
PHYSICAL REVIEW A 97, 042318 (2018)

Quantum phase transitions in spin-1 X X Z chains with rhombic single-ion anisotropy
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We explore numerically the inverse participation ratios in the ground state of one-dimensional spin-1 XXZ

chains with the rhombic single-ion anisotropy. By employing the techniques of density-matrix renormalization
group, effects of the rhombic single-ion anisotropy on various information theoretical measures are investigated,
such as the fidelity susceptibility, the quantum coherence, and the entanglement entropy. Their relations with
the quantum phase transitions are also analyzed. The phase transitions from the Y -Néel phase to the large-Ex

or the Haldane phase can be well characterized by the fidelity susceptibility. The second-order derivative of the
ground-state energy indicates all the transitions are of second order. We also find that the quantum coherence,
the entanglement entropy, the Schmidt gap, and the inverse participation ratios can be used to detect the critical
points of quantum phase transitions. Results drawn from these quantum information observables agree well with
each other. Finally we provide a ground-state phase diagram as functions of the exchange anisotropy � and the
rhombic single-ion anisotropy E.
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I. INTRODUCTION

Quantum phase transition (QPT) is a very important phe-
nomenon in condensed-matter physics, and it happens at zero
temperature by tuning one or more external parameters in the
system’s Hamiltonian [1]. Among them, spin S = 1 antiferro-
magnetic Heisenberg chain has been extensively studied both
experimentally and theoretically [2–10]. It is noted that the
ground state is in Haldane phase, which has nonlocal string
order. It is gapped between a spin-singlet ground state and a
spin-triplet excited state, and has gapless entanglement spectra.
These properties can be used to characterize the Haldane
phase. However, an ideal one-dimensional (1D) spin-1 system
is accompanied by the interchain interactions and magnetic
anisotropy, which may partially or completely suppress the
excitation gap and thus lead to detection of an observation of
long-range order in a quantum disordered magnet. The rhombic
single-ion anisotropy was discovered in some materials, such
as Y2BaNiO5 [8], NBYC [11], and heterobimetallic complexes
[12]. On the other hand, since the adventure of quantum
engineering has made rapid progress in recent years, the
exchange interaction and the magnetic anisotropy can be
modulated through Kondo physics [13–15], scanning tunnel-
ing microscope [16–19], and the exchange-biased quantum
tunneling [20,21]. However, the effect of rhombic single-ion
anisotropy lacks a complete theoretical understanding.

The competitions among various physical mechanisms will
induce QPTs and thus essentially enrich the ground-state phase
diagram of the spin model. To characterize various phases,
which go beyond the Haldane phase of spin-1 Heisenberg
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Hamiltonian, we adopt multiple theoretical measures to iden-
tify the critical points and quantum phases. Recently, various
exogenous approaches inherited from quantum information
have been exploited to measure the curvature of the many-body
ground states. Much effort has been put into the study of
quantum critical phenomena in spin chains in terms of quan-
tum information theory. Two well-known and widely studied
measures of quantum correlations are quantum coherence [22]
and entanglement entropy (EE) [23]. Another concept was
frequently referred to as fidelity susceptibility (FS), which
measures the changing rate between two closest states. FS
diverges at the critical points in the thermodynamic limit [24].
The ground-state quantum correlations and FS were deemed to
be capable of qualifying QPTs in strongly correlated systems
[25–38], since QPTs are intuitively associated with an abrupt
change in the structure of the ground-state wave function.
This primary observation motivates researchers to use quantum
coherence, EE, and FS to predict QPTs. The scaling relation
of FS was proposed for the spin-1 XXZ spin chain with a
single-site anisotropy term [39]. Through a proper finite-size
scaling analysis, the results from both FS and EE agree with
the findings in the previous results [40]. The effect of rhombic
single-ion anisotropy in the S = 1 Haldane chain was lately
investigated and a precise ground-state phase diagram was
identified [41]. However, the common XXZ anisotropy was
not taken into account. Such exchange anisotropy induces
a strong dependence of the magnetization process on the
magnetic-field direction between the in-plane (XY ) and out-
of-plane (Ising) exchange interactions in spin. To this end, it
would be interesting to discuss the effect of rhombic single-ion
anisotropy in the S = 1 XXZ chain.

In this paper, we make use of the ground-state EE and FS,
as well as nonlocal correlations, to analyze the QPTs in the 1D
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spin-1 XXZ chains with rhombic single-ion anisotropy. The
Hamiltonian and the details of numerical methods as well as the
measurementws are shown in Sec. II. In Sec. III, results of all
theoretical measures, including quantum correlation measures
and the FS as well are presented. A discussion is provided in
the last section.

