,ap
c̃a1 . . . c̃ap

. (14)

An operator is called even if it involves only even powers
of the generators, or stated differently and using the Jordan-
Wigner transformation, if the number of X’s plus the number of
Y ’s occurring in the sum is even. As any odd operator changes
the parity, it is easy to see that x is even iff PexPo = PoxPe =
0. Thus, in particular, all FS have even density matrices.

It has been shown in Ref. [43] that an even operator, x, is
Gaussian iff

[	,x⊗2] = 0, (15)

where

	 =
2n∑
i=1

ci ⊗ ci . (16)

Thus, we have that a FS, ρ, is Gaussian iff

[	,ρ⊗2] = 0. (17)

Let us give some examples. For a single mode, a state is
fermionic if its density matrix is diagonal in the computational
basis. Any such state is also Gaussian. For two modes, any FS
is of the form ρ = ρe ⊕ ρo, where ρe (ρo) are density operators
in the two-dimensional even (odd) parity subspace spanned by
{|00〉,|11〉} ({|01〉,|10〉}) respectively. It can be easily seen that
such a state is then Gaussian, i.e., fulfills the condition given
in Eq. (17) iff |ρe| = |ρo|, where | · | denotes the determinant.
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An example of such a state would be eiα(b†1b
†
2+b1b2), where ρe =

( cosh(α) −i sinh(α)
i sinh(α) cosh(α) ) and ρo = 1. In particular, all pure two-mode

FS are Gaussian. However, not all mixed two-mode FS are:
Examples of non-Gaussian FS are the Werner states, ρW =
4F−1

3 |ψ−〉〈ψ−| + 1−F
3 1, for F ∈ (1/4,1). Moreover, as we will

see later, any pure FS of three modes is Gaussian. However,
this is not the case for four modes.

When discussing pure GFS, we either consider the Jordan-
Wigner representation of the FS or the CM of the state.

C. Gaussian operations

Let us now briefly recall the definitions and properties of
Gaussian unitary operations, general Gaussian operators, and
Gaussian maps in the fermionic case. First note that all quantum
operations (completely positive maps) that respect parity are
considered as valid physical operations here and referred to as
fermionic operations.

Gaussian operations are those that can be realized with
Gaussian means: evolution under quadratic Hamiltonians,
adjoining of systems in Gaussian states, discarding of sub-
systems, measuring Gaussian POVMs, and projecting on pure
Gaussian states. A Gaussian fermionic unitary, U , acting on n

modes can be written as U = e−iH , where H is quadratic in
the Majorana operators, that is,

H = i
∑
kl

hkl c̃k c̃l , (18)

with h being a real antisymmetric 2n × 2n matrix [44]. In
Ref. [45], it was shown that these unitaries effect a canonical
transformation of the Majorana operators

U †c̃jU =
2n∑

k=1

Ojkc̃k, (19)

where O = e4h ∈ SO(2n) is a real special orthogonal 2n × 2n

matrix. Hence, a fermionic Gaussian unitary maps the CM to
OγOT , where O ∈ SO(2n) [46].

All Gaussian unitaries preserve the parity; i.e., they com-
mute with the parity operator P = (−1)

∑
k nk . However, the

parity-flipping transformation of mode k, which corresponds
to an (nonspecial) orthogonal transformation O = ⊕k−1

i=11 ⊕
Z ⊕n

i=k+1 1 on the Majorana operators of the system [47] (here
and in the following X,Y,Z denote the Pauli operators), also
has a (local) physical realization. The transformation can be
achieved for example by adjoining an ancillary mode in a Fock
state and then acting on the Majorana operators of the system
modes and the ancillary mode with the SO(2n + 2) operation
O = ⊕k−1

i=11 ⊕ Z ⊕n
i=k+1 1 ⊕ Z [48]. This exchanges particles

with holes both in mode k and in the ancilla and leaves the latter
unentangled; i.e., after discarding the ancilla it realizes Z on
mode k. Since for any O ∈ O(2n) there exists a O ′ ∈ SO(2n)
such that O = (⊕n−1

i=1 1 ⊕ Z)O ′, we can allow for all orthogonal
operations. That adjoining local ancillas enlarge the set of
implementable unitaries is in contrast to the Gaussian bosonic
states and also to systems consisting of qudits. Hence, the
most general operation on a single mode can be written as
Ō = ZmO, where m ∈ {0,1}, i.e., an arbitrary real orthogonal
matrix. Clearly these operations no longer correspond to
unitaries which are generated by quadratic Hamiltonians on

the system modes alone [see Eq. (19)]. However, as they can
be implemented using a quadratic Hamiltonian and ancillas in
a Gaussian state, we consider them as GLUs and take them
into account in the following. If it is, however, the case that a
particle-number superselection rule would forbid these kind of
transformations, it would be straightforward to slightly modify
the results derived here to exclude any operation which is not
of the form given in Eq. (19).

Let us also note here that the action of any Gaussian unitary
in the Jordan-Wigner representation corresponds to a product
of nearest neighbor match gates [44], which are unitaries of the
form U = Ue ⊕ Uo, where both Ue and Uo are 2 × 2 unitary
operators acting on the even and odd subspace, respectively;
and moreover, |Ue| = |Uo|.

A general Gaussian operator is any operator of the form
x = ei

∑
i,j χij c̃i c̃j for a complex antisymmetric matrix χ .

In Ref. [43], the most general Gaussian maps have been
characterized via the Choi-Jamiolkowski (CJ) isomorphism.
Recall that a completely positive (CP) map is called Gaussian
if it maps Gaussian states to Gaussian states. We reconsider in
Appendix A the CJ isomorphism for GFS. It follows that a map
E mapping n to m modes is Gaussian iff the corresponding CJ
state is Gaussian (see also Ref. [43]), i.e., if it is given by the CM
EE = ( A B

−BT D
), with A,B,D 2m × 2m,2m × 2n, and 2n ×

2n matrices, respectively (for more details, see Appendix A
and also Ref. [43]).

Note that the condition for Gaussian maps to map every
Gaussian state to a Gaussian is very stringent. Consider, for
instance, the situation where one wants to transform the state
|00〉 + |11〉 into a state α|00〉 + β|11〉. Note that these are
two-mode GFS in the Jordan-Wigner representation and such
a transformation is always possible for two-qubit states via
LOCC. The local operations accomplishing this transforma-
tion, i.e., A1 = diag (α,β), A2 = diag (β,α), are Gaussian;
however, the map

E(ρ) = A1 ⊗ 1(ρ)A†
1 ⊗ 1 + XA2 ⊗ X(ρ)A†

2X ⊗ X (20)

is non-Gaussian even though both terms in the sum
are. A simple example of a GFS that is not mapped
to a GFS by E is the two-mode GFS ρ = ρe ⊕ ρo,
with ρe = (ze + 1/4 0

0 1/4 − ze
), ρo = (zo + 1/4 xo

xo 1/4 − zo
) for ze �

1/4,
√

x2
o + z2

o � 1/4 and z2
e = x2

o + z2
o, xo 
= 0. Note that

E is FLOCC [i.e., it is a local map which maps FS to FS
(as it preserves parity)] and would accomplish the desired
transformation. Because of that, we consider in Sec. IV not
only GLOCC but also the richer class of FLOCC.

III. SEPARABILITY OF GAUSSIAN FERMIONIC
STATES AND OPERATIONS

Here we specialize the three definitions of separability of
general FS presented in Ref. [16] to the case of GFS. We show
that they do not all coincide even for Gaussian states and that
one of them is not stable when considering multiple copies of
a state. We show that one of the two remaining definitions of
separability is also consistent with the desired property that
any separable state can be generated by a local operation.
Furthermore, we derive a standard form for mixed n-mode n-
partite states into which any GFS can be transformed via GLU.
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A. Mixed Gaussian fermionic separable states

The notion of entanglement is complicated for fermions
(compared to bosons or qubits) due to superselection rules
and anticommutation relations. The former enforces that all
physical states have to commute with the parity operator
but makes it impossible to characterize all states uniquely
by local measurements of “physical” observables, i.e., those
commuting with the parity operator. The latter implies that
observables acting on different sites (disjoint sets of modes)
do not, in general, commute.

In Ref. [16], several notions of product state and separable
state were discussed for arbitrary FS, i.e., not necessarily
Gaussian states. There, the set of physical states was defined as
� := {ρ : [ρ,P ] = 0}, with P the parity operator. This gave
rise to two notions of “product states”: The set of physical
states for which the expectation values of all products of
physical observables factorize, i.e., ρ(AπBπ ) = ρ(Aπ )ρ(Bπ ),
was denoted byP1π .P2π (P2) is the set of all states of the form
ρ = ρA⊗̃ρB with (without) the parity restriction, respectively.

Then the three separable sets S1π ,S2π ,S2π ′ can be defined
via the convex hull of the different product sets together
with the requirement that the final state commutes with the
global parity. Specifically, S1π = co(P1π ), S2π = co(P2π )
and S2π ′ = co(P2) ∩ �.

Let us now investigate these definitions further by consid-
ering GFS. In order to identify the set of separable GFS, one
might want to define the separable states as those that are not
useful for any quantum information task even if arbitrarily
many copies of the state are given. Another reasonable choice
would be to define the set of separable states to be those that
can (at least asymptotically) be prepared by LOCC. The single-
copy case [16] shows that these two notions do not coincide for
fermions: P2 contains states that cannot be prepared locally
but the set P1π of states that are not useful (considering only
a single copy) is strictly larger. Before we focus on the first
choice, i.e., on P2, and show that the definition using P1π can
be ruled out, let us present some observations about these sets.

Observation 1. A GFS is in the set S2π iff its covariance
matrix takes direct-sum form.

This can be easily seen by noting that all states in S2π are
convex combinations of products of states that each commute
with the local parity; i.e., all terms in the mixture have a CM
that is block diagonal (and all first moments vanish), and hence,
the CM of the mixture is also block diagonal. In contrast, even
the states inP1π can have nonzero correlations between A and
B as stated in the next observation.

Observation 2. A state in P1π can have nonzero correla-
tions between A and B. However, in that case the block of the
CM containing the correlations between A and B has at most
one nonvanishing singular value.

For a proof of Observation 2, see Appendix B. An example
of a Gaussian state, which is separable according to definition
S1π but not according to S2π is the two-mode Gaussian state
with CM

γ0 =

⎛
⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎠.

It describes a state in which one (nonlocal and paired) mode is
prepared in a pure Fock state and the other in the maximally
mixed one. In general, we could consider the first mode to be in
a (finite temperature) thermal state (e.g., being occupied with
probability p); then

γp = (1 − 2p)γ0.

The two modes are defined by the nonlocal SO(4) matrix

O =

⎛
⎜⎝

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎟⎠,

which maps Oγ0O
T = [−J2 ⊕ 02]. The mode operators of

the transformed state are (c̃3,c̃1) and (c̃2,c̃4); i.e., the new
annihilation operators are given in terms of the old ones as b′

1 =
1
2 [b2 + b

†
2 + i(b1 + b

†
1)] and b′

2 = 1
2 [b2 − b

†
2 − i(b1 − b

†
1)). It

is readily checked that the vacuum for these two modes
in the original basis is |0b′

1
0b′

2
〉 = (|0b1 0b2〉 + i|1b1 1b2〉)/

√
2.

Therefore, the mixed Gaussian state with CM γp is given by the
mixture of |0b′

1
0b′

2
〉 and |0b′

1
1b′

2
〉 = (|0b1 1b2〉 + i|1b1 0b2〉)/

√
2

(each with probability (1 − p)/2) and |1b′
1
0b′

2
〉,|1b′

1
1b′

2
〉 (each

with probability p/2).
Since the Fock states in the b′

1,b
′
2 basis correspond up to a

local phase gate to Bell states in the local basis, the state can be
seen as being GLU equivalent to a Bell-diagonal state with en-
tries ((1 − p)/2,(1 − p)/2,p/2,p/2) in the (+,�+,−,�−)
basis. For qubits, we would argue that for all p the density
matrix is separable (the maximal overlap with a maximally
entangled state is �1/2). Formally, a Jordan-Wigner transfor-
mation maps the fermionic two-mode state ργp

to the separable
(up to LU) Bell-diagonal two-qubit state described above. Is
the GFS ργp

separable or entangled? As we show below, it
does not behave as a separable state, when many copies are
available and allows (at least for p = 0) even to distill pure
singlets. Consequently, separability should be defined in a way
that does not include these states. Note that this has already
been shown for FS in Ref. [16]. The following theorem proves
that the statement also holds for the restricted set of GFS.

Theorem 3. The set of Gaussian states in S1π is not stable.
That is, there exists a GFS, ρ such that ρ ∈ S1π (even inP1π );
however, ρ⊗̃ρ 
∈ S1π .

Proof. Given two copies of a Gaussian state, ρ, with CM
�ρ = ( �A C

−CT �B
) and rank C = 1, then the full state now

has a rank-2 matrix C and therefore is no longer in P1π ,
since we can find a pair of local observables (commuting
with local parity) for which the expectation value does not
factorize. That is, assuming (�ρ)kl ∝ ρ(ckcl) 
= 0 and using
Wick’s theorem implies ρ⊗̃2(ckc

′
kclc

′
l) = −ρ(ckcl)ρ(c′

kc
′
l) 
=

0, where the primed operators refer to the second copy. Hence,
ρ⊗̃ρ 
∈ S1π . �

This shows that any Gaussian state ρ for which
ρ⊗̃n(AnBn) = ρ⊗̃n(An)ρ⊗̃n(Bn)∀An,Bn,n must have a CM
�ρ = �A ⊕ �B . We are going to show next that ρ⊗̃2 is not
only no longer in the set S1π but that it can also be useful for
quantum information theoretical tasks.

Observation 4. Some states in S1π can be useful for quan-
tum information processing.
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Given two copies of a Gaussian state with CM γ0, we can
use local Gaussian unitaries to transform it to the form (now
written in 2 × 2 block form)

⎛
⎜⎝

0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0

⎞
⎟⎠,

which now contains a pure, maximally entangled two-mode
state in the first modes of A and B [32]. These states can be used
for teleportation (though only probabilistically). This shows
that S1π is not a viable definition of separability.

Because of these observations, it is clear that one relevant
set of separable states is defined via S2π . Hence, we use
this definition in the following. In that case, the CM of any
n-partite mixture of product states has direct-sum form, i.e.,
γ = ⊕iγi . That is, a GFS is separable iff its CM is of that
form. Moreover, this definition of separability is meaningful
in the context of the generation of separable states, as all these
states can be prepared locally. To be more precise, let us note
that as separability does not have such a clear meaning for FS,
as it has, e.g., in the bosonic or finite-dimensional case, and it
is a priori not clear how separable maps ought to be defined.
This is especially due to the fact that the set of separable maps
(SEP) does not have a clear physical meaning. In contrast
to that, LOCC transformations, even if restricted to certain
local operations, such as (Gaussian) fermionic operations,
are operationally defined. It is the set of transformations
which can be implemented by local [(Gaussian) fermionic]
operations assisted by classical communication. LOCC is
strictly contained in SEP and is mathematically usually much
harder to characterize. However, in a situation as here, where
the definition of the larger set is not clear, one is forced
to deal with LOCC. Hence, we consider in Appendix A
FLOCC transformations and show that this leads to a natural
choice of the definition of FSEP. Moreover, we show that
any separable state (according to S2π ) can be generated via
a FLOCC transformation. Hence, the definition of separable
states being those which are elements of S2π meets all the
necessary requirements. Note that it is, however, not clear if
for every Gaussian state in S2π ′ there exists a decomposition
into physical product states, i.e., it is not clear whether for
Gaussians the sets S2π and S2π ′ coincide or not (in general,
they do not [16]). However, as mentioned above and as shown
in Appendix A, all states which can be reasonably prepared
locally must belong to S2π .

B. Gaussian fermionic separable operations

As mentioned in Sec. II C, the CJ isomorphism
provides a one-to-one mapping between quantum
states and quantum operations. Moreover, it has been shown
in the finite-dimensional case that a map is separable; i.e., it
can be written as a convex combination of local operators iff
the corresponding CJ state is separable [49]. In Appendix A,
we argue that the CJ state of a Gaussian separable map has a
CM of the form

�AB = �A ⊕ �B, (21)

with a natural generalization to more systems. As a conse-
quence of the previous section, this state is a separable GFS
according to S2π . Thus, this definition of separability agrees
with the operational viewpoint that all separable states can be
generated locally (an agreement which is not maintained for
all definitions in the presence of superselection rules; see, e.g.,
Ref. [50]). Moreover, this definition can be naturally general-
ized to Gaussian separable maps (GSEP) (see Appendix A 2
for more details). As stated in the following lemma, fermionic
completely positive maps (FCPM), i.e., CP maps that map FSs
onto FSs, can be written in Kraus decomposition with special
Kraus operators (see also Ref. [22]).

Lemma 5. All fermionic completely positive maps can be
written using only Kraus operators with definite parity (i.e.,
that are either sums of only even monomials in the Majorana
operators c̃i or sums of only odd monomials).

Proof. Let E denote a FCPM with Kraus operators {Ak},
i.e., E(ρ) = ∑

k AkρA
†
k for all ρ. In general, the Ak are sums

of even and odd terms, that is, Ak = A
(e)
k + A

(o)
k . FCPMs map

FSs to (unnormalized) FSs; i.e., both ρ and E(ρ) are even
(sums of even monomials in the Majorana operators c̃i). Using
the Kraus representation, this implies that

∑
k A

(e)
k ρ(A(o)

k )† +
A

(o)
k ρ(A(e)

k )† = 0 for all ρ. Consequently, the FCPM Ẽ with
Kraus operators {A(e)

k ,A
(o)
k }, which we denote by Ãk in the

following, represents the same channel as E(ρ) = Ẽ(ρ) for
all FSs ρ. To show that

∑
k Ã

†
kÃk = 1 on the whole state

space, note that tr(Yρ) = 1 ∀ρ = ρe ⊕ ρo iff Y = ( 1 Yeo

Yoe 1 ),
where Yeo = PeYPo (Yoe = PoYPe) and both the even and
odd parts of Y have to be equal to the identity. Moreover, for
Y = ∑

k Ã
†
kÃk = Ae ⊕ Ao it follows immediately that Yeo =

Yoe = 0. Thus, the Kraus operators of the FCPM Ẽ also satisfy∑
k Ã

†
kÃk = 1. �

C. Standard form and GLU equivalence
for n-mode n-partite states

Here, we considern-moden-partite fermionic systems. That
is, each mode is spatially separated from the others. We derive
a standard form S(γ ) into which the CM γ can be transformed
via GLU. As the standard form is unique, we have that two GFS
are GLU equivalent iff their CMs in standard form coincide.

Let us start by recalling that the most general GLU operation
corresponds to an arbitrary real orthogonal matrix on each
mode. Hence, the CM γ is transformed to

S(γ ) = (⊕iZ
mi Oi)γ

( ⊕i OT
i Zmi

)
, (22)

via GLU with Oi ∈ SO(2,R) and mi ∈ {0,1}. We denote in the
following by γjk the 2 × 2 matrix describing the covariances
between modes j and k. Because γ = −γ T we have for i � n

γii =
(

0 λi

−λi 0

)
= λiJ2, (23)

where λi ∈ [−1,1]. As AJ2A
T = |A|J2, for any 2 × 2 matrix

A, γii transforms to Zmi γiiZ
mi = (−1)mi γii . If λi 
= 0, we

chose mi such that Zmi γiiZ
mi = λiJ2, where λi > 0. In case

λi = 0, i.e., mode i is completely mixed, we show below
how the bit value mi can be uniquely defined. In order
to uniquely define Oi = eiαiY we proceed as follows. Con-
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sider the first index j with i < j such that the off–diagonal
matrix γij is not vanishing. If the singular values of γij are
nondegenerate (dij 
= |d ′

ij |), we define Oi,Oj ∈ SO(2,R) by
OiγijO

T
j = Dij = diag(dij ,d

′
ij ),dij � |d ′

ij | [51]. If the singu-
lar values of γij are degenerate, γij is itself proportional to
an orthogonal matrix. In case |γij | > 0, γij is proportional to
a special orthogonal matrix, eiαij Y . Then, we define Oj ∝
Oiγij ; that is, we set αj = αij + αi . In case |γij | < 0, γij

is proportional to a matrix Zeiαij Y . Then, we define Oj ∝
ZOiγij ; that is, we set αj = αij − αi . In all cases, S(γ )ij is
diagonal. We proceed in the same way for γij+1 (and then
any subsequent γik). If αj has already been determined in a
previous step, αk is determined by diagonalizing γ T

jkγjk . More
precisely, αk is chosen such that OjγjkO

T
k = ÕjkDjk with

Djk = diag(djk,d
′
jk),djk > |d ′

jk| [52], Õjk ∈ SO(2,R), and
(Õjk)11 � 0 [for (Õjk)11 = 0 choose αk such that (Õjk)12 �
0] [53]. If αj has been expressed as a function of some
other αl, l < j , which cannot be determined by the procedure
explained before, then we fix αl by diagonalizing γjkγ

T
jk and

imposing that the singular values are ordered nonincreasingly
[54]. Note that if not both Oj and Ok depend on αl , we
can choose either (OjγjkO

T
k )11 > 0 or if (OjγjkO

T
k )11 = 0

we impose that (OjγjkO
T
k )12 � 0. In case γjk is proportional

to an orthogonal matrix, then either one relates Ok and αl

using the scheme explained before or Ok has already been
related to αl in a previous step. In the second case, either
OjγjkO

T
k is independent of αl or one chooses OjγjkO

T
k =

diag(|djk|,djk).
It is easy to see that in this way any αj is uniquely

determined unless the CM is invariant under the conjugation
with Oj , that is, the mode j is decoupled from all other
modes, in which case we set αj = 0. At this point, all the
operators which are no symmetry of the CM are determined.
Those which leave the CM invariant can be chosen to be equal
to the identity, e.g., if for 3-modes γ12 = O12, γ13 = O13,
and γ23 = O23 with Oij ∈ SO(2,R), i.e., all of them are
special orthogonal matrices and invariant under O1, we choose
O1 = 1.

It remains to consider the case where λi = 0. If there is
no index j such that γij 
= 0, then the mode i factorizes and
we set mi = 0. Hence, let us assume that γij 
= 0 for some j .
We determine mi + mj by requiring that Zmi OiγijOjZ

mj =
Dij such that tr(Dij ) > tr(ZDij ). In case mj is determined
by the condition on the transformed γjj , this determines mi .
Otherwise, there exists either a k such that either γik 
= 0 or
γjk 
= 0 or, the modes i and j factorize. In this case, the CM
is invariant under the transformation Zmi ⊕ Zmj and we set
mi = mj = 0. Note that if selection rules forbid the application
of the operations Z to the individual modes, we simply set
mi = 0 ∀i in the derivation above.