II. HAMILTONIAN AND MEASUREMENTS

The Hamiltonian of a 1D spin-1 XXZ chain with the
rhombic single-ion anisotropy is given by

H =
N∑

i=1

J
(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

)

+
N∑
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E
[(

Sx
i

)2 − (
S

y

i

)2]
, (1)

where Sα
i (α = x,y,z) are spin-1 operators on the ith site and

N is the length of the spin chain. The parameter J denotes the
antiferromagnetic coupling, and J = 1 is assumed hereafter in
the paper. The parameters � and E are the exchange anisotropy
and the rhombic single-ion anisotropy, respectively. The open
boundary condition is assumed in the paper.

In the following we make use of the density-matrix
renormalization-group (DMRG) [42–44] method, with which
the ground state of the 1D system in large sizes can be calcu-
lated with very high accuracy. More precisely, we implement
GPU speeding up to Matlab code for the finite-size DMRG with
double precision data and four sweeps. The maximum number
of eigenstates kept is m = 200 during the procedure of basis
truncation, and such truncation guarantees the converging error
is smaller than 10−8 for system sizes up to N = 200. With such
accurate performance calculation, we can precisely analyze the
QPTs through various theoretic measures.

In the absence of the rhombic single-ion anisotropy, the
integrable spin-1 Heisenberg supports a gapped ground state
and serves as a useful example for Haldane conjecture [45] and
other concepts such as a hidden Z2 × Z2 symmetry breaking
and symmetry protected topological order. The nonlocal string
order captures the hidden symmetry breaking in the Haldane
phase of the 1D spin-1 Heisenberg model and can be charac-
terized by the string order parameter (SOP), whose definition
is given by [2]

Ox = − lim
(j−i)→∞

⎡
⎣Sx

i exp

⎛
⎝iπ

∑
i<l<j

Sx
l

⎞
⎠Sx

j

⎤
⎦. (2)

The SOP characterizes the topological order only within the
Haldane phase, as the measurement Ox is nonzero in the
Haldane phase and zero elsewhere. To explore the effects of the
exchange anisotropy and the rhombic single-ion anisotropy,
we consider another quantity of interest, i.e., the inverse
participation ratio (IPR). The IPR entirely depends on the
choice of basis. In a specific D-dimensional basis |ϕk〉 (k =
1,2, . . . ,D), the IPR of the state |ψ0〉 is defined as

T =
[∑D

k=1 |ck|4∑D
k=1 |ck|2

]−1

. (3)

Here |ψ0〉 = ∑D
k=1 ck|ϕk〉. In the following we focus on the

ground state of Eq. (1). The IPR of the ground state reaches
a minimal value Tmin = 1 when the ground state coincides
exactly a single basis state, and attains a maximal value
Imax = D when the ground state is uniform in the selective
bases. The IPRs can quantify the extent of distribution over
the preferential bases. For a set of one-particle states in real,
a large IPR is associated with a delocalized state, whereas a
small one is relayed to a localized state [46].

As the external parameter (e.g., E or �) varies across
a critical point, the ground-state wave function undergoes a
sudden change in the wake of QPT, accompanied by a rapid
alteration in the quantum correlation. Quantum coherence
is a resurgent concept in quantum theory and acts as a
manifestation of the quantum superposition principle. The
Wigner-Yanase skew information (WYSI), which we adopt as
a measure of coherence, is given by [47]

I (ρ,K) = − 1
2 Tr([

√
ρ,K]2), (4)

where the density matrix ρ describes a quantum state, K plays
a role of an observable, and [.,.] denotes the commutator. It can
be noted that as the skew information reduces to the variance
V (ρ,K) = TrρK2 − (TrρK)2 for pure states, and it is upper
bounded by the variance for mixed states. We will simply refer
to I (ρ,K) as K coherence in the paper.

For a system composed of A and B subsystems, the bipartite
EE can be chosen as an alternative measurement of the quantum
correlation,

SL = −Tr(ρA log2 ρA), (5)

in which the reduced density matrix of subsystem A part is
ρA = TrB(|ψ0〉〈ψ0|) for the ground state |ψ0〉. One convenient
choice of the subsystem A is composed of the first L sites and
the subsystem B is the rest of the system. In addition to EE,
the Schmidt gap can also be used to describe the QPTs [48]. It
is defined as

G = g1 − g2, (6)

where g1 and g2 are the first and the second largest eigen-
values of the reduced density matrix ρA, respectively. The
Schmidt gap has been shown to act as an order parameter
and capture quantum phase transitions in the ground state of
zero-temperature systems [48,49].