In summary, we have shown that any GFS can be easily
transformed into its standard form by applying GLU. As the
standard form is unique, we have the following theorem.

Theorem 6. Any CM γ can be transformed into its standard
form, S(γ ), by Gaussian local unitaries (GLUs). Two CMs γ

and � are GLU equivalent if and only if S(γ ) = S(�).
As the CM determines uniquely the corresponding GFS,

Theorem 6 presents a criterion for GLU equivalence of
GFS.

Let us consider now some examples, where we explicitly
compute the standard form for the CM. As mentioned above,
we consider here n-mode n-partite systems, i.e., the 1 × 1 ×
· · · × 1 case. Here, we compute the standard form of 2- and
3-mode states.

1. 1 × 1

Using the definition of the standard form introduced above,
it is straightforward to see that any two-mode state CM can be
written (up to GLU) as

S(γ ) =

⎛
⎜⎜⎜⎜⎝

0 λ1 d12 0

−λ1 0 0 d ′
12

−d12 0 0 λ2

0 −d ′
12 −λ2 0

⎞
⎟⎟⎟⎟⎠, (24)

with λi > 0 for i ∈ {1,2} and d12 � |d ′
12| or λi = 0 and λj � 0

for {i,j} = {1,2} and d12 � d ′
12 � 0. Imposing that the state is

pure, i.e., that γ γ T = 1 we obtain λ1 = λ2 > 0, d12 = −d ′
12

and d2
12 + λ2

1 = 1 or λ1 = λ2 = 0 and d12 = d ′
12 = 1 (the

maximally entangled state).

2. 1 × 1 × 1

Similar to above, one can identify the standard form for
mixed states of three modes to be

S(γ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 λ1 d12 0 l1d13 l2d
′
13

−λ1 0 0 d ′
12 −l2d13 l1d

′
13

−d12 0 0 λ2 m1 m12

0 −d ′
12 −λ2 0 m21 m2

−l1d13 l2d13 −m1 −m21 0 λ3

−l2d
′
13 −l1d

′
13 −m12 −m2 −λ3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where λi,dij ,d
′
ij ,li , and mi,mij are real parameters and l2

1 +
l2
2 = 1. Thus, there are 12 free parameters characterizing the

mixed GFS, which have to obey certain conditions, given in
Appendix C.

Imposing the condition that the state is pure is more
involved than in the case of two modes. Even though it is
straightforward to derive this decomposition for the CM, we
use the Jordan-Wigner representation of the states instead.
In Sec. IV B, we show that any pure GFS is either of
the from |〉 = a1|000〉 + a2|011〉 + a3|101〉 + a4|110〉,ai ∈
R�0∀i,

∑4
i=1 a2

i = 1 or of the form X⊗3|〉. Note that without
loss of generality (a2

3 + a2
4 − a2

1 − a2
2) � 0, (a2

2 + a2
4 − a2

1 −
a2

3) � 0, (a2
2 − a2

4 − a2
1 + a2

3) � 0 (equivalent to non-negative
λi). For strict inequalities and for ai 
= 0 ∀i (i.e., the case of
a generic CM without degeneracies), the standard form of the
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CM is given by

S(γ ) = 2

⎛
⎜⎜⎜⎜⎜⎝

0 λ1 a1a4+a2a3 0 0 −a1a3+a2a4

−λ1 0 0 −a1a4+a2a3 −(a1a3+a2a4) 0
−(a1a4+a2a3) 0 0 λ2 a3a4−a1a2 0

0 a1a4−a2a3 −λ2 0 0 (a3a4+a1a2)
0 a1a3+a2a4 −a3a4+a1a2 0 0 λ3

a1a3−a2a4 0 0 −(a3a4+a1a2) −λ3 0

⎞
⎟⎟⎟⎟⎟⎠, (25)

with λ1 = 1/2(a2
3 + a2

4 − a2
1 − a2

2), λ2 = 1/2(a2
2 + a2

4 −
a2

1 − a2
3), λ3 = 1/2(a2

2 − a2
4 − a2

1 + a2
3). If the above stated

conditions do not hold, a similar standard form can be derived.
More precisely, if one of the ai’s is equal to zero, at least
one of the off-diagonal blocks is degenerate and therefore, as
explained above, the standard form looks slightly different.
Note that as in the bosonic Gaussian case [55] and in contrast
to the qubit case [56] it can be easily seen that the purities
of the reduced states; that is, the λi’s, uniquely define the
state. Let us remark here that there exists only one GFS
(up to GLU) with ρi ∝ 1 for each subsystem i, namely
|000〉 + |011〉 + |101〉 + |110〉. Note that although it is known
that any three-qubit state whose single-qubit reduced density
operators are completely mixed is LU—equivalent to the GHZ
state—this does not immediately imply the same for GFS due
to the restriction to GLU.

IV. PURE GAUSSIAN FERMIONIC STATES AND LOCAL
TRANSFORMATIONS FOR n-MODE n-PARTITE STATES

Let us now investigate in more detail the entanglement
contained in pure GFS. For this purpose, we consider the
class of Gaussian separable operations (GSEP). In general,
SEP contains LOCC but is a strictly larger class [12,57–59].
We show, however, that for Gaussian operations on n-mode n-
partite systems any transformation among pure fully entangled
states via Gaussian SEP (GSEP) can be performed via GLU.
Hence, in particular, only trivial Gaussian LOCC (GLOCC)
transformations exist for single modes. Note that here and
in the following we consider only fully entangled states, i.e.,
states where no subset of modes factorizes from the remainder.
Because of the triviality of GLOCC, we study then Gaussian
stochastic LOCC (GSLOCC) and certain fermionic LOCC
(FLOCC, see Sec. IV C), which map FSs to FSs. We character-
ize the various GSLOCC classes, which are, in contrast to the
bosonic case, indeed equivalence classes [60]. We then show
that there exist nontrivial FLOCC transformations that map
a pure GFS to some other pure GFS and demonstrate how to
identify all possible transformations of that kind. Interestingly,
many of the pure GFS belong to the maximally entangled set
(MES) [10]. That is, they cannot be obtained from any other
state via local deterministic transformations. For other states,
we derive a very simple local protocol which can be used to
reach the state from a state in the MES.

Let us first of all show that Condition (17), which is a
necessary and sufficient condition for a FS to be also Gaussian,
simplifies for pure FS (see also Ref. [61]).

Lemma 7. Let |�〉 be a FS. Then |�〉 is a GFS iff

	(|�〉 ⊗ |�〉) = 0. (26)

Proof. As mentioned before, an even operator, X is Gaus-
sian iff [	,X ⊗ X] = 0 [see Eq. (15)]. As the projector onto a
FS, |�〉, is even and as a Hermitian rank-1 operator commutes
with another Hermitian operator, such as 	, iff the state in the
range of the projector is an eigenstate of 	 we have that |�〉
is GFS iff 	(|�〉 ⊗ |�〉) = a|�〉 ⊗ |�〉 for some a ∈ R. As
|�〉 has well-defined parity, we have that 〈�|ci |�〉 = 0 for any
operator ci . Hence, (〈�|	|�〉)|�〉 = 0 = a|�〉. �

A. Gaussian separable operations and Gaussian LOCC

Let us start with the investigation of GSEP transformations.
As argued in Appendix A 2, GSEP is defined as the class of
operations for which the CJ state is Gaussian and has a CM
of the form � = ⊕n

i=1�i . We show here that any GSEP acting
on n separated modes, which maps at least one pure (fully
entangled) state into a different pure (fully entangled) state is a
GLU transformation. Hence, no nontrivial state transformation
is possible. The following lemma allows us to show in the end
that GLOCC on pure states are trivial, as GSEP strictly includes
GLOCC (see Appendix A 2).

Lemma 8. Let Esep denote a Gaussian trace-preserving
separable map which transforms at least one pure n-
partite n-mode FS, |�〉, into another pure n-partite n-
mode fully entangled FS, |〉. Then, it holds that Esep(ρ) =
(U1⊗̃U2 . . . ⊗̃Un)ρ(U †

1 ⊗̃U
†
2 . . . ⊗̃U

†
n) for all ρ.

Proof. Every separable Gaussian CP trace-preserving map
(GCPTM) Esep has a separable Gaussian CJ state EEsep ;
i.e., EEsep is of the form ρ1⊗̃ρ2 . . . ⊗̃ρN , and, consequently,
Esep = E1⊗̃E2 . . . ⊗̃EN is a product operation with GCPTMs
Ei (see Appendix A 2). Let us denote 1⊗̃k 
=1Ek(|�〉〈�|)
by ρ and write it in its spectral decomposition ρ =∑

i pi |�i〉〈�i |. It follows from Esep(|�〉〈�|) = |〉〈| that∑
i piE1⊗̃1⊗̃n−1(|�i〉〈�i |) = |〉〈|. Hence, it has to hold

that for pi 
= 0 E1⊗̃1⊗̃n−1(|�i〉〈�i |) = |〉〈| and therefore
there exists at least one pure state |�i〉 for which

|〉 ∝ Ak⊗̃1⊗̃n−1|�i〉 ∝ Al⊗̃1⊗̃n−1|�i〉, (27)

where by Aj we denote the Kraus operators of E1. Note that
|�i〉 has to be entangled in the splitting mode 1 versus the
remaining modes as |〉 is entangled in this splitting and E1

cannot generate entanglement. Hence, considering |�i〉 in its
Jordan-Wigner representation its Schmidt decomposition can
be written as |�i〉 = ∑1

j=0 λi
j |j 〉1|ψi

j 〉 with λi
0,λ

i
1 
= 0. Using

this in Eq. (27) as well as that due to Lemma 5, the Kraus
operators of E1 can be chosen such that each of them commutes
with |ψi

j 〉〈ψi
j | (which is a sum of only even monomials in the

Majorana operators acting on the modes 2, . . . ,n) it is easy to
see that Ak|j 〉|ψi

j 〉 = cAl|j 〉|ψi
j 〉 for j ∈ {0,1} and c ∈ C [62].

As the action of the different Kraus operators on a basis leads
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to the same states (up to a constant proportionality factor), we
have that Ak ∝ Al . Moreover, as this holds true for all possible
pairs of Kraus operators, one obtains from

∑
i A

†
i Ai = 1 that

A
†
i Ai ∝ 1 and hence the map E1 corresponds to the application

of a GLU on mode 1. Rearranging of the modes such that
mode j corresponds to the first mode and using the same
argumentation as before shows that Ej is a GLU transformation
on mode j for all j . Note that here we make use of the fact
that the maps Ej commute with each other [63]. Hence, we
can apply the Ej sequentially in any order. This implies that
under rearranging the modes the product structure of the map
Esep and the Kraus operators of the local maps Ej are preserved
[64]. Hence, we have that Esep is a GLU transformation. �

As mentioned above, Lemma 8 allows us to directly obtain
the following corollary.

Corollary 9. There exists no nontrivial GLOCC operation
mapping a pure n-mode n-partite FS |ψ〉 into another pure
n-mode n-partite FS |φ〉.

Let us note here that a very similar result has recently been
proven for finite-dimensional Hilbert spaces [13,14]. There,
it has been shown that generically, i.e., for a full-measure set
of states, there exists no LOCC (even SEP) transformation,
which transforms one pure (fully entangled) state into another,
which is not LU equivalent. In strong contrast to the scenario
considered here, the reason for that is, however, not that all
separable maps are particularly restricted but that generically a
state has no local symmetry. The relevance of local symmetries
for local state transformation is recalled in Sec. IV C 1. Note,
however, that in the qudit case, the result only holds generically
and that there exists a zero-measure set of states which can be
transformed via LOCC, whereas for FS the result holds for any
state.

B. Gaussian stochastic LOCC

In the previous subsection, we have shown that GLOCC
transformations among pure GFS are trivial. Thus, to quantify
and qualify entanglement properties of pure GFS, we have to
turn to a larger class of local operations. To that end, we now
consider Gaussian stochastic LOCC (GSLOCC) [65].

As mentioned before, the most general Gaussian opera-
tion consists of attaching an auxiliary system by applying a
Gaussian unitary to it and the system mode and measuring the
auxiliary system in the Fock basis. Hence, the most general
operations (in the 1 × 1 × · · · × 1 case) are in the Jordan-
Wigner representation of the form

D1X
k1 ⊗ D2X

k2 ⊗ · · · ⊗ DnX
kn, (28)

where Di are diagonal (with complex coefficients as eiαZ is
a GLU) and ki ∈ {0,1}. Note that as before the X operators
are possible because the parity of the system mode can be
changed with the auxiliary system (for total parity-preserving
operations, we have ki = 1 for an even number of ki’s). Note,
furthermore, that for a single mode the Gaussian operations
coincide with the fermionic operations (see Sec. IV C). Given
the fact that these are the most general Gaussian local oper-
ations, we have that two states can be transformed into each
other via GSLOCC if there exists an invertible operator of the
form given in Eq. (28) which transforms one state into the other

(in the Jordan-Wigner representation). In particular, we have
that GSLOCC is indeed an equivalence relation.

Before studying now the possible GSLOCC classes, let us
introduce a standard form for FS. We consider a FS in Jordan-
Wigner representation. Note again that as shown in Lemma 7 a
pure FS is Gaussian iff 	(|�〉 ⊗ |�〉) = 0. Using the standard
form of FS explained below together with this condition, one
obtains a characterization of the GSLOCC classes. We then
present the different GSLOCC classes for up to four-mode
GFS.

The following lemma states that by consecutive application
of diagonal matrices any FS can be transformed into a normal
form, which can, however, also vanish. For this, we need the
notion of a critical state, i.e., a state whose single system
reduced states are all proportional to the identity.

Lemma 10. Let |�〉 be a fully entangled FS. Then |�〉 can
constructively (by applying invertible diagonal matrices) be
transformed into a unique (up to LUs) critical state, |�s〉 (up
to a proportionality factor λ ∈ C which can tend to 0).

Proof. The lemma follows from the normal form of multi-
partite states describing finite-dimensional systems presented
in Ref. [66]. There, it has been shown that any state can
be transformed via (a sequence of) local operations into a
state whose single-system reduced state is completely mixed.
In the algorithm presented in Ref. [66], which achieves this
transformation, the local determinant 1 operations are X

(k)
i =

|ρ(k)
i |1/(2di )(

√
ρ

(k)
i )−1, where di denotes the local dimension

of system i and ρ
(k)
i the reduced state of party i in the kth

step of the algorithm. In order to apply this result to FS, note
that the reduced state of a FS has to be fermionic and hence
diagonal. Moreover, as local diagonal operators are fermionic
operations (even Gaussian), each state during the algorithm is
a FS. Hence, in each step k and for each party i, the operators
X

(k)
i are diagonal, which proves the statement. �
The normal form of |�〉 is given by λ|�s〉 (where λ can

tend to 0).
Depending on the normal form, one can group states in the

following three (disjoint) classes of states. (i) Stable states:
These are states belonging to a SLOCC class which contains
a critical state, which then is their normal form. Due to the
Kempf-Ness theorem [67], there exists only one critical state
in a SLOCC class (up to LUs). In the following, we will
call this state seed state and denote it by |�s〉. That the
normal form of any stable state is the corresponding seed state
follows also from the Kempf-Ness theorem. The GHZ state,

1√
2
(|0000〉 + |1111〉), is an example of a critical and therefore a

stable state. (ii) Semistable states: These are states that belong
to a SLOCC class without critical state; The normal form of
these states tends to a nonzero normal form. More precisely,
it tends to a seed state of a different SLOCC class [66]. The
four-qubit state |ψ〉 = a(|0000〉 + |1111〉) + |0110〉 + |0101〉
is an example of a semistable state, whose normal form tends to
the four-qubit GHZ state (see Ref. [66]). (iii) States in the null
cone: The normal form of these states vanishes. An example
of such a state is the W state.

In the Hilbert space Cd ⊗ · · · ⊗ Cd , the union of stable
states is of full measure and dense [8]. Hence, for almost all
states the normal form is not vanishing. Whether the same holds
true for FS is currently not clear. Despite this, we will focus
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now on stable FS. However, in the more detailed investigations
of few-mode states, we will also consider semistable states and
states in the null cone.

It follows straightforwardly from the lemma above that
stable FSs can be written as Xm1D1 ⊗ Xm2D2 ⊗ · · · ⊗
XmnDn|�s〉 with |�s〉 being critical. Note, however, that any
GFS can be written as Xm1D1 ⊗ Xm2D2 ⊗ · · · ⊗ XmnDn|�f 〉,
where |�f 〉 is some representative (not necessarily critical)
of the GSLOCC class and mi ∈ {0,1}. This follows from the
fact that the most general Gaussian operations are of the form
Xm1D1 ⊗ Xm2D2 ⊗ · · · ⊗ XmnDn. The subsequent corollary
allows us to characterize the GSLOCC classes of stable GFS.

Corollary 11. Let |�〉 be a stable FS and |�〉 = D1 ⊗
D2 . . . ⊗ Dn|�s〉. Then, |�〉 is GFS iff |�s〉 is GFS.

Proof. The “if” part follows from the fact that local diagonal
matrices are Gaussian operations. The “only if” part can be
seen as follows. Because of Lemma 7, we have that |�〉 is
GFS iff 	(|�〉 ⊗ |�〉) = 0, which is equivalent to 	(|�s〉 ⊗
|�s〉) = 0. Hence, |�〉 is a GFS iff |�s〉 is. �

An interesting example of a critical GFS state is the n-mode
state |�〉 = H⊗n|GHZ〉 [with |GHZ〉 = 1/

√
2(|00 . . . 0〉 +

|11 . . . 1〉)]. To see that |�〉 is a GFS, note that |�〉 ∝∑
k∈{0,1}n [1 + (−1)h(k)]|k〉 with h(k) being the Hamming

weight of the bitstring k. Therefore, |�〉 is a FS. That 	(|�〉 ⊗
|�〉) = 0 can be easily verified by direct computation. The fact
that the state is critical follows from the criticality of the GHZ
state. Note that the GHZ state itself is only a FS for even n.
Moreover, the fermionic swap applied to any two modes of
|�〉 (or of any critical state) is also critical. As there exists
only one critical state in a SLOCC class, this state is either LU
equivalent to |�〉 or in a different SLOCC class [68].

Let us now explicitly compute the GSLOCC classes of up
to four-mode GFS.

1. 1 × 1 case

We start with the simplest case of pure two-mode, two-
partite systems. First note that the spin representation of any
FS of two modes is either of the form |�1〉 = α|00〉 + β|11〉
or of the form (1 ⊗ X)|�1〉 = α|01〉 + β|10〉. As |�1〉 ∝ D ⊗
1|+〉, where |+〉 = 1/

√
2(|00〉 + |11〉 denotes the critical

seed state of two qubits and D = diag(α,β), there is only one
entangled GSLOCC class. It is easy to see that these states
are all Gaussian, as 	(|+〉 ⊗ |+〉) = 0 (see Lemma 7 and
Corollary 11).

2. 1 × 1 × 1 case

For three-mode GFS, we denote by |GHZ〉3 the Gaus-
sian fermionic GHZ state, i.e., |GHZ〉3 = H⊗3[1/

√
2(|000〉 +

|111〉)] = 1/2(|000〉 + |011〉 + |101〉 + |110〉). Note that we
consider from now on only even-parity FS, as the odd ones
are simply given by applying X⊗3. We write an arbitrary
pure three-mode (not normalized) FS as |�(a1,a2,a3,a4)〉 =
a1|000〉 + a2|011〉 + a3|101〉 + a4|110〉, ai ∈ C ∀i. Applying
GLUs (eαiZ) and choosing the global phase appropriately
allows us to chose all the parameters ai to be real and non-
negative. Using Lemma 7, it can be easily seen that they
are all Gaussian. Then, the following lemma characterizes all
three-mode GSLOCC classes.

Lemma 12. There are two three-mode entangled GSLOCC
classes, the GHZ and the W class. The state |�(a1,a2,a3,a4)〉
belongs to the GHZ class iff ai 
= 0 ∀i. It belongs to the W class
iff there exists exactly one i such that ai = 0. Moreover, the
state is biseparable iff exactly two ai = 0 (else it is separable).

Proof. First consider the case where ai 
= 0 ∀i. It can
be easily seen that the state can be written as D1 ⊗ D2 ⊗
D3|GHZ〉3 with Di invertible and hence it belongs to the
GHZ class. Let us denote by |W 〉3 = 1/

√
3(|011〉 + |101〉 +

|110〉) the W state. Then it is easy to see that any state
|�(a1,a2,a3,a4)〉 with exactly one i such that ai = 0 can be
written as Xk1D1 ⊗ Xk2D2 ⊗ Xk3 |W 〉3, where k1 + k2 + k3 =
0 mod 2 and Di diagonal and invertible. If two coefficients
vanish, the state can be written as Xk1 ⊗ Xk2D ⊗ Xk3 |0〉|+〉
(up to particle permutation), where k1 + k2 + k3 = 0 mod 2
and D is invertible, which proves the statement. �

Note that this implies that a tripartite entangled three-
mode GFS is of the form D1 ⊗ D2 ⊗ D3|�f 〉3 (up to GLUs),
where |�f 〉3 is either the GHZ or the W state and all Di’s
are invertible. Hence, there exist, as in the qubit case, two
fully entangled GSLOCC classes. The standard forms of the
corresponding CM are given in Sec. III C. To give an example
for the GHZ state with ai = 1/2 ∀i, the standard form is
given in Eq. (25). A similar standard form for the W state
(a1 = 0,a2 = a3 = a4 = 1/

√
3) can be determined. However,

it is slightly different, as in this case γ12,γ13,γ23 ∈ SO(2,R)
in Eq. (25).

3. 1 × 1 × 1 × 1 case

For four modes, it is no longer true that any pure FS is a
GFS. In fact, from Lemma 7 one easily derives the following
observation.

Observation 13. A pure four-mode FS, |�〉 (in Jordan-
Wigner representation) is Gaussian iff

〈�∗|(X ⊗ Y ⊗ X ⊗ Y )|�〉 = 0, (29)

where X,Y denote the Pauli operators.
This condition, which resembles the SL-invariant

polynomials [66] defined for qubit states, is in fact
equivalent to the condition that all reduced three-mode
states of |�〉 (taking the partial trace of one party) are
Gaussian. An arbitrary four-mode (even parity) FS is given
by |�〉 = a1|0000〉 + a2|0011〉 + a3|0110〉 + a4|1100〉 +
a5|1010〉 + a6|0101〉 + a7|1001〉 + a8|1111〉. It can be easily
seen (analogously to the three-mode case) that any such state
can be written as in the following lemma [69].