On the other hand, fidelity susceptibility measures the
changing rate of similarity between the two closest states as
the external parameter λ is tuned, which is defined as [31]

|〈ψ0(λ)|ψ0(λ + δλ)〉| = 1 − χ (λ)

2
δλ2 + O(δλ3), (7)

where δλ is an infinitesimal distance. The fidelity susceptibility
is an information metric in the d-dimensional parameter, which
has a gravity dual with the spatial volume of the Einstein-Rosen
bridge in anti–de Sitter (AdS) [50]. The divergence of χ (λ) can
directly locate the critical points. The efficiency in identifying
the continuous QPTs is exactly convincing [30,31,51].
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(a) (b) (c)

FIG. 1. (a) Second-order derivative of the ground-state energy density, (b) the Schmidt gap G, and (c) the string order parameter are plotted
as a function of the rhombic single-ion anisotropy E for different system sizes with � = 1.

III. NUMERICAL RESULTS

A. Case of � = 1

By means of DMRG, we study the ground-state energy and
other relevant quantities. The second-order derivative of the
ground-state energy density is shown in Fig. 1(a). When E

is small, the system is in the Haldane phase, as is diagnosed
by the nonzero SOP in Fig. 1(c). As E increases, the SOP
becomes vanishing and the second-order derivative of the
ground-state energy diverges at Ec

1 = 0.214, implying a QPT
occurs. The system enters into a Y -Néel phase. After E exceeds
Ec

2 = 1.717 [41], the system moves into a large-Ex phase. The
divergences at criticalities imply that both transitions are of
second order. Furthermore, the Schmidt gap of the reduced
density matrix by cutting a N -site chain into two halves
(L = N/2) are demonstrated. The Schmidt gap labeled by G is
plotted as a function of E for different system sizes in Fig. 1(b).
The Schmidt gap quantifies the competition between the two
dominant states on either side of the partition. It is found that
the Schmidt gap is gapped in large-Ex phase and it is gapless
in both the Haldane phase and the Y -Néel phase. So it cannot
distinguish the transition between the Y -Néel phase and the

Haldane phase, but can sense the transition between the Y -Néel
phase and large-Ex phase.

In Fig. 2(a), we plot the IPRs labeled by T of the ground
state. When the system is in the Haldane phase, the IPRs are
small, almost size independent; see Fig. 3.

The IPRs grow sharply with increasing E up to a maximum.
When E further goes up, the IPRs drop and the system turns to
the Y -Néel phase [41]. One can find the maximum of the peak
is size independent. We identify this peak as the indication of
the critical point Ec

1 = 0.21. The further increase of E pushes
the system into the large-Ex phase, and one can find that the
IPRs experience a sudden change when E crosses a critical
value, implying that the first-order derivative can capture the
quantum critical points. This can be understood through

∂2e

∂E2
= 1

N

⎡
⎣Tr

⎛
⎝∑

i,j

∂2Hi,j

∂E2
ρ

⎞
⎠ + Tr

⎛
⎝∑

i,j

∂Hi,j

∂E

∂ρ

∂E

⎞
⎠

⎤
⎦.

(8)

The discontinuity in the second-order derivatives of the energy
density e requires the divergence of at least one of the

(a) (b)

FIG. 2. (a) Inverse participation ratio T of the ground state and (b) its first-order derivative are plotted as a function of the rhombic single-ion
anisotropy E for different system sizes N with � = 1.0. Inset in (b) shows finite-size scaling of Ec of the derivative of the inverse participation
ratios as a function of N−1. The line is the numerical fitting.
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FIG. 3. Inverse participation ratio T is plotted as a function of
system size N . A set of selected parameters are located in one of four
phases, respectively.

derivatives ∂ρ

∂E
at the critical points [52]. The first derivative

of IPRs are plotted as a function of the rhombic single-
ion anisotropy E for different system sizes with � = 1.0
in Fig. 2(b). The pseudocritical points on finite-size system
Ec(N ) are below the true critical points Ec(∞), which can be
extrapolated by a power-law scaling:

Ec(N ) ∼ Ec(∞) + aNb. (9)

We fit the locations of the extremes by Eq. (9), which are
shown in the inset of Fig. 2(b). We find that Ec

2 = 1.723, a1 =
−5.413, and b1 = −0.956. Moreover, when the system is in
the Y -Néel phase and the large-Ex phase, the IPRs also saturate
with respect to the system size N ; see Fig. 3. There is negligible
difference between N = 150 and N = 200. This result is in
stark contrast to the participation ratios summing over all the
eigenstates in Ref. [53].

The WYSI can be used as an efficient measure to
quantify quantum coherence (QC), but it is rarely adopted
to detect QPTs. Here we plot the central two-site QC
I (ρN/2,N/2+1,S

x
N/2), I (ρN/2,N/2+1,S

z
N/2) as a function of the

rhombic single-ion anisotropy E for N = 100 in Fig. 4(a).
It is found that I (ρN/2,N/2+1,S

z
N/2) increases with E and

I (ρN/2,N/2+1,S
x
N/2) reaches a maximal value at E = 0.79.

According to the argument proposed in Refs. [54,55], the
first-order derivatives of the local QC are capable of detecting
different types of QPTs in many-body systems [56]. The

(a) (b)

FIG. 4. (a) Two-site QC I (ρN/2,N/2+1,S
x
N/2), I (ρN/2,N/2+1,S

z
N/2)

and (b) their first-order derivatives are plotted as a function of the
rhombic single-ion anisotropy E for N = 100.

(a)

(b) (c)

FIG. 5. (a) Entanglement entropy is plotted as a function of the
rhombic single-ion anisotropy E for different system sizes N with
� = 1. Inset: the first-order derivative of the entanglement entropy.
(b) Finite-size scaling of Ec of the first extreme point. (c) Finite-size
scaling of Ec obtained from the first-order derivative of entanglement
entropy at the second extreme point. The lines are the fitted lines.

extreme points shown in Fig. 4(b) mark the corresponding
critical points, although there is a small difference between
I (ρN/2,N/2+1,S

x
N/2) and I (ρN/2,N/2+1,S

z
N/2). We also investi-

gate the EE between the rightmost half part and the rest. The
entanglement is plotted as a function of the rhombic single-ion
anisotropy E for different system sizes in Fig. 5(a). The EE
initially grows up as E increases, and then undergoes an
overturn when the system transits from the Haldane phase to
the Y -Néel phase. The EE decreases gradually with increasing
E. A further increase of E induces the system into the large-Ex

and the EE declines more dramatically with respect to the
increase of E. One finds that the EE shows remarkable finite-
size effects in the Haldane phase and around the critical points.
We fit the location of the first peak by Eq. (9). We plot the
location of the maximum EE as a function of 1/N and show the
numerical fit in Fig. 5(b). We obtain that Ec

1 = 0.217. This was
confirmed by previous results [41]. As for the second critical

(a) (b)

FIG. 6. Fidelity susceptibility per site is plotted as a function of
the rhombic single-ion anisotropy E for different system sizes N with
� = 1. Insets show the finite-size scaling of Ec in terms of the fidelity
susceptibility versus N−1. The lines are the numerical fittings.
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FIG. 7. Inverse participation ratio T of the ground state is plotted
as a function of the rhombic single-ion anisotropy E for different
system sizes with � = 1.5. Inset: finite-size scaling of Ec of the
extreme point of the inverse participation ratios.

point, the criticality can be seized by the first-order derivative
of the EE, which is similar to the previous results of IPRs. To
this end, the quantum critical points sometimes are determined
by the positions at which the first-order derivative of the EE
takes extreme values [27,35,57]. The first-order derivative of
entanglement is plotted as a function of E for different system
sizes in the inset of Fig. 5(a). The valley in the first derivative
of the EE can detect the critical points. The positions of the
valley can be extrapolated to the thermodynamic limit, which
is shown in Fig. 5(c). The critical point Ec

2 = 1.712 is found.
By means of DMRG, we calculate the ground-state FS with

various system sizes N up to 100. The ground-state FS per
site χ/N is plotted as a function of the rhombic single-ion
anisotropy E for different sizes in Fig. 6. Two peaks of the FS
are observed for positive rhombic single-ion anisotropy. The
peak value of χ/N increases when the system size rises. The
location of peaks moves to a slightly higher E up to a particular
value as the system size N increases. Here, the scaling of
those extreme points of the FS is also investigated. We find
that the positions of the maximal points can also be fitted by a
formula E ∼ Ec + a/N , where a is a constant. The results for
the locations of the FS can be used to predict the QPT points

(a) (b)

FIG. 8. (a) Entanglement entropy is plotted as a function of the
rhombic single-ion anisotropy E for different system sizes with � =
1.5. (b) The first-order derivative of the two-site QC IN/2,N/2+1 is
plotted as a function of E with � = 1.5 for N = 100.

(a) (b)

FIG. 9. (a) Fidelity susceptibility per site and (b) the second-order
derivative of the ground-state energy density are plotted as a function
of the rhombic single-ion anisotropy E for different system sizes N

with � = 1.5. Inset in (a) shows finite-size scaling behavior of Ec in
terms of the fidelity susceptibility.

in the thermodynamic limit. In the inset of Fig. 6, we plot the
location of the maximum FS as a function of 1/N and draw
the numerical fit in red. We obtain Ec

1 = 0.212,a2 = −4.38
and Ec

2 = 1.705,a3 = −4.50.