Lemma 14. A pure four-mode FS, |�〉 can be written as

|�〉 = Xk1D1 ⊗ Xk2D2 ⊗ Xk3D3 ⊗ Xk4D4|�f 〉, (30)

with |�f 〉 an appropriate representative of each SLOCC class,
ki ∈ {0,1} and k1 + k2 + k3 + k4 = 0 mod 2. Moreover, the
state is GFS iff the FS |�f 〉 is.

The last conclusion follows directly from Corollary 11 as in
the proof it has not been used that |�s〉 is critical and the local
Xki Di are Gaussian operations. Note that as in the three-mode
case, some GSLOCC classes contain a critical state, whereas
others do not. Moreover, in the four-mode case, there also exist
semistable states, i.e., states that tend to a nonvanishing normal
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form, even though they are not stable. Let us state the different
GSLOCC classes now in more detail based on the results on
four-qubit SLOCC classes in [7]:

(1) GSLOCC classes containing a critical state.
These are states from the SLOCC classes Gabcd ([7]), with
representatives

|�f 〉 = a|+〉⊗2+b|−〉⊗2+c|�+〉⊗2+d|�−〉⊗2. (31)

Note that the states |�f 〉 are critical. Because of Observation
13, we can easily see that the FS in Eq. (31) are Gaussian
iff ab + cd = 0. Hence, either two or three of the parameters
of |�f 〉 can vanish, according to this necessary and sufficient
condition. Whereas the states where two of the four param-
eters are equal to zero are still four-partite entangled, states
with three parameters being equal to zero are biseparable
states.

(2) GSLOCC classes containing semistable states.
As mentioned above, there exist classes that contain semistable
states (see Ref. [70] for results on semistable four-qubit states).
The SLOCC classes containing four-mode entangled GFS are
Labc2 and La2b2 (see Ref. [7]) with representatives

|�f (abc2)〉 = a+b

2
(|0000〉+|1111〉)+ a−b

2
(|0011〉

+ |1100〉) + c(|0101〉 + |1010〉) + |0110〉,
|�f (a2b2)〉 = a(|0000〉 + |1111〉) + b(|0101〉 + |1010〉)

+ |0110〉 + |0011〉. (32)

Note that neither |�f (abc2)〉 nor |�f (a2b2)〉 are critical. Using
Lemma 14 and Observation 13, we find that the FS are also
Gaussian iff either ab = −c2 for states in Labc2 or a2 + b2 = 0
for states in La2b2 . Note that if all of the parameters of a state
in Labc2 (La2b2 ) are equal to zero, the state is a product state
(biseparable state) respectively.

(3) GSLOCC classes containing states in the null cone.
The states in the null cone are the ones for which the normal
form vanishes. For four-mode GFS, there exists, as in the
three-mode case, exactly one GSLOCC class containing these
states, which is the class Lab3 of Ref. [7] with a = b = 0. The
representative is of the form

|�f 〉 = |1100〉 + |1111〉 + |1010〉 + |0110〉. (33)

This state is Gaussian and GLU equivalent to the four-qubit W

state.
Hence, for four-mode GFS, there exist infinitely many en-

tangled GSLOCC classes. More precisely, there are infinitely
many GSLOCC classes that contain a critical state; that is, the
states in these classes can be transformed into the normal form.
Furthermore, there exist infinitely many GSLOCC classes
of semistable states, which tend to a nonzero normal form
without being stable. There exists also a single GSLOCC class
containing states in the null cone for which the normal form
vanishes.

There are less GSLOCC classes for four-mode GFS than
there are for FS, which is not surprising as not all FS are
GFS, due to the condition given in Eq. (26) on |�f 〉. This also
implies that there exist less GSLOCC classes than SLOCC
classes in the qubit case (see Ref. [7]). However, as mentioned
above, there are still infinitely many such classes. Examples of

SLOCC classes that contain FS but no GFS are those denoted
by La203⊕1 in Ref. [7] for a 
= 0 [71].

C. Fermionic LOCC operations

As for transformations of pure n-mode n-partite GFS,
there exist no nontrivial GLOCC transformations, we consider
here a larger class of deterministic transformations and study
fermionic LOCC (FLOCC) transformations. For such transfor-
mations, the local maps that are applied have to be fermionic
and the measurement operators that are implemented in each
round have to be parity-respecting and local; i.e., they have
to be of the form XkD (in Jordan-Wigner representation),
where k ∈ {0,1} and D denotes here and in the following
a diagonal matrix [72]. More precisely, in each round of
an FLOCC transformation, one party implements locally a
fermionic POVM measurement with measurement operators
that are of the form XkD, possibly discards some classical
information about the outcome, and then communicates the
relevant information to the other parties. These apply depend-
ing on the measurement outcome an arbitrary local completely
positive trace-preserving (CPT) fermionic map. Note that the
Kraus operators of such maps can be chosen to be of the
form XkD (cf. Lemma 5). Note further that the operations
that are implemented in a subsequent round might depend on
the information about the prior outcomes.

For a concatenation of finitely many of such rounds, the
Kraus operators of the map that is implemented in each branch
of the protocol, i.e., for a specific sequence of outcomes
(taking into account that some information might have been
discarded), are of the form Xk1D1 ⊗ Xk2D2 ⊗ · · · ⊗ XknDn.
This can be easily seen as a finite product of operators of this
form results in an operator of the same form.

In order to provide a rigorous definition of FLOCC pro-
tocols which can also involve infinitely many rounds (in
analogy to the one given in Ref. [59] for LOCC protocols),
let us use the description of a protocol in terms of a quantum
instrument, i.e., by the family of CP maps {E1, . . . ,Em}. Here,
Ei is the CP map that is implemented in a specific branch
of the protocol denoted by i and it holds that

∑m
i=1 Ei is

a trace-preserving map. Moreover, a quantum instrument P
will be called FLOCC linked to an instrument P̃ if P can be
implemented by first implementing P̃ followed by exactly one
more round of an FLOCC protocol as defined before (where
again the operations that are implemented in each branch i

can depend on all previous outcomes) and then possibly by
some discarding of classical information. With all that, F
is defined as the instrument of a FLOCC transformation if
there exists a sequence of instruments of finite-round FLOCC
protocols where each element of the sequence is FLOCC linked
to its preceding element. Furthermore, for each element there
exists a way to discard information in the final round such that
the resulting sequence of instruments converges to F . In the
following, we consider also infinite-round FLOCC, however,
only those for which all Kraus operators are of the form
Xki Di . In order to highlight that there might be a difference
to FLOCC as defined above, we denote this set of operations
by FLOCC′. Note that, of course, any finitely-many-rounds
FLOCC is contained in FLOCC′. We are interested in FLOCC′

transformations among pure GFS and, in particular, in the
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maximally entangled set for this scenario. We first review the
concept of the maximally entangled set and then explain how
it can be determined for GFS when one considers FLOCC′

transformations.

1. The maximally entangled set

In Ref. [10], some of us introduced the maximally entangled
set (MES) as the minimal set of n-partite entangled states that
has the property that any pure n-partite entangled state can
be obtained via LOCC from a state within this set. That is, the
states in the MES are those which cannot be reached via LOCC
from some state that is not LU equivalent. In Ref. [55], GLOCC
transformations among Gaussian states of two or three bosonic
modes have been considered. There, it has been shown that not
all pure bosonic three-mode Gaussian states can be obtained
via GLOCC from a symmetric Gaussian state; i.e., the MES
of bosonic three-mode Gaussian states under GLOCC cannot
consist only of symmetric Gaussian states. In the following,
we are interested in the MES of GFS under FLOCC′. It is
defined analogously to before as the minimal set of n-partite
n-mode GFS for which it holds that any pure n-partite n-mode
entangled GFS can be obtained via FLOCC′ from a state within
this set.

As we explain in the next section using the Jordan-Wigner
representation, FLOCC′ reachability of GFS can be studied in a
way analogous to qubit systems. There, we used the necessary
and sufficient conditions of convertibility via separable maps
(SEP) of Ref. [73] to identify the states that cannot be reached
via SEP from a state that is not LU equivalent. As separable
maps (strictly) include LOCC transformations it follows that
these states are not reachable via LOCC. We outline here the
basic idea of the proof of the necessary and sufficient condition
derived in Ref. [73] for qudits in order to explain how this result
can also be applied to study FLOCC′ transformations of GFS.

The initial state of the transformation is denoted by g|�s〉
and the final state by h|�s〉, where g,h are invertible local
operators [74]. In order to perform this transformation, it
has to hold for all the Kraus operators of the separable
map, Ai = A

(1)
i ⊗ A

(2)
i ⊗ · · · ⊗ A

(n)
i , that Aig|�s〉 ∝ h|�s〉

and therefore (h−1Aig)|�s〉 ∝ |�s〉. Using the definition for
the local symmetries of a state S|�〉 = {S : S|�〉 = |�〉,S =
S(1) ⊗ S(2) ⊗ · · · ⊗ S(n),S(j ) ∈ GL(dj ,C)}, where dj denotes
the local dimension of system j , we have that h−1Aig ∝
Si where Si ∈ S|�s 〉. That is, the measurement operators Ai

are proportional to hSig
−1. Taking into account the proper

proportionality factors and using that the separable map has
to be trace-preserving, one obtains the following necessary
condition for transforming g|�s〉 into h|�s〉 via SEP. There has
to exist a probability distribution {pi}mi=1 and local symmetries
Si ∈ S�s

such that [73]

m∑
i=1

piS
†
i HSi = rG, (34)

where H = h†h,G = g†g, and r = 〈�s |H |�s 〉
〈�s |G|�s 〉 . Moreover, it is

straightforward to see that this condition is also sufficient [73].
Using this criterion, one can determine the states that are not
reachable via a SEP transformation and hence not via LOCC.

In the subsequent subsection, we discuss how one can in
an analogous way obtain necessary and sufficient conditions
for transformations among pure GFS via CPT maps with local
fermionic Kraus operators.

2. The maximally entangled set of GFS under FLOCC′

As mentioned before, the MES of GFS under FLOCC′

corresponds to the minimal set of n-partite n-mode GFS with
the property that any pure n-partite n-mode entangled GFS
can be obtained via FLOCC′ from a state within this set.
Hence, this set corresponds to the optimal resource under
the restriction to pure GFS and FLOCC′ transformations. As
we will see, it can be determined using a similar method
as has been employed to characterize the MES for three-
and four-qubit states. In particular, using the Jordan-Wigner
representation, one can find analogously to the qudit case
[73], which we reviewed in the previous subsection, the
necessary and sufficient condition for transformations among
GFS via separable maps whose Kraus operators are of the form
Xm1D1 ⊗ Xm2D2 ⊗ · · · ⊗ XmnDn, with mi ∈ {0,1} and where
Di is diagonal. Note that this class of separable maps includes
all FLOCC′ transformations, as all local fermionic operators
can be written like that (in Jordan-Wigner representation).

Before proceeding to study the separable maps, let us
briefly recall the relation between the operator Xmi Di in
Jordan-Wigner representation and the Majorana operators.
Xmi Di corresponds to a sum of monomials of even (mi =
0) or odd (mi = 1) powers in the Majorana operators and
hence it either commutes or anticommutes with the appli-
cation of Xmj Dj for j 
= i. Note that as Xi (in Jordan-
Wigner representation) corresponds in the Majorana operators
to (−ic̃1c̃2)(−ic̃3c̃4) . . . (−ic̃2i−3c̃2i−2)c̃2i−1, it follows that
despite the fact that this operator is acting locally on the
modes it is not only acting on mode i. Its implementation
requires also other parties to apply a local unitary. Any diagonal
matrix Di can be written in the Majorana operators (up to
a proportionality factor) as e−iαc̃2i−1 c̃2i for some α ∈ C and
therefore only acts on mode i.