B. Case of � = 1.5

Furthermore, we also study the IPR of the ground state with
� = 1.5 in Fig. 7. When the system is in the Z-Néel phase, the
IPR is small and nearly size independent; see Fig. 3. When the
system enters the large-Ex phase, the IPR grows sharply. The
peak in the IPR indicates a QPT between the Néel phase and the
large-Ex phase. We identify the critical point Ec

3 = 1.04, a4 =
−6.716, b4 = −1.261 by fitting with Eq. (9). Besides, the EE
is plotted as a function of the rhombic single-ion anisotropy
E for different system sizes with � = 1.5 in Fig. 8(a). One
observes that the EE initially increases and then declines. The
peak of EE, together with the extreme points identified by the
first-order derivation of the local QC in Fig. 8(b), can pinpoint
the critical point.

We also calculate the ground-state FS for system size N

up to 100 with � = 1.5. The ground-state FS per site χ/N is
plotted as a function of the rhombic single-ion anisotropy E for
different sizes in Fig. 9(a). The peak’s value of χ/N increases
when the system size increases. Similar to the isotropic case,
the peak’s location also shifts upward as the system size N

increases. The scaling of the extreme points of the FS is
shown in the inset of Fig. 9(a). We find that the scaling of
maximal points can also be fitted by Eq. (9), which gives
Ec

3 = 1.045, a5 = −5.41, and b5 = −1.10. In Fig. 9(b), the

TABLE I. Comparison of critical points obtained by different
measures referred in the paper for � = 1.

Criterion Ec
1 Ec

2

∂2e

∂E2 0.211 1.705

T or dT

dE
0.21 1.723

S or dS

dE
0.217 1.712

χ 0.212 1.705

QC 0.21 1.72
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FIG. 10. Phase diagram of spin-1 XXZ chain as functions of the
rhombic single-ion anisotropy E and the exchange anisotropy �.

second-order derivative of the ground-state energy density
implies that the transition between the Néel phase and large-Ex

phase is of the second order.
We compared the critical values extracted by all the mea-

sures in Table I, and we find at least the second digit after
the decimal point of those extracted values agree with each
other. To this end, we portray the E-� phase diagram of the
Hamiltonian (1) in terms of the above-mentioned measures.
As shown in Fig. 10, the Haldane phase switches to the
Z-Néel phase when � exceeds a critical value �c ≡ 1.175
for E = 0 [6,7,27], and �c obtains a slow increase when
E rises from zero. When � = 0, an infinitesimal rhombic
single-ion anisotropy renders the ground state being in the
Y -Néel phase, and the system changes to the large-Ex phase
after E surpasses Ec ≡ 2. As � increases, the critical point
separating the Y -Néel phase and the Haldane phase decreases,
unitl it reahes the terminal point of �c = 1.37, Ec = 0.93,
which sets a tricritical point. In contrast, the critical line
separating Y -Néel phase and the large-Ex phase grows with
the increase of �, and it meets the critical line between the

Haldane phase and the Z-Néel phase at �c = 1.2, Ec = 0.53,
which establishes another tricritical point. We also note that
the critical line between the Z-Néel phase and the large-Ex

phase would approach E = � for large �.

IV. CONCLUSIONS

In this paper, we have numerically investigated the quantum
phase transitions in the one-dimensional spin-1 XXZ chain
with the rhombic single-ion anisotropy by analyzing a few
information theoretical measures, including the bipartite en-
tanglement entropy, the fidelity susceptibility, and the Wigner-
Yanase skew information in addition to other order parameters.
Their relation with quantum phase transitions is discussed. It
is important to emphasize that the quantum phase transitions
from the Haldane phase to the Y -Néel phase and the phase
transitions from the Y -Néel phase to the large-Ex phase can be
well characterized by the fidelity susceptibility. The finite-size
scalings predict that the fidelity susceptibility should diverge
in the thermodynamic limit at the pseudocritical points and
the locations of extreme points approach the real quantum
critical point accordingly. We identify that these quantum
phase transitions are of second order by the second-order
derivative of the ground-state energy. Conclusions drawn from
various quantum information observables agree well with each
other. Finally we provide a ground-state phase diagram as
functions of the exchange anisotropy � and the rhombic
single-ion anisotropy E. To sum up, the information theoretical
measures are effective tools for detecting diverse quantum
phase transitions in spin-1 models.
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