In the previous subsection, we have seen that all Kraus
operators Ai of a separable map transforming g|�s〉 to h|�s〉
have to be proportional to hSig

−1. Recall that Si denotes a
local symmetry of |�s〉. As for the transformations we are
interested in, the operators h,g and the Kraus operators Ai

are local fermionic operators, and this implies that also any
symmetry Si ∝ h−1Aig that contributes to the transformation
is of the form Xm1D1 ⊗ Xm2D2 ⊗ . . . ⊗ XmnDn. Hence, only
symmetries of this form appear in the necessary and sufficient
condition given by Eq. (34) [75] if one considers transforma-
tions among GFS via the considered class of separable maps.

Thus, the local symmetries that can contribute to such
transformations are a subset of the local symmetries that are
available for transformations among qubit states. It follows
straightforwardly that if the qubit state corresponding to the
GFS (in Jordan-Wigner representation) is not reachable via a
nontrivial SEP transformation, then the GFS is not reachable
via a separable map with the specific form of Kraus operators
that we impose. Moreover, as exactly the same methods can be
applied that we used to determine the MES for three and four
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qubits, one can infer from these results the MES for three- and
four-mode GFS under FLOCC′ [76].

In Refs. [77,78], finite round LOCC transformations among
pure n-qudit states have been investigated. Restricting the
measurement operators, local unitaries, and SLOCC opera-
tors to local fermionic operators, one can use an analogous
argumentation to obtain the corresponding results for finite-
round FLOCC transformations among GFS. In the following
subsections, we discuss explicitly the MES for three- and
four-mode GFS under FLOCC′.

3. 1 × 1 × 1 case

As shown in Ref. [10], the MES of three-qubit states is given
(up to LUs) by

{D1⊗D2⊗D3|GHZ〉3,|GHZ〉3,D1⊗D2⊗1|W 〉}, (35)

where for the GHZ class none of the Di’s is proportional
to the identity and all of them are real and invertible. Note
that all these states are Gaussian and it follows directly that
these states also have to be in the MES of three-mode GFS.
As any GFS in the W class can be written (up to GLUs)
as given in Eq. (35), we have that any tripartite entangled
three-mode GFS is either in the MES or it is of the form
D1 ⊗ D2 ⊗ 1|GHZ〉3, where at least one Di is not proportional
to the identity (up to GLUs and particle permutations). In the
first case, the state cannot be reached from any other state (even
if one would allow the most general LOCC transformation).
In the second case, it can be easily reached from the GHZ
state with the following FLOCC′ protocol. Party 1 applies
the measurement consisting of the measurement operators
D1,D1X and party 2 applies a measurement consisting of
the measurement operators D2,D2X[79]. Hence, the resulting
state is D1X

k1 ⊗ D2X
k2 ⊗ 1|GHZ〉3. Using that Xk1 ⊗ Xk2 ⊗

Xk1+k2 |GHZ〉3 = |GHZ〉3, we have that if party 3 applies the
GLU Xk1+k2 the resulting state is for any outcome the desired
state and hence the transformation is deterministic.

4. 1 × 1 × 1 × 1 case

The four-mode case is very similar to the previously
discussed three-mode case. In order to illustrate this, let us
consider a few examples of possible transformations among
four-mode GFS via FLOCC′. Note that we consider here
only GSLOCC classes with nondegenerate and noncyclic seed
states as in Eq. (31) [80]. Because of Lemma 14, any four-mode
GFS with a seed state of the above form is either a state in
the MES (see Ref. [10]) or of the form (up to permutations)
|�〉 = D1 ⊗ 1⊗3|�s〉. If the state is in the MES, it cannot be
reached by any other state (even if LOCC would be allowed).
Moreover, apart from the seed states, all other states in the
MES are isolated; i.e., they cannot be transformed into any
other state via FLOCC′. Note that this is in contrast to the
qubit case, where the states in Eq. (30) are states in the MES
that are nonisolated; i.e., they can be transformed into a state
with exactly one local nondiagonal operator (see Ref. [10])
via LOCC. These states are, however, no GFS. In case the
four-mode GFS is not in the MES, it can be easily reached
from the GFS seed state via the following FLOCC′ protocol
(for more sophisticated protocols see below). Party 1 applies
the measurement consisting of the measurement operators

D1,D1X. In the case of the first outcome, the other parties
do not need to apply any transformation. In the case of the
second outcome, all three apply X to their systems. Because
the seed state is invariant under X⊗4, it can be easily seen that
the transformation can be achieved deterministically.

Note that for certain GSLOCC classes more transformations
are possible (see Ref. [11]). For instance, if the seed parameters
fulfill a = b, c = d, and c = ia, that is, they do not fulfill the
above stated conditions, the seed state has more symmetries.
As can be easily seen, this implies that the seed state can be,
for example, transformed into states of the form 1 ⊗ D2 ⊗
D3 ⊗ 1|�s〉. The corresponding FLOCC′ protocol is given
by party 2 applying the measurement operators D2,D2X and
party 3 applying the operators D3,D3X. Using that the seed
state is invariant under Y ⊗ 1 ⊗ X ⊗ Z and Z ⊗ X ⊗ 1 ⊗
Y , it is easy to see that the protocol can be implemented
deterministically.

V. PURE GAUSSIAN FERMIONIC STATES AND LOCAL
TRANSFORMATIONS FOR MULTIMODE STATES

In this section, we consider pure N -partite GFS where each
party i holds mi modes. We first investigate transformations
among fully entangled multimode GFS (for the definition see
below) via Gaussian trace-preserving separable transforma-
tions (GSEP), i.e., Gaussian transformations for which the
CM of the CJ state is of direct sum form. We show that
also in this more general setting such transformations are only
possible if the map is a GLU transformation. As GSEP includes
GLOCC transformations (see Appendix A 2), this implies
that any GLOCC transformation that is possible among pure
fully entangled GFS can be implemented via GLUs. Hence,
as before we consider larger classes of operations, namely
probabilistic transformations and FLOCC′ transformations.
More precisely, we briefly explain how the GSLOCC classes
can be characterized in the multimode case for classes which
contain a critical state. We conclude this section by briefly
discussing nontrivial FLOCC′ transformations among pure
multimode GFS.

A. Gaussian separable transformations

We investigate Gaussian separable transformations (GSEP)
among pure fully entangled multimode states, i.e., multimode
FS with the property that the Schmidt decomposition (of the
state in its Jordan-Wigner representation) with respect to the
splitting of one party versus the rest has no zero Schmidt
coefficients. As stated in the following lemma, we show that
such transformations are only possible if the map corresponds
to applying GLUs.

Lemma 15. Let Esep denote a Gaussian trace-preserving
separable map which transforms at least one pure fully entan-
gled m1 × m2 × · · · × mN -mode FS, |�〉, into another pure
fully entangled m1 × m2 × · · · × mN -mode FS, |〉. Then,
it holds that Esep(ρ) = (U1⊗̃U2 ⊗ · · · ⊗̃UN )ρ(U †

1 ⊗̃U
†
2 ⊗

· · · ⊗̃U
†
N ) for all ρ.

Note that this lemma holds as in the n-partite n-mode case
for all FS (not only GFS).

Proof. This lemma can be shown using an analogous
argumentation as in the proof of Lemma 8. We recall here
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the main steps of the proof and comment on its generalization
to the multimode case. As argued in Appendix A 2, Gaussian
separable maps correspond to product operations; i.e., they
are of the form Esep = E1⊗̃E2⊗̃ · · · ⊗̃EN with GCPTMs Ei

which act now on mi modes. Analogously to the case of a
single mode per site, we consider ρ = 1⊗̃k 
=1Ek(|�〉〈�|) with
spectral decomposition

∑
i pi |�i〉〈�i |. As before, it follows

straightforwardly that for pi 
= 0

|〉 ∝ Ak⊗̃j1mj
|�i〉 ∝ Al⊗̃j1mj

|�i〉, (36)

where the operators At are the Kraus operators of E1 and 1mj

denotes here the identity on mj modes. We show next that
there exists a Schmidt decomposition of the Jordan-Wigner
representation of |�i〉 in the splitting of the first m1 modes
versus the remaining modes such that all involved local (with
respect to that splitting) states are fermionic. In order to do
so, note that the reduced state of the first m1 modes has to
be fermionic and therefore the range of the reduced state is
spanned by FSs. Hence, any purification of this state (in par-
ticular |�i〉) is given by

∑2min(m1 ,n1)

j=1 λj |ηj 〉|νj 〉, where |ηj 〉 are

orthogonal FSs of m1 modes. That the n1 ≡ ∑N
j=2 mj -mode

states |νj 〉 are also fermionic follows from the facts that the
projector onto the states |ηj 〉 are fermionic operators (as they
are sums of only even monomials in the Majorana operators)
and that |�i〉 is a FS. Moreover, as the final state |〉 is fully
entangled, all Schmidt coefficients of |�i〉 have to be unequal
to zero [see Eq. (36)]; i.e., λj 
= 0 ∀j ∈ {1, . . . ,2min(m1,n1)}.

Analogous to the case of a single mode per site, one can
now apply |νj 〉〈νj | on both sides of Eq. (36) in order to see that
the action of Ak on a basis is the same (up to a proportionality
factor) for all Kraus operators Ak and hence E1 is a Gaussian
unitary operation. Rearranging the modes [81] and applying
the same argumentation for the various parties proves the
lemma.

As GSEP is defined such that it includes all GLOCC
transformations (see Appendix A 2), this lemma implies that
nontrivial GLOCC transformations among pure fully entan-
gled GFS are not possible even if one considers the case
of an arbitrary (finite) number of modes per site. Hence,
in the following section we will consider probabilistic local
transformations and comment on the characterization of the
GSLOCC classes for multimode states.

B. Gaussian stochastic LOCC

As deterministic transformations are not possible among
pure fully entangled GFS, we will consider next stochastic
GLOCC operations. We distinguish between bipartite and
multipartite GFS, as in Ref. [39] a decomposition for bipartite
states was introduced. For multipartite states, we show similar
to the single-mode per site case that stable states can be brought
into a normal form.

1. Bipartite case

For bipartite pure multimode states, i.e., party A (B) holds d1

(d2) modes respectively, it was shown in Ref. [39] that one can
consider without loss of generality two subsystems of d modes
each, where d = min(d1,d2), that is the two parties hold the
same number of modes. Thus, we only consider d × d states

here. A direct consequence of the results obtained in Ref. [39]
is the following observation for bipartite multimode GSLOCC
classes.

Observation 16. For d × d modes (GFS), there exist d

different GSLOCC classes.
Proof. This can be easily shown by using that any such

state is up to GLU equivalent to ⊗d
i=1|�i〉AB , with |�i〉AB =

cos θi |00〉AB + sin θi |11〉AB [39]. Thus, A and B share d two-
mode states |�i〉AB , which are entangled for θi 
= 0,π/2.
Moreover, each GSLOCC class is characterized by the local
rank of the states (the rank of the reduced states ρA,ρB does
not increase under GSLOCC) [82] and, hence, we immediately
arrive at the above stated result. �

Thus, there exist as many GSLOCC classes for bipartite
GFS as SLOCC classes for bipartite qudit states.

2. Multipartite case

Analogously to the case of a single mode per site, one
can transform any multimode FS into a normal form by
consecutively applying fermionic local invertible operators.
Note again that this normal form vanishes for states in the
null cone. Moreover, there exist semistable states that tend to a
nonzero normal form but their SLOCC class does not contain
a critical state [8].

Lemma 17. Let |�〉 be an entangled m1 × m2 × · · · × mN -
mode FS. Then |�〉 can be constructively transformed (by
applying invertible fermionic operators) into a unique (up to
LUs) critical FS, |�s〉 (up to a proportionality factor which can
tend to 0).

The lemma can be proven by using the same argumentation
as in the case of a single mode per site (see Lemma 10). Note
that the only difference is that the local invertible operators,
i.e., the reduced states, are no longer diagonal and thus
not automatically also Gaussian. However, they are general
fermionic operators. Note, furthermore, that any GSLOCC
class containing a critical state can be easily characterized via
this state. That is, if |�s〉 is a critical GFS then any other state
|�〉 in the same GSLOCC class is given by M1 ⊗ M2 ⊗ · · · ⊗
Mn|�s〉 = |�〉. Here, the operators Mi are Gaussian invertible
operators.

C. Fermionic LOCC

Transformations among fully entangled multimode GFS via
FLOCC′ [83] can be characterized analogously to the n-mode
n-partite case. Note, however, that in this setting there is an
additional freedom when one considers transformations to not
fully entangled states. Similar to the finite-dimensional qudit
case and contrary to the single-mode case, it is possible to
reduce the local rank of the parties via FLOCC′, leaving still
all parties entangled with each other.

VI. CONCLUSION

We investigated the entanglement of GFS. For this purpose,
we first derived a standard form of the CM for mixed n-mode
n-partite GFS. Any CM can be brought into this standard
form via GLU. As the standard form is unique, any two GFS
are GLU equivalent iff their CMs in standard form coincide.
Furthermore, we showed that only two of the definitions of
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separable FS from Ref. [16] are reasonable for GFS. This is
because any separable state should have the property that also
two copies of this state are again separable. For our derivations,
we used the definition of separability which declares a state
separable if it is given by a convex combination of product
states which commute with the local parity operator. According
to this physically meaningful definition, any separable state can
be prepared locally. Using this definition, we showed that for
pure fully entangled n-mode n-partite as well as multimode
GFS any GSEP is equivalent to a GLU. Thus, there exist no
nontrivial GLOCC transformations among pure fully entan-
gled GFS. Because of this, we consider then the larger class of
GSLOCC. With the help of a result on normal forms of states
from Ref. [66], we also characterized the GSLOCC classes in
the Jordan-Wigner representation and furthermore explicitly
derive them for few-mode systems. Then, we investigated the
more general FLOCC′, which contains in particular finitely
many rounds FLOCC (see Sec. IV C) to obtain insights into
the various entanglement properties of GFS and we show
how to identify the MES of pure n-mode n-partite GFS under
FLOCC′.

Let us finally compare the fermionic case investigated
here with the bosonic and the finite-dimensional scenarios.
In all three cases, a computable condition for two (n-partite
n-modes or n-qubit) states to be (G)LU equivalent has been
presented [55,84]. Regarding the bosonic Gaussian case, we
have that GSLOCC coincide with GLOCC transformations.
This follows from the fact that any GSLOCC operation can be
completed to a deterministic transformation. Moreover, there
exist GLOCC transformation among pure bosonic Gaussian
states which are not just GLU transformations (see, e.g.,
Ref. [55]). The MES for bosonic Gaussian states is not
known; however, in Ref. [55] a class of three-mode states
has been identified which can reach states which cannot
be reached from any symmetric three-mode state (including
the GHZ and W states). Regarding the finite-dimensional
case, there exist (not surprisingly) more SLOCC classes than
for GFS. Moreover, for Hilbert spaces composed of local
Hilbert spaces of equal dimensions, it has been shown that
almost all states are isolated; i.e., the state can neither be
reached nor transformed into any other (not LU-equivalent)
state via LOCC [13,14]. This resembles the fermionic case.
However, as mentioned before, the reason for this to be true
stems from the fact that almost no state possesses a local
symmetry.

It would be interesting to investigate another physically rele-
vant scenario by imposing a (global) particle-number selection
rule (as it is observed by elementary fermions in nature) on
the states considered and studying state transformations via
number-preserving local operations. Moreover, as in the qudit
case, the transformations from a multipartite state, where each
party holds more than a single mode (a single qubit) to a state
whose local rank is smaller might well allow (more) nontrivial
transformations, respectively. Physically motivated, restricted
set of states, such as FS or GFS, are ideally suited for this
investigation, as it will be more trackable than the general
qudit case. Moreover, this class of states is rich enough so
that the results derived for them have the potential to lead also
to additional insight into state transformations among qudit
states.
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APPENDIX A

In this Appendix. we study first the Choi-Jamiolkowski (CJ)
isomorphism [49,85,86] among Gaussian states and Gaussian
CP maps. Note that similar aspects of Gaussian CP maps
have already been studied in Ref. [43]. However, there the
author was using a different definition of the “tensor product”
(⊗f ) in the calculation. We summarize here the results using
our notation. Then, we consider Gaussian LOCC (GLOCC)
transformations and show that any GLOCC corresponds via the
CJ isomorphism to a separable state. These investigations lead
to the natural definition of fermionic separable maps (FSEP).
Considering then the possible states which can be generated
via GLOCC enables us to rule out the definition S2π ′ for
separable states. That is, ifS2π ′ does not coincide withS2π for
GFS, there exist states in S2π ′ which can neither be prepared
locally by Gaussian operations nor belong to the limit of such
a preparation scheme.

1. Choi-Jamiolkowski isomorphism in the Gaussian case

The CJ isomorphism is a one-to-one mapping between CP
maps and positive semidefinite operators. Denoting by E the
CP map that is acting on n modes and by ρE the corresponding
operator, we have

ρE = E⊗̃1(|+
2n〉〈+

2n|),
E(ρ) = tr23

(
ρ12
E ρ3|+

2n〉23〈+
2n|

)
, (A1)

where |+
2n〉 ∝ ∏2n

a=1(1 + ic̃a c̃2n+a). In Ref. [49], it has been
shown that separable maps correspond to separable operations
and that several other properties of the operators can be inferred
from the maps and vice versa. The aim of this section is to
show that the same isomorphism holds for Gaussian states. In
the subsequent subsection, we will then investigate the relation
between separable operators and the corresponding maps. Note
that we write Gaussian states and operators in this section in
the Grassmann representation; see Ref. [43] for more details.
Note further that ρE is a GFS iff E is a Gaussian map. It is
obvious that ρE is a Gaussian state if E is Gaussian as |+

2n〉 is
a GFS. Moreover, due to E(ρ) = tr23(ρ12

E ρ3|+
2n〉23〈+

2n|) one
obtains that if ρE is a GFS then also E(ρ) is Gaussian for all
GFS ρ and therefore E corresponds to a Gaussian map.

In Ref. [43], it was shown that a linear CP map on n

fermionic modes is Gaussian iff it has a (Grassmann) integral
representation

E(X)(θ ) = C

∫
DηDμ exp[S(θ,η) + iηT μ]X(μ), (A2)
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where

S(θ,η) = i

2

(
θ

η

)T (
A B

−BT D

)(
θ

η

)
≡ �θ T ME �θ,

with C � 0, real 2n × 2n matrices A,B,D, and MT
E ME �

1. The identity map on n modes is given by A = D = 0
and B = 1. Thus, for a map E ′ on n + m modes that acts
nontrivially only on the first n modes, we take A′ = A ⊕
0,D′ = D ⊕ 0,B ′ = B ⊕ 1. Applying this map (for m = n)
to the maximally entangled state of 2n modes, we get as the
CM of the output state [with �θ = (θ,θ ′) (and same for �η, �μ)
and �x12 = (�θ,�η),�x23 = (�η, �μ)]

∫
DηDη′DμDμ′e

i
2 �xT

12

(
A′ B ′

−B ′T D′
)

�x12+i �ηT �μ
e

i
2 �μT

⎛
⎝ 0 1
−1 0

⎞
⎠ �μ

= e
i
2
�θT (A⊕0)�θ

∫
Dx23e

yT �x23+ i
2 �xT

23M̃ �x23

∝ e
i
2
�θT (A⊕0)�θ e− i

2 yT M̃−1y.

In the last step, we used the Gaussian integration rule
(see Eq. (13) of Ref. [43]), y = (iB ′T �θ,0), and M̃ =(

D 0 1 0
0 0 0 1

−1 0 0 1
0 −1 −1 0

)
. Since y is nonzero only in the first

two components, we only need the upper diagonal block of
the 2 × 2 block matrix M̃−1, which is given by the Schur

complement as
(

D −1
1 0

)−1
=

(
0 1

−1 D

)
. Thus, we end up

with a Gaussian Grassmann representation with CM(
A B

−BT D

)
. (A3)

Hence, the GFS with this CM is the CJ state ρE of the map E .
Note that by using the above-mentioned definition of a tensor
product ⊗f (see Definition 5 in Ref. [43]) for the computation

of the CJ state, we obtain a CM
(

A −B

BT D

)
. The corresponding

state is obtained by applying the local operator
∏2n

i=1 c̃i to ρE .
In order to confirm that the state ρE with CM given in

Eq. (A3) allows for the physical interpretation, which is
characteristic for the CJ state, and that it can be used to realize
the map E via teleportation, we compute

tr23
(
ρ12
E ρ3

�|+
2n〉23〈+

2n|
)
.

Here, the superscripts indicate on which of the three different
blocks of modes the state is nontrivial. Using the formula for
the trace of two operators X,Y in Grassmann variables [87]
(see also Eq. (15) in Ref. [43]) and with X = ρ12

E ρ3
�, Y =

|+
2n〉23〈+

2n|) the trace is given by

tr23(XY )

∝
∫

D�ηD �μe
(iBT θ)T η+ i

2

(
θT Aθ+ηT Dη+η′T �η′+�μT

(
0 1

−1 0

)
�μ
)
e�ηT �μ

= e
i
2 θT Aθ

∫
D�x23e

ξT �x23+ i
2 �xT

23M
′ �x23 .

Here, again �x23 = (�η, �μ) and

ξT = ((iBT θ )T ,0,0,0),

M ′ =

⎛
⎜⎝

D 0 −i1 0
0 � 0 −i1
i1 0 0 1
0 i1 −1 0

⎞
⎟⎠.

Using again the Gaussian integration rule (Eq. (13) in
Ref. [43]), we obtain as a result a Gaussian state with CM

�out = A−(iB)

⎛
⎝

[(
D

�

)
−

(
0 1

−1 0

)−1
]−1

⎞
⎠

11

(iBT )

= A + B

((
D 1
−1 �

)−1
)

11

BT

= A + B(D + �−1)−1BT , (A4)

which is just E(ρ�).
Summarizing, we have shown that the state ρE =

(E⊗̃1)(|+
2n〉〈+

2n|) = ρM, where the GFS ρM with CM M =(
A B

−BT D

)
is the CJ state of the Gaussian map E which is given

in Eq. (A2) or equivalently which maps the CM � to �out as
given in Eq. (A4).

2. Gaussian LOCC (GLOCC)

Let us now investigate the relation of the entanglement
properties of CJ state and the entanglement properties of the
corresponding CP map. We will consider here only bipartite
systems; however, all arguments hold also for the multipartite
setting. In the case of finite-dimensional systems a CPTM, E ,
is called separable if it can be written as

E(ρ) =
∑

k

Ak ⊗ BkρA
†
k ⊗ B

†
k . (A5)

As the set of separable maps (SEP) strictly contains the set of
LOCC, i.e., the set of maps which can be realized via local
operations and classical communication, SEP lacks a clear
physical meaning. Hence, when considering restricted sets of
maps, such as here fermionic or Gaussian maps, there is no
clear way of specializing the notion of SEP to these sets. This
is why we consider here the physically meaningful, however,
mathematically generically much less tractable set of LOCC,
for which this specialization is obvious. We will then show that
this consideration suggests the natural definition of fermionic
SEP (FSEP).

Let us first consider the CJ state of a local map, E = E1⊗̃E2,
i.e., a composition of two maps, E1, and E2, which act on the
first and second systems nontrivially, respectively. In this case,
the CM of the CJ state splits in the form A = A1 ⊕ A2,B =
B1 ⊕ B2,D = D1 ⊕ D2. One can easily check that E(+)
is separable with respect to the splitting 13|24 according to
our definition (see Sec. III A). Hence, using our definition of
separability (S2π ), the CJ isomorphism maps local maps to
separable states.

Let us next show that the CJ state of any Gaussian LOCC is
separable according to the definition S2π . That is, we show
that any map which describes a GLOCC corresponds to a
Gaussian CJ state whose CM is given by �1 ⊕ �2 [88], i.e.,
the corresponding state factorizes. Using this result and the
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remark above, it is then easy to see that any GLOCC can be
written as E1⊗̃E2.

Operationally, a finitely-many-rounds FLOCC protocol is
a protocol which can be realized by local fermionic operations
and a finite number of rounds of classical communication. In
order to include also FLOCC protocols which require infinitely
many rounds of communication, we define FLOCC as the
set of finitely-many-rounds FLOCC protocols together with
those which are the limit of a sequence of such protocols. A
Gaussian FLOCC is a FLOCC that can be implemented with
Gaussian means and that maps Gaussian states to Gaussian
states. Stated differently any map, E , corresponding to a
finitely-many-rounds FLOCC (GLOCC) can be written as in
Eq. (A5), where all operators, Ak,Bk are fermionic (Gaussian)
operators, respectively. Any map within FLOCC (GLOCC)
can be written as the limit of a sequence of such maps where
each element of the sequence is obtained by applying one more
round of a FLOCC protocol to the preceding element.

Let us now show that the CJ state of a Gaussian FLOCC fac-
torizes. We consider first finitely many round protocols and ex-
tend the result then to the limit of sequences of such protocols.
The CJ state is given by ρE = (Eab

FLOCC⊗̃1a′b′
)(P aa′

+ ⊗̃P bb′
+ ).

Using that EFLOCC is of the form given in Eq. (A5), where
Ak,Bk are fermionic operators and computing the expectation
value of c̃a c̃b, where c̃a (c̃b) denotes any Majorana operator
acting on modes in a (b), respectively, we obtain

tr
[
Eab

FLOCC⊗̃1a′b′(
P aa′

+ ⊗̃P bb′
+

)
c̃a c̃b

]
=

∑
k

(−1)f (AkBk)tr
[
A

†
kc̃aAk⊗̃B

†
k c̃bBk

(
P aa′

+ ⊗̃P bb′
+

)]
, (A6)

where f (AkBk) = 0 for even operators AkBk and f (AkBk) =
1 for odd operators. As any operator Ak is parity respecting,
i.e., is fermionic, A

†
kc̃aAk is an odd operator. Because the

projector onto + is even and that tr[A⊗̃B(P aa′
+ ⊗̃P bb′

+ )] =
tr[AP aa′

+ ]tr[BP bb′
+ ], the trace vanishes. Hence, the off-diagonal

terms in the CM of the CJ state vanish and � = �aa′ ⊕ �bb′
.

In case the CJ state is Gaussian, in particular, if Eab
FLOCC is a

Gaussian map [89], we hence have that the CJ state factorizes.
The last assertion follows from the fact that for GFS, Wick’s
theorem holds and thus, all higher order correlations factorize
if the CM is block diagonal. In case Eab

FLOCC is the limit of a
sequence of finitely-many-rounds protocols, the statement also
holds due to continuity arguments [90].

It is evident from the discussion above that (i) any FLOCC
applied to a product state is separable and that (ii) any separable
GFS (according to S2π ) can be generated via FLOCC from a
product state. This fact, being obvious from a physical point of
view, shows that the definition we choose for separability meets
the necessary requirements. Moreover, this also shows that
states which are convex combination of nonfermionic states
(or the limit thereof) and for which no decomposition into FSs
exist cannot be generated locally. Hence, in case the set S2π ′

contains such a state, then calling states in S2π ′ separable does
not conform to the usual operational definition.

Note that in the argument above the restriction to locally
realizable maps has never been used. Hence, a natural def-
inition of Gaussian separable maps (GSEP) is the set of
CPTMs whose CJ state is a separable Gaussian state, i.e.,
ρEGSEP = ρA⊗̃ρB (which for GFS is equivalent to �EGSEP =

�A ⊕ �B). Note that this implies that EGSEP = EA⊗̃EB . FSEP
is then defined as the set of CPT maps that can be written
as E(ρ) = ∑

k(Ak⊗̃Bk)ρ(Ak⊗̃Bk)† where all the Ak,Bk are
parity-respecting operators.

APPENDIX B: PROOF OF OBSERVATION 2

Here, we prove the observation that a product state ac-
cording to definition P1π , i.e., the set of states for which
the expectation values of all products of physical observables
factorize, can have nonzero correlation between A and B.

Proof. Let us denote by P1π the set of states for which all
products of locally measurable observables factorize, by S1π

its convex hull, and by SG the set of Gaussian states. We show

that ρ ∈ S1π ∩ SG implies �ρ =
(

�A C

−CT �B

)
with rank C � 1

and that there are such states with rank C = 1.
We consider observables of the form �

2na

i=1c̃
a
ki

and �
2mb

j=1c̃
b
lj

,

where c̃a(b) refer to Majorana operators on Alice’s (Bob’s)
modes. We exploit the fact that we can compute their expec-
tation values in two ways: either by using the Wick formula
for the n + m-mode Gaussian state or by using the separability
condition and using the Wick formula twice for the n and m

local modes separately. We show that these only coincide for
all observables if the rank of the off-diagonal block C of the
full CM is not larger than 1.

Considering the observable c̃a
k1

c̃a
k2

c̃b
l1
c̃b
l2

, we find that
Ck1l2Ck2l1 = Ck1l1Ck2l2 where C = (Cij ). Without loss of gen-
erality, we can choose to work in the basis in which C

takes diagonal form [i.e., apply local basis changes Oa,Ob

such that OaCOT
b is diagonal (singular value decomposi-

tion)]. Then, considering k1 = l1,k2 = l2 one obtains that the
rank of C can be at most one since two nonzero singular
values would lead to a contradiction. This single nonzero
entry, however, cannot lead to any difference between the
two ways of computing expectation values of products of
even observables and thus there can be (and are) Gaus-
sian states in SS1 with C 
= 0: For example, consider any
Gaussian state with CM such that Ck1k1 
= 0 is the only
nonzero entry of C and consider any pair of even observ-
ables A = �ic̃

a
ki
,B = �j c̃

b
lj

, then ρ�(AB) = ρ�A⊕�B
(AB) =

ρ�A
(A)ρ�B

(B) = ρ�(A)ρ�(B), since, using Wick’s formula
any term that contains a pairing (k1,k1) must necessarily
contain another AB-correlating pair (k2,l2) with k1 
= k2,l1 
=
l2 since no index appears twice in the same subsystem.
However, since Ck1k1 is the only nonvanishing entry of C the
corresponding term is zero and only the local blocks �A,�B

contribute to ρ(AB). �

APPENDIX C: STANDARD FORM OF THE CM
OF 1 × 1 × 1 STATES

Here, we state the conditions on the parameters of the
standard form for mixed three modes GFS, i.e.,

S(γ ) =

⎛
⎜⎜⎜⎜⎜⎝

0 λ1 d12 0 l1d13 l2d
′
13−λ1 0 0 d ′

12 −l2d13 l1d
′
13−d12 0 0 λ2 m1 m12

0 −d ′
12 −λ2 0 m21 m2

−l1d13 l2d13 −m1 −m21 0 λ3

−l2d
′
13 −l1d

′
13 −m12 −m2 −λ3 0

⎞
⎟⎟⎟⎟⎟⎠,
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in more detail. If no mode factorizes we have for λi > 0 for
i ∈ {1,2,3} the following cases:

(1) d12 > |d ′
12| and

(a) d13 > |d ′
13| and l2

1 + l2
2 = 1 with either l1 > 0 or

l1 = 0 and l2 > 0 or
(b) d13 = |d ′

13| 
= 0, l1 = 1 and l2 = 0 or
(c) l1 = l2 = 0,m1 = l′1d23,m2 = l′1d

′
23,m12 = l′2d

′
23,

and m21 = −l′2d23 with l′21 + l′22 = 1, d23 > |d ′
23|

and either l′1 > 0 or l′1 = 0 and l′2 > 0 or
(d) l1 = l2 = 0,m1 = |m2| 
= 0,m12 = 0 and m21 = 0.

(2) d12 = |d ′
12| 
= 0 and

(a) d13 > |d ′
13|, l1 = 1, and l2 = 0 or

(b) d13 = |d ′
13| 
= 0, l1 = 1, l2 = 0,m1 = l′1d23,

m2 = l′1d
′
23,m12 = l′2d23, and m21 = −l′2d

′
23 with

d23 > |d ′
23|

and l′21 + l′22 = 1 or
(c) d13 = |d ′

13| 
= 0, l1 = 1, l2 = 0, γ23 ∝ O(2,R),
and d ′

12d
′
13|γ23| > 0 or

(d) d13 = |d ′
13| 
= 0, l1 = 1, l2 = 0,m1 = |m2|,

m12 = m21 = 0, and d ′
12d

′
13m2 < 0 or

(e) l1 = l2 = 0,m1 > |m2|,m12 = 0, and m21 = 0 or
(f) l1 = l2 = 0,m1 = |m2| 
= 0,m12 = 0, and m21 = 0

or
(g) d13 = |d ′

13| 
= 0, l1 = 1, l2 = 0, and m1 = m2 =
m12 = m21 = 0.

(3) d12 = |d ′
12| = 0 and

(a) d13 > |d ′
13|, l1 = 1, l2 = 0,m1 = l′1d23,m2 = l′1d

′
23,

m12 = l′2d23, and m21 = −l′2d
′
23 with l′21 + l′22 = 1,

d23 > |d ′
23| and either l′1 > 0 or l′1 = 0 and l′2 > 0 or

(b) d13 > |d ′
13|, l1 =1, l2 = 0,m1 = |m2| 
=0,m12 = 0,

and m21 = 0 or
(c) d13 = |d ′

13| 
=0, l1 = 1, l2 = 0,m1 > |m2|,m12 = 0,
and m21 = 0 or

(d) d13 = |d ′
13| 
= 0, l1 = 1, l2 = 0, m1 = |m2| 
= 0,

m12 = 0, and m21 = 0.
In case λi = 0 for some i ∈ {1,2,3}, the

standard form can be obtained analogously.
However, in this case mi is not determined by
γii .
